Home Physical Sciences Crystal structure of new barium manganese fluorides dihydrates, Ba10Mn2F25·2H2O
Article Open Access

Crystal structure of new barium manganese fluorides dihydrates, Ba10Mn2F25·2H2O

  • Sun Woo Kim ORCID logo EMAIL logo and Hong Young Chang ORCID logo
Published/Copyright: November 27, 2024

Abstract

Ba10Mn2F25·2H2O, cubic, Fdm (no. 227), a = 17.487(2) Å, V = 5347.7(18) Å3, Z = 8, Rgt (F) = 0.0236, wRref (F 2) = 0.0552, T = 296(2) K.

CCDC no.: 2350095

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Purple block
Size: 0.05 × 0.03 × 0.02 mm
Wavelength: Mo kα radiation (0.71073 Å)
μ: 15.5 mm−1
Diffractometer, scan mode: Bruker APEX-II, φ and ω
θ max, completeness: 28.6°, >99 %
N(hkl)measured, N(hkl)unique, R int: 7734, 370, 0.046
Criterion for I obs, N(hkl)gt: I obs > 2 σ(I obs), 344
N(param)refined: 33
Programs: Bruker, 1 SHELX, 2 , 3 , 4 VESTA3 5
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
Ba1 0.03947 (2) 0.21053 (2) 0.03947 (2) 0.0184 (2)
Ba2 0.125000 0.125000 −0.17998 (4) 0.02194 (19)
Mn1 0.000000 0.000000 0.000000 0.0158 (5)
F1 0.07252 (18) −0.0377 (3) 0.07252 (18) 0.0279 (10)
F2 0.125000 0.125000 0.125000 0.019 (3)
F3 0.0221 (2) 0.3569 (3) 0.0221 (2) 0.0308 (11)
O1a −0.0897 (11) 0.4103 (11) −0.0897 (11) 0.028 (6)
O2b −0.0914 (14) 0.3414 (14) −0.0914 (14) 0.028 (6)
H1Aa −0.0592 (11) 0.4408 (11) −0.0592 (11) 0.042*
H1Bc −0.125000 0.375000 −0.067 (4) 0.042*
H2Ad −0.055 (3) 0.325 (8) −0.055 (3) 0.042*
H2Bc −0.125000 0.375000 −0.065 (3) 0.042*
  1. aOccupancy: 0.257(18), bOccupancy: 0.243(18), cOccupancy: 0.162(12), dOccupancy: 0.086(6).

1 Source of materials

BaF2 (Alfa Asear, 99 %), MnF3 (Alfa Asear, 98 %) and CF3COOH (Alfa Aesar, 99 %) were used without any further purification. Crystals of Ba10Mn2F25·2H2O were obtained by hydrothermal method using a diluted CF3COOH solution. 6 0.8766 g of BaF2 (5.00 mmol), 0.1119 g of MnF3 (1.00 mmol), 3 ml of CF3COOH (39 mmol), and 5 ml of H2O were combined in a 23-mL Teflon-lined stainless autoclave. The autoclave was subsequently closed, gradually heated to 230 °C, held for 24 h, and cooled slowly to room temperature at a rate of 6  ° C/h. The mother liquor was decanted from the products, and products were recovered by filteration and washed with distilled water and ethanol. Purple colored block shaped crystals of Ba10 Mn2 F25·2H2O were isolated by hand sorting.

2 Experimental details

An purple colored block shaped crystal (0.02 × 0.03 × 0.05 mm3) was selected for single-crystal data collection. The structure was solved by Direct Methods with SHELXS 2 and further refined with the SHELXL program. 3 The oxygen-bound H atoms were located on a difference Fourier map and refined with distances O–H = 0.95 Å and Uiso(H) = 1.5U eq(O).

