Home Crystal structure of 1′,3′-dihydro-2,2′-spirobi[indene]-1,3-dione, C17H12O2
Article Open Access

Crystal structure of 1′,3′-dihydro-2,2′-spirobi[indene]-1,3-dione, C17H12O2

  • Lanhua Wang ORCID logo EMAIL logo and Qi Liu
Published/Copyright: November 27, 2024

Abstract

C17H12O2, monoclinic, P21/c (no. 14), a = 11.0333(13) Å, b = 15.7993(19) Å, c = 7.0619(9) Å, β = 92.302(2), V = 1230.0(3) Å3, Z = 4, R gt(F) = 0.0420, wR ref(F 2) = 0.1081, T = 298 K.

CCDC no.: 2391002

A part of the molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Colourless cube
Size: 0.26 × 0.22 × 0.21 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 0.09 mm−1
Diffractometer, scan mode: Bruker SMART APEX2, φ and ω
θ max, completeness: 27.5°, >99 %
N(hkl)measured , N(hkl)unique, R int: 7285, 2780, 0.026
Criterion for I obs, N(hkl)gt: I obs > 2 σ(I obs), 2,037
N(param)refined: 173
Programs: Bruker, 1 OLEX2, 2 SHELX 3 , 4
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
C1 0.62906 (13) 0.35645 (9) 0.8624 (2) 0.0424 (4)
H1 0.673358 0.405470 0.888209 0.051*
C2 0.68129 (14) 0.27763 (10) 0.8851 (2) 0.0499 (4)
H2 0.762019 0.273442 0.927252 0.060*
C3 0.61516 (15) 0.20427 (10) 0.8461 (2) 0.0487 (4)
H3 0.652697 0.151872 0.861321 0.058*
C4 0.49504 (14) 0.20786 (8) 0.7853 (2) 0.0417 (4)
H4 0.450825 0.158738 0.760184 0.050*
C5 0.44216 (12) 0.28701 (8) 0.76271 (18) 0.0336 (3)
C6 0.50871 (12) 0.36036 (8) 0.79994 (18) 0.0333 (3)
C7 0.31751 (12) 0.30919 (9) 0.6971 (2) 0.0394 (3)
C8 0.30486 (12) 0.40571 (8) 0.7027 (2) 0.0376 (3)
C9 0.43326 (12) 0.43564 (8) 0.7580 (2) 0.0378 (3)
C10 0.21476 (14) 0.43489 (9) 0.8536 (2) 0.0450 (4)
H10A 0.155896 0.390953 0.877511 0.054*
H10B 0.257508 0.449384 0.971906 0.054*
C11 0.15425 (12) 0.51137 (9) 0.7660 (2) 0.0400 (3)
C12 0.08075 (14) 0.57069 (10) 0.8498 (3) 0.0529 (4)
H12 0.067266 0.567986 0.978858 0.063*
C13 0.02785 (15) 0.63384 (11) 0.7392 (3) 0.0656 (6)
H13 −0.021631 0.673839 0.794158 0.079*
C14 0.04781 (15) 0.63797 (10) 0.5487 (4) 0.0662 (6)
H14 0.011214 0.680578 0.475762 0.079*
C15 0.12184 (13) 0.57941 (10) 0.4638 (3) 0.0536 (4)
H15 0.135333 0.582581 0.334890 0.064*
C16 0.17539 (11) 0.51610 (9) 0.5740 (2) 0.0397 (3)
C17 0.25703 (13) 0.44554 (10) 0.5137 (2) 0.0426 (4)
H17A 0.323319 0.467347 0.441801 0.051*
H17B 0.212164 0.404334 0.436939 0.051*
O1 0.23814 (10) 0.26026 (7) 0.64641 (19) 0.0636 (4)
O2 0.46702 (10) 0.50840 (6) 0.76245 (19) 0.0617 (4)

1 Source of materials

The synthesis of 1′,3′-dihydro-2,2′-spirobi[indene]-1,3-dione (SPIN) primarily referred to the literature of J. Wilbuer and coworkers. 5 Reagents were purchased from Macklin Inc. and used as received without further purification. An amount of 0.5 g SPIN (2.0 mmol) was added to a 15 mL glass tube with a mixed solution of methanol and dichloromethane (10 mL, 1:1, v/v). After several days, cube-shaped crystals were obtained, washed with anhydrous methanol, dried in air, yield 46 % (based on SPIN).

2 Experimental details

The crystal structure was determined using the SHELXT program, followed by refinement using the SHELXL program. The refinement process included anisotropic displacement parameters for all non-hydrogen atoms, while the hydrogen atoms were placed in idealized positions with isotropic thermal parameters.

