Home Physical Sciences Crystal structure of poly[diaqua-bis(μ2-5-((pyridin-4-yl-methyl)amino)benzene-1,3-dicarboxylato-κ 2 N:O)cadmium(II)], C28H26CdN4O10
Article Open Access

Crystal structure of poly[diaqua-bis(μ2-5-((pyridin-4-yl-methyl)amino)benzene-1,3-dicarboxylato-κ 2 N:O)cadmium(II)], C28H26CdN4O10

  • Lai-Jun Zhang ORCID logo EMAIL logo , Wen-Fang Weng , Shuai Huang , Xiao-Qing Ye , Yuan-Yuan Deng , Jia-Yi Lang , Qing Yin and Jun-Jie Ding
Published/Copyright: December 23, 2024

Abstract

C28H26CdN4O10, triclinic, P 1 (no. 2), a = 5.7700(12) Å, b = 10.190(2) Å, c = 12.160(2) Å, α = 70.38(3)°, β = 84.72(3)°, γ = 81.63(3)°, V = 665.6(3) Å3, Z = 1, R gt (F) = 0.0272, wR ref (F 2) = 0.0602, T = 293 K.

CCDC No.: 1822051

A part of the molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Colourless plate
Size: 0.42 × 0.29 × 0.13 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 0.89 mm−1
Diffractometer, scan mode: APEX2, omega
N(hkl)measured, N(hkl)unique, R int: 3529, 2318, 0.017
Criterion for I obs, N(hkl) gt: I obs > 2 σ(I obs), 2228
N(param)refined: 196
Programs: Bruker, 1 Olex2, 2 SHELX 3 , 4
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
C1 0.8514 (5) 0.2559 (3) 1.4358 (3) 0.0419 (8)
H1 0.9513 0.2806 1.4795 0.050*
C2 0.9338 (5) 0.1501 (3) 1.3902 (3) 0.0404 (7)
H2 1.0862 0.1057 1.4031 0.049*
C3 0.7904 (5) 0.1100 (3) 1.3256 (2) 0.0287 (6)
C4 0.5684 (5) 0.1820 (3) 1.3091 (3) 0.0368 (7)
H4 0.4651 0.1594 1.2657 0.044*
C5 0.4991 (5) 0.2868 (3) 1.3565 (3) 0.0382 (7)
H5 0.3485 0.3342 1.3434 0.046*
C6 0.8707 (5) −0.0073 (3) 1.2751 (2) 0.0326 (6)
H6 1.0406 −0.0191 1.2678 0.039*
C7 0.8460 (4) 0.1228 (3) 1.0647 (2) 0.0244 (6)
C8 1.0193 (4) 0.2042 (3) 1.0678 (2) 0.0263 (6)
H8 1.0959 0.1849 1.1365 0.032*
C9 1.0780 (4) 0.3132 (3) 0.9694 (2) 0.0230 (5)
C10 0.9663 (4) 0.3445 (3) 0.8658 (2) 0.0247 (6)
H10 1.0050 0.4187 0.8005 0.030*
C11 0.7949 (4) 0.2631 (3) 0.8608 (2) 0.0225 (5)
C12 0.7385 (4) 0.1544 (3) 0.9592 (2) 0.0251 (6)
H12 0.6248 0.1005 0.9549 0.030*
C13 1.2613 (4) 0.3961 (3) 0.9810 (2) 0.0268 (6)
C14 0.6641 (4) 0.2959 (3) 0.7513 (2) 0.0261 (6)
Cd1 0.5000 0.5000 0.5000 0.02479 (10)
H1w 0.2765 0.3122 0.6591 0.050*
H2w 0.0670 0.3913 0.6201 0.050*
H3 0.8222 −0.0941 1.3292 0.039*
H7 0.6903 −0.0374 1.1562 0.038*
H13 1.3999 0.5406 0.8981 0.059*
N1 0.6364 (4) 0.3244 (2) 1.42049 (19) 0.0322 (5)
N2 0.7798 (4) 0.0172 (2) 1.16294 (19) 0.0318 (5)
O1 1.3491 (3) 0.3733 (2) 1.07464 (17) 0.0378 (5)
O2 1.3181 (3) 0.4938 (2) 0.88512 (17) 0.0392 (5)
O3 0.7277 (3) 0.39361 (19) 0.66116 (15) 0.0296 (4)
O4 0.5020 (3) 0.2267 (2) 0.75398 (17) 0.0390 (5)
O5 0.1994 (3) 0.36707 (19) 0.58998 (16) 0.0333 (4)