3 Comment

Manganese fluoride materials have been extensively studied due to their intriguing magnetic, electric, multiferroic, and optical properties. 7 , 8 A search in the Inorganic Structure Database (ICSD, web version 5.1.0) 9 revealed only four barium manganese fluoride compounds: BaMnF4 6 , BaMnF5 10 , BaMnF5(H2O), 11 and Ba5Mn3F19 12 . Additionally, mixed valence manganese fluorides are relatively rare, and their crystal structures have not been fully investigated due to the challenges in preparation and controlling the oxidation state of manganese. To date, only a few examples have been reported, including CsMn2F6 13 , K4Mn3F12 14 , Mn3F8·12H2O, 15 Mn2F5 16 , and Mn3F8 16 . The crystal structure of Ba10Mn2F25·2H2O belongs to the cubic Fdm (no. 227) space group with lattice parameter a = 17.487(2) Å. This structure is characterized by a zero-dimensional arrangement consisting of isolated Mn(1)F6 octahedra, Ba(1)F10 polyhedra, and Ba(2)F8(H2O)2 polyhedra. The Mn(1) atom is coordinated by six fluorine atoms, forming an octahedral geometry, with Mn–F bond distances of 1.911(4) Å. The Ba(1) atom is coordinated by ten fluorine atoms in a bicapped square antiprismatic geometry, with Ba–F bond distances range between 2.5905(8) and 2.825(3) Å. The Ba(2) atom is coordinated by eight fluorine atoms and two oxygen atoms of water molecules forming a distorted bicapped square antiprismatic geometry. The Ba–F bond distances range between 2.724(2) and 2.847(5) Å, while the Ba–O bond distances range between 2.927(10) and 2.942(13) Å.


Corresponding author: Sun Woo Kim, Department of Chemistry Education, Chosun University, 309 Pilmun-daero, Dong-gu Gwangju 61452, South Korea, E-mail:

Funding source: ACS PRF (American Chemical Society Petroleum Research Fund)

Award Identifier / Grant number: ACS PRF # 65115-UNI3

Funding source: National Research Foundation of Korea (NRF), the Ministry of Education

Award Identifier / Grant number: 2022R111A3063132

  1. Conflict of interest: The authors declare no conflicts of interest regarding this article.

  2. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  3. Research funding: S.W.K thanks the National Research Foundation of Korea (NRF), the Ministry of Education (2022R111A3063132). H.Y.C also thanks to ACS PRF (American Chemical Society Peterolium Fund, #65115-UNI3)

References

1. Bruker SAINT, APEX2 and SADABS; Bruker AXS Inc.: Madison, Wisconsin, USA, 2009.Search in Google Scholar

2. Sheldrick, G. M. SHELXTL – Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. 2015, A71, 3–8.10.1107/S2053273314026370Search in Google Scholar

3. Sheldrick, G. M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

4. Hübschle, C. B.; Sheldrick, G. M.; Dittrich, B. ShelXle: a Qt Graphical User Interface for SHELXL. J. Appl. Crystallogr. 2011, 44, 1281–1284; https://doi.org/10.1107/s0021889811043202.Search in Google Scholar

5. Momma, K.; Izumi, F. VESTA 3 for Three-Dimensional Visualization of Crystal, Volumetric and Morphology Data. J. Appl. Crytallogr. 2011, 44, 1272–1276; https://doi.org/10.1107/s0021889811038970.Search in Google Scholar

6. Kim, S. W.; Chang, H. Y.; Halasyamani, P. S. Selective Pure-phase Synthesis of the Multiferroic BaMF4 (M=Mg, Mn, Co, Ni, and Zn) Family. J. Am. Chem. Soc. 2010, 132, 17684–17685; https://doi.org/10.1021/ja108965s.Search in Google Scholar

7. Hagenmuller, P. INORGANIC SOLID FLUORIDES: Chemistry and Physics; Academic Press, INC.: New York, 1985.Search in Google Scholar

8. Leblanc, M.; Maisonneuve, V.; Tressaud, A. Crystal Chemistry and Selected Physical Properties of Inorganic Fluorides and Oxide-Fluorides. Chem. Rev. 2015, 115, 1191–1254; https://doi.org/10.1021/cr500173c.Search in Google Scholar

9. Zagorac, D.; Müller, H.; Ruehl, S.; Zagorac, J.; Rehme, S. Recent Developments in the Inorganic Crystal Structure Database: Theoretical Crystal Structure Data and Related Features. J. Appl. Crystallogr. 2019, 52, 918–925; https://doi.org/10.1107/s160057671900997x.Search in Google Scholar