3 Comment

The special stereoelectronic effects of spiro-conjugated compounds make them potentially useful in the fields of optics, dyes, organic conductors, etc. 6 , 7 , 8 At present, there are relatively few reported crystal structures of spiro-conjugated compounds. To better understand the properties of these compounds, it is necessary to synthesize more novel spiro-conjugated compounds and investigate their crystal structures in detail. Therefore, we report the single-crystal structure of the title 2,2′-spirobi[indene] compound. The asymmetric unit contains one SPIN molecule. The C–C bond and C–O bond lengths are in the normal range of 1.373(3) – 1.5320(19) Å and 1.2084(16) – 1.2115(17) Å, compared to the reported structures with similar molecules. 9 , 10 , 11 , 12 , 13 The torsion angle of C16–C17–C8–C9 and C9–C8–C17 are 100.642° and 111.992°. The SPIN molecules are linked by the C–H⃛O short contact (C4–H4⃛O21−x, 1/2+y, 1/2−z ). Ultimately, a three-dimensional network was formed, facilitated by π-π stacking interactions, with centroid-centroid distances ranging from 3.6752(5) Å to 3.8876(5) Å. The crystal data for the compound has been deposited to the Cambridge Crystallographic Data Centre (CCDC no. 2391002).


Corresponding author: Lanhua Wang, Basic Teaching Department, Yantai Institute of Science and Technology, Penglai, Shandong 265600, People’s Republic of China, E-mail:

Acknowledgements

The correspondence author would like to express her gratitude to Qi Liu for her valuable comments and suggestions about the manuscript.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Conflict of interest: The authors declare no conflicts of interest regarding this article.

  3. Research funding: None declared.

References

1. Bruker. SAINT and SADABS; Bruker AXS Inc.: Madison, Wisconsin, USA, 2000.Search in Google Scholar

2. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: a Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

3. Sheldrick, G. M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

4. Sheldrick, G. M. SHELXT – Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Search in Google Scholar

5. Wilbuer, J.; Schnakenburg, G.; Esser, B. Syntheses, Structures and Optoelectronic Properties of Spiroconjugated Cyclic Ketones. Eur. J. Org Chem. 2016, 14, 2404–2412; https://doi.org/10.1002/ejoc.201600235.Search in Google Scholar

6. Hashmi, A. S.; Haffner, T.; Rudolph, M.; Rominger, F. Gold Catalysis: Domino Reaction of En-Diynes to Highly Substituted Phenols. Chem. Eur. J. 2011, 17, 8195–8201; https://doi.org/10.1002/chem.201100305.Search in Google Scholar PubMed

7. Zhang, J.; Zhang, S.; Ding, Z.; Hou, A.; Fu, J., Su, H.; Cheng, M.; Lin, B.; Yang, L.; Liu, Y. Gold(I)–Catalyzed Tandem Intramolecular Methoxylation/Double Aldol Condensation Strategy Yielding 2,2′–Spirobi[indene] Derivatives. Org. Lett. 2022, 24, 6777–6782; https://doi.org/10.1021/acs.orglett.2c02653.Search in Google Scholar PubMed

8. Ivanov, K. S.; Riesebeck, T.; Skolyapova, A.; Liakisheva, I.; Kazantsev, M. S.; Sonina, A. A.; Peshkov, R. Y.; Mostovich, E. A. P2O5–Promoted Cyclization of Di[aryl(hetaryl)methyl] Malonic Acids as a Pathway to Fused Spiro[4.4]nonane-1, 6–Diones. J. Org. Chem. 2022, 87, 2456–2469; https://doi.org/10.1021/acs.joc.1c02379.Search in Google Scholar PubMed

9. Wu, T.; Zhou, Q.; Tang, W. Enantioselective Alpha–Carbonylative Arylation for Facile Construction of Chiral Spirocyclic β, β′–Diketones. Angew. Chem., Int. Ed. 2021, 60, 9978–9983; https://doi.org/10.1002/anie.202101668.Search in Google Scholar PubMed

10. Rahemtulla, B. F.; Clark, H. F.; Smith, M. D. Catalytic Enantioselective Synthesis of C1- and C2 –Symmetric Spirobiindanones through Counterion- Directed Enolate C–Acylation. Angew. Chem., Int. Ed. 2016, 55, 13180–13183; https://doi.org/10.1002/anie.201607731.Search in Google Scholar PubMed PubMed Central

11. Petersen, K. B.; Danielsen, J. (+)-2,2′–Spirobi[indan]-1,1′-dione. Acta Crystallogr. 1974, 30, 338–341; https://doi.org/10.1107/s0567740874002780.Search in Google Scholar

12. Hu, G.; Rømming, C.; Undheim, K. Stereoselective Synthesis of α, α′-Spirane–Bridged Dibenzyl Ligands. Synth. Commun. 2006, 35, 2277–2288.10.1080/00397910500186250Search in Google Scholar