10. Bukovec, P.; Hoppe, R. Zur Kenntnis von BaMnF5: Eine Jahn–Teller-verzerrte Variante von BaGaF5. Z. Anorg. Allg. Chem. 1984, 509, 138–144; https://doi.org/10.1002/zaac.19845090214.Search in Google Scholar

11. Massa, W.; Burck, V. Erdalkali-Fluoromanganate(III): BaMnF5·H2O und SrMnF5·H2O. Z. Anorg. Allg. Chem. 1984, 516, 119–126.10.1002/zaac.19845160916Search in Google Scholar

12. Dahlke, P.; Graulich, J.; Welsch, M.; Pebler, J.; Babel, D. Struktur- und magnetochemische Untersuchungen an Ba5 Mn3 F19 und verwandten Verbindungen A5IIM3IIIF19. Z. Anorg. Allg. Chem. 2000, 626, 1255–1263; https://doi.org/10.1002/(sici)1521-3749(200005)626:5<1255::aid-zaac1255>3.3.co;2-a.10.1002/(SICI)1521-3749(200005)626:5<1255::AID-ZAAC1255>3.3.CO;2-ASearch in Google Scholar

13. Klepov, V. V.; Pace, K. A.; Berseneva, A. A.; Felder, J. B.; Morrison, G.; Zhang, Q.; Kirkham, M. J.; Parker, D. S.; Zur Loye, H. C. Chloride Reduction of Mn3+ in Mild Hydrothermal Synthesis of a Charge Ordered Defect Pyrochlore, CsMn2+ Mn3+ F6, a Canted Antiferromagnet with a Hard Ferromagnetic Component. J. Am. Chem. Soc. 2021, 143, 11554–11567; https://doi.org/10.1021/jacs.1c04245.Search in Google Scholar PubMed

14. Frezen, G.; Kummer, S.; Massa, W.; Babel, D. Tetragonale Fluorperowskite AM0.75 ?0.25 F3 mit Kationendefizit: K4MnIIMn2IIIF12 und Ba2 Cs2 Cu3 F12. Z. Anorg. Allg. Chem. 1987, 553, 75–84.10.1002/zaac.19875531009Search in Google Scholar

15. Molinier, M.; Massa, W. New Fluoromanganate(III) Hydrates: Mn3F812H2O and AgMnF4·4H2O. Z. Anorg. Allg. Chem. 1994, 620, 833–838; https://doi.org/10.1002/zaac.19946200514.Search in Google Scholar

16. Bandemehr, J.; Zimmerhofer, F.; Ivlev, S. I.; Pietzonka, C.; Eklund, K.; Karttunen, A. J.; Huppertz, H.; Kraus, F. Syntheses and Characterization of the Mixed–Valent Manganese(II/III) Fluorides Mn2F5 and Mn3F8. Inorg. Chem. 2021, 60, 12651–12663; https://doi.org/10.1021/acs.inorgchem.1c01833.Search in Google Scholar PubMed

Received: 2024-09-11
Accepted: 2024-10-10
Published Online: 2024-11-27
Published in Print: 2025-02-25