13. Hashmi, A. S. K.; Haffner, T.; Rudolph, M.; Rominger, F. Gold Catalysis: Domino Reaction of En–Diynes to Highly Substituted Phenols. Chem. Eur. J. 2011, 17, 8195–8201; https://doi.org/10.1002/chem.201100305.Search in Google Scholar PubMed

Received: 2024-10-15
Accepted: 2024-11-10
Published Online: 2024-11-27
Published in Print: 2025-02-25

© 2024 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of the co-crystal 2,4,6-triamino-1,3,5-triazine-1,3-dioxide — acetic acid (1/2) C7H14N6O6
  4. Crystal structure of the dinuclear mercury(II) complex bis(μ2-bromido)-dibromido-bis{1-[(benzotriazol-1-yl)methyl]-1-H-1,3-(2-ethyl-5-methyl-imidazol)-κ1 N} dimercury(II), C26H30N10Hg2Br4
  5. Crystal structure of poly[hexaqua-pentakis(μ4-2,2′-bipyridine-4,4′-dicarboxylato-κ4 O:O′:O″:O‴)-(μ2-2,2′-bipyridine-4,4′-dicarboxylato-κ2 O:O)tetraytterbium(III)] hydrate, C36H26N6O16Yb2
  6. Hydrothermal synthesis and crystal structure of catena-poly[(1,10-phenanthroline-κ 2 N,N′)-bis(μ 2-nitroisophthalato-κ 3 O,O′:O″)nickel(II)], C20H13NiN3O7
  7. Crystal structure of 72,73,75,76-tetrafluoro-25,44-dimethyl-31,33,36,38-tetraoxo-31,32,33,36,37,38-hexahydro-3(2,7)-benzo[lmn][3,8]phenanthrolina-1,5(4,1)-dipyridin-1-iuma-2,4(1,2),7(1,4)-tribenzenacyclooctaphane-11,51-diium hexafluoridophosphate, [C46H28F4N4O4][PF6]2, a dicationic cyclophane
  8. Crystal structure of (E)-2-(4-(1H-imidazol-1-yl)benzylidene)-7-fluoro-3,4-dihydronaphthalen-1(2H)-one, C20H15FN2O
  9. The salt crystal structure of etoricoxib hydrochloride, C18H16Cl2N2O2S
  10. The structure of t-butyl 7-[2-(4-fluorophenyl)-3-phenyl-4-(phenylcarbamoyl)-5-(propan-2-yl)-1H-pyrrol-1-yl]-3,5-dihydroxyheptanoate, C37H43FN2O5
  11. The crystal structure of (μ4-oxo)-tri(μ4-2,2′-bipyridine-6,6′-bis(olato)-κ5 O,O′:N:N′:O″)tetrazinc(II) – methylformamide (1/1), C33H25N7O8Zn4
  12. The co-crystal structure of 4-chlorobenzophenone–salicylhydrazide(1/1), C20H17ClN2O3
  13. Crystal structure of 9-fluoro-4-(6-methoxypyridin-2-yl)-5,6-dihydrobenzo[h]quinazolin-2-amine, C18H15FN4O
  14. The crystal structure of the co-crystal composed of benzhydrazide and 5-aminoisophthalic acid, C8H7NO4⋅C7H8N2O
  15. The cocrystal structure of praziquantel-hesperetin (1/1), C35H38N2O8
  16. Crystal structure of new barium manganese fluorides dihydrates, Ba10Mn2F25·2H2O
  17. The crystal structure of bis[μ2-(3-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)propanoate-κ2O:N)-bis(2,2′-bipyridine-κ2 N, N′)dicopper(II)]dinitrate, C42H36Cu2N12O10
  18. Crystal structure of (3,6-di(2-pyridyl)-4-phenylaminopyridazine-κ2N,N′)-bis(2-(p-toluene)pyridinyl-κ2C,N)-iridium(III) hexafluorophosphate –dichloromethane (1/1), C45H37Cl2F6IrN7P
  19. The crystal structure of 2-(2′-carboxybenzyl)benzoic acid, C15H12O5
  20. The crystal structure of dichlorido-[(E)-N′,N″-bis((2E,3E)-3-(hydroxyimino)butan-2-ylidene)-2-((E)-3-(hydroxyimino)butan-2-ylidene)hydrazine-1-carbohydrazonhydrazide-κ 4 N 4]cobalt(II), C13H22N9O3Cl2Co
  21. Crystal structure of (−)-flavesine H, C15H22N2O2
  22. Crystal structure of 3-methoxybenzyl 2-(6-methoxynaphthalen-2-yl)propanoate, C22H22O4
  23. Crystal structure of dicarbonyl(2-oxopyridin-1(2H)-olato-κ 2 O,O)iridium(I), C7H4IrNO4