© 2024 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of the co-crystal 2,4,6-triamino-1,3,5-triazine-1,3-dioxide — acetic acid (1/2) C7H14N6O6
  4. Crystal structure of the dinuclear mercury(II) complex bis(μ2-bromido)-dibromido-bis{1-[(benzotriazol-1-yl)methyl]-1-H-1,3-(2-ethyl-5-methyl-imidazol)-κ1 N} dimercury(II), C26H30N10Hg2Br4
  5. Crystal structure of poly[hexaqua-pentakis(μ4-2,2′-bipyridine-4,4′-dicarboxylato-κ4 O:O′:O″:O‴)-(μ2-2,2′-bipyridine-4,4′-dicarboxylato-κ2 O:O)tetraytterbium(III)] hydrate, C36H26N6O16Yb2
  6. Hydrothermal synthesis and crystal structure of catena-poly[(1,10-phenanthroline-κ 2 N,N′)-bis(μ 2-nitroisophthalato-κ 3 O,O′:O″)nickel(II)], C20H13NiN3O7
  7. Crystal structure of 72,73,75,76-tetrafluoro-25,44-dimethyl-31,33,36,38-tetraoxo-31,32,33,36,37,38-hexahydro-3(2,7)-benzo[lmn][3,8]phenanthrolina-1,5(4,1)-dipyridin-1-iuma-2,4(1,2),7(1,4)-tribenzenacyclooctaphane-11,51-diium hexafluoridophosphate, [C46H28F4N4O4][PF6]2, a dicationic cyclophane
  8. Crystal structure of (E)-2-(4-(1H-imidazol-1-yl)benzylidene)-7-fluoro-3,4-dihydronaphthalen-1(2H)-one, C20H15FN2O
  9. The salt crystal structure of etoricoxib hydrochloride, C18H16Cl2N2O2S
  10. The structure of t-butyl 7-[2-(4-fluorophenyl)-3-phenyl-4-(phenylcarbamoyl)-5-(propan-2-yl)-1H-pyrrol-1-yl]-3,5-dihydroxyheptanoate, C37H43FN2O5
  11. The crystal structure of (μ4-oxo)-tri(μ4-2,2′-bipyridine-6,6′-bis(olato)-κ5 O,O′:N:N′:O″)tetrazinc(II) – methylformamide (1/1), C33H25N7O8Zn4
  12. The co-crystal structure of 4-chlorobenzophenone–salicylhydrazide(1/1), C20H17ClN2O3
  13. Crystal structure of 9-fluoro-4-(6-methoxypyridin-2-yl)-5,6-dihydrobenzo[h]quinazolin-2-amine, C18H15FN4O
  14. The crystal structure of the co-crystal composed of benzhydrazide and 5-aminoisophthalic acid, C8H7NO4⋅C7H8N2O
  15. The cocrystal structure of praziquantel-hesperetin (1/1), C35H38N2O8
  16. Crystal structure of new barium manganese fluorides dihydrates, Ba10Mn2F25·2H2O
  17. The crystal structure of bis[μ2-(3-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)propanoate-κ2O:N)-bis(2,2′-bipyridine-κ2 N, N′)dicopper(II)]dinitrate, C42H36Cu2N12O10
  18. Crystal structure of (3,6-di(2-pyridyl)-4-phenylaminopyridazine-κ2N,N′)-bis(2-(p-toluene)pyridinyl-κ2C,N)-iridium(III) hexafluorophosphate –dichloromethane (1/1), C45H37Cl2F6IrN7P
  19. The crystal structure of 2-(2′-carboxybenzyl)benzoic acid, C15H12O5
  20. The crystal structure of dichlorido-[(E)-N′,N″-bis((2E,3E)-3-(hydroxyimino)butan-2-ylidene)-2-((E)-3-(hydroxyimino)butan-2-ylidene)hydrazine-1-carbohydrazonhydrazide-κ 4 N 4]cobalt(II), C13H22N9O3Cl2Co
  21. Crystal structure of (−)-flavesine H, C15H22N2O2
  22. Crystal structure of 3-methoxybenzyl 2-(6-methoxynaphthalen-2-yl)propanoate, C22H22O4
  23. Crystal structure of dicarbonyl(2-oxopyridin-1(2H)-olato-κ 2 O,O)iridium(I), C7H4IrNO4
  24. The crystal structure of 4-(3-(triphenylphosphonio)propyl)piperazin-1-ium dibromide trihydrate, C25H37Br2N2O3P
  25. The crystal structure of ethyl 5,6-dihydroxybenzofuran-3-carboxylate, C11H10O5
  26. Crystal structure of 14-(R)-(2′-cyano-phenoxy)-3,19-diacetyl andrographolide, C31H37NO7
  27. The twinned crystal structure of 10-(4-methyl benzoate)-2,8-diethyl-5,5-difluoro-1,3,7,9-tetramethyl-5H-di-pyrrolo[1,2-c:2′,1′-f] [1,3,2]diazaborinin-4-ium-5-uide, C25H29BF2N2O2
  28. The crystal structure of (9H-thioxanthen-9- ylidene)hydrazine monohydrate, C13H11N2SO0.5
  29. The crystal structure of pyridinium diaqua-{1,2-phenylenebis((carboxylatocarbonyl)amido-κ4 N,N′,O,O′)manganese(III), C15H14MnN3O8
  30. Crystal structure of the hydrogen storage active high entropy phase Tb0.82Sm0.18Ni0.83Co0.17Mg
  31. Crystal structure of diaqua-bis[5-methyl-1-(1H-pyrazol-3-yl)-1H-1,2,3-triazole-4-carboxylato-κ 2 N,O)]manganese(II), C14H16MnN10O6
  32. Crystal structures of diiodido-3-((pyridin-2-ylmethylene)amino)-2-(pyridin-3-yl)-2,3-dihydroquinazolin-4(1H)-one-cadmium(II)
  33. Synthesis and crystal structure of methyl 4-(2-ethoxy-2-oxoethoxy)-3,5-dimethoxybenzoate, C14H18O7
  34. Crystal structure of isoxazolo[4,5-b]pyridin-3-amine, C6H5N3O
  35. Crystal structure of 4-chloro-1-isobutyl-1H-imidazo, C14H14ClN3
  36. The crystal structure of 1,1,1,2,2,2-hexakis(2-methyl-2-phenylpropyl)distannane,C60H78Sn2
  37. The crystal structure of (2,7-dimethoxynaphthalene-1,8-diyl)bis((3-nitrophenyl)methanone), C26H18N2O8
  38. Crystal structure of diaqua-tetra((E)-(RS)-1-(2,4-dichlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)pent-1-en-3-ol-κ 1 N)zinc(II) dinitrate dihydrate, C60H76Cl8N14O14Zn
  39. The crystal structure of diphenyl bis(2-((diphenoxyphosphoryl)amino)ethyl)phosphoramidate monohydrate C40H42N3O10P3
  40. Crystal structure of 4,4′-bis(dibromomethyl)-1,1′-biphenyl, C14H10Br4
  41. Crystal structure of CaPtZn
  42. Crystal structure of 3-chloro-5-(trifluoromethyl)pyridine-2-carboxylic acid, C7H3ClF3NO2
  43. The crystal structure of (3′-(2-bromophenyl)-2-phenyl-[2,2′-bioxiran]-3-yl)(phenyl)methanone, C92H68O12Br4
  44. Crystal structure of ethyl 4-(4-benzylpiperazin-1-yl)benzoate, C20H24N2O2
  45. The crystal structure of bis(selenocyanato-κ1 N)-bis(methanol)-bis((1E,2E)-1,2-bis (1-(pyridin-4-yl)ethylidene)-hydrazine)iron(II) methanol solvate, C34H44FeN10O4Se2
  46. Crystal structure of (E)-1-(5-bromo-2-hydroxyphenyl)-3-(5-(4-methoxyphenoxy)-3-methyl-1-phenyl-1H-pyrazol-4-yl)prop-2-en-1-one, C26H21BrN2O4
  47. The crystal structure of methyl 4-(4-(methylsulfonyl)phenyl)-2-methyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate, C19H21NO5S
  48. Crystal structure of 1′,3′-dihydro-2,2′-spirobi[indene]-1,3-dione, C17H12O2
  49. Crystal structure of (E)-2,2′,3,3′-tetrahydro-[1,1′-biindenylidene]-4,4′-diol, C18H16O2
  50. Crystal structure of di-glycylglycinium squarate dihydrate, C12H22N4O12, at 105 K
  51. Crystal structure of {[(4-fluorophenyl)methyl]triphenylphosphonium}dibromocopper(I), [C25H21FP]+[CuBr2]
  52. Crystal structure of poly[diaqua-bis(μ2-5-((pyridin-4-yl-methyl)amino)benzene-1,3-dicarboxylato-κ 2 N:O)cadmium(II)], C28H26CdN4O10
Downloaded on 22.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2024-0345/html
Scroll to top button