  24. The crystal structure of 4-(3-(triphenylphosphonio)propyl)piperazin-1-ium dibromide trihydrate, C25H37Br2N2O3P
  25. The crystal structure of ethyl 5,6-dihydroxybenzofuran-3-carboxylate, C11H10O5
  26. Crystal structure of 14-(R)-(2′-cyano-phenoxy)-3,19-diacetyl andrographolide, C31H37NO7
  27. The twinned crystal structure of 10-(4-methyl benzoate)-2,8-diethyl-5,5-difluoro-1,3,7,9-tetramethyl-5H-di-pyrrolo[1,2-c:2′,1′-f] [1,3,2]diazaborinin-4-ium-5-uide, C25H29BF2N2O2
  28. The crystal structure of (9H-thioxanthen-9- ylidene)hydrazine monohydrate, C13H11N2SO0.5
  29. The crystal structure of pyridinium diaqua-{1,2-phenylenebis((carboxylatocarbonyl)amido-κ4 N,N′,O,O′)manganese(III), C15H14MnN3O8
  30. Crystal structure of the hydrogen storage active high entropy phase Tb0.82Sm0.18Ni0.83Co0.17Mg
  31. Crystal structure of diaqua-bis[5-methyl-1-(1H-pyrazol-3-yl)-1H-1,2,3-triazole-4-carboxylato-κ 2 N,O)]manganese(II), C14H16MnN10O6
  32. Crystal structures of diiodido-3-((pyridin-2-ylmethylene)amino)-2-(pyridin-3-yl)-2,3-dihydroquinazolin-4(1H)-one-cadmium(II)
  33. Synthesis and crystal structure of methyl 4-(2-ethoxy-2-oxoethoxy)-3,5-dimethoxybenzoate, C14H18O7
  34. Crystal structure of isoxazolo[4,5-b]pyridin-3-amine, C6H5N3O
  35. Crystal structure of 4-chloro-1-isobutyl-1H-imidazo, C14H14ClN3
  36. The crystal structure of 1,1,1,2,2,2-hexakis(2-methyl-2-phenylpropyl)distannane,C60H78Sn2
  37. The crystal structure of (2,7-dimethoxynaphthalene-1,8-diyl)bis((3-nitrophenyl)methanone), C26H18N2O8
  38. Crystal structure of diaqua-tetra((E)-(RS)-1-(2,4-dichlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)pent-1-en-3-ol-κ 1 N)zinc(II) dinitrate dihydrate, C60H76Cl8N14O14Zn
  39. The crystal structure of diphenyl bis(2-((diphenoxyphosphoryl)amino)ethyl)phosphoramidate monohydrate C40H42N3O10P3
  40. Crystal structure of 4,4′-bis(dibromomethyl)-1,1′-biphenyl, C14H10Br4
  41. Crystal structure of CaPtZn
  42. Crystal structure of 3-chloro-5-(trifluoromethyl)pyridine-2-carboxylic acid, C7H3ClF3NO2
  43. The crystal structure of (3′-(2-bromophenyl)-2-phenyl-[2,2′-bioxiran]-3-yl)(phenyl)methanone, C92H68O12Br4
  44. Crystal structure of ethyl 4-(4-benzylpiperazin-1-yl)benzoate, C20H24N2O2
  45. The crystal structure of bis(selenocyanato-κ1 N)-bis(methanol)-bis((1E,2E)-1,2-bis (1-(pyridin-4-yl)ethylidene)-hydrazine)iron(II) methanol solvate, C34H44FeN10O4Se2
  46. Crystal structure of (E)-1-(5-bromo-2-hydroxyphenyl)-3-(5-(4-methoxyphenoxy)-3-methyl-1-phenyl-1H-pyrazol-4-yl)prop-2-en-1-one, C26H21BrN2O4
  47. The crystal structure of methyl 4-(4-(methylsulfonyl)phenyl)-2-methyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate, C19H21NO5S
  48. Crystal structure of 1′,3′-dihydro-2,2′-spirobi[indene]-1,3-dione, C17H12O2
  49. Crystal structure of (E)-2,2′,3,3′-tetrahydro-[1,1′-biindenylidene]-4,4′-diol, C18H16O2
  50. Crystal structure of di-glycylglycinium squarate dihydrate, C12H22N4O12, at 105 K
  51. Crystal structure of {[(4-fluorophenyl)methyl]triphenylphosphonium}dibromocopper(I), [C25H21FP]+[CuBr2]
  52. Crystal structure of poly[diaqua-bis(μ2-5-((pyridin-4-yl-methyl)amino)benzene-1,3-dicarboxylato-κ 2 N:O)cadmium(II)], C28H26CdN4O10
Downloaded on 8.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2024-0410/html
Scroll to top button