1 Source of materials

5-[(Pyridin-4-yl-methyl)amino]isophthalic acid (C14H12N2O4, H2L) was synthesized following the literature reported by us. 4 Both the analytical-grade N,N-dimethylformamide (DMF) and cadmium chloride hemipentahydrate (CdCl2·2.5H2O) were commercially available and were utilized without further purification. The title compound was solvo/hydrothermally synthesized using the following procedure. 0.2 mmol (0.0544 g) of H2L, 1 ml of DMF, 5 ml of distilled water and 0.2 mmol (0.457 g) of CdCl2·2.5H2O were added to a 15 ml Teflon reaction vessel and then sonicated for 10 min, resulting in a white suspension liquid. The Teflon-lined stainless steel reaction vessel was sealed and heated at 110 °C for 136 h. Upon cooling to room temperature, a large amount of colorless rod crystals were obtained with a yield of 73 % based on CdCl2·2.5H2O after being isolated by filtration, washed with the N,N-dimethylformamide/water mixture and dried at room temperature.

2 Experimental details

The structure was solved by Direct Methods by SHELXT program and refined by SHELXL program. All H-atoms bound to the C atoms were positioned with idealized geometry and refined isotropically with U iso(H) = 1.2 times U eq(C) using a riding model with C–H = 0.93 Å for aromatic H atoms and C–H = 0.97 Å for methylene H atoms. The H-atoms (H1w, H2w, H13, and H7) from O and N atoms were positioned with Q peaks and refined isotropically with U iso(H) = 1.5 times U eq(O) or U iso(H) = 1.2 times U eq(N).

3 Comment

At present, the use of diverse polydentate ligands containing rich N/O coordinating atoms is preferred in the design and synthesis of metal coordination polymers including metal-organic frameworks because they generally can provide multiple coordination sites and exhibit various coordination geometries. 5 , 6 , 7 In the past two decades, as a flexible organic polydentate ligand, 5-[(pyridin-4-yl-methyl)amino]isophthalic acid (H2L) has been selected to synthesize many interesting metal coordination polymers with some fascinating structural architecture. 8 , 9 , 10 , 11 The Cd(II) atom as the coordination center is a usual choice in the construction of metal coordination polymers, however, these reported metal coordination polymers based on H2L-related ligand, including our previously reported Cd–MOF [Cd(L)]·(DMF)(H2O), 12 are three-dimensional in the crystal structure. Herein, we obtained the first example of one-dimensional Cd(II) coordination polymer when using H2L as organic ligand through a solvo/hydrothermal method.

The asymmetric unit consists of one half of a Cd(II), one HL anion, and one coordinated water molecule. Each Cd(II) atom is six-coordinated with two pyridine nitrogen atoms from two HL ligands and four oxygen atoms from another two HL ligands and two coordinated water molecules, which results in a slightly distorted octahedral geometric configuration {CdO4N2}. The Cd–N and Cd–O lengths are in the ranges of 2.317(2) Å and 2.3182(19)–2.3193(19) Å, respectively. These bond distances are in agreement with these previously reported cadmium coordination polymers. 13 In the title compound, the HL ligand serves as a μ 2-bridge linking two adjacent Cd(II) atoms with its pyridine nitrogen atom and one carboxylate oxygen atom, where the dihedral angle between benzene ring and pyridine ring is 116.57°. Pairs of HL ligands connect symmetry-related Cd(II) atoms through monodentate carboxylate O and pyridine N atoms with the Cd⋯Cd separation of 12.160(10) Å to form one-dimensional loop-like chain. An infinite three-dimensional supramolecular structure in the title compound was further formed from the one-dimensional loop-like chains and stabilized through hydrogen bonding and ππ stacking interactions. The distance between the benzene rings of two adjacent HL ligands is 3.3599(12)–3.4205(12) Å, indicating the presence of ππ stacking interactions. Rich hydrogen bonding interactions include an intramolecular hydrogen bond (O5–H1w⋯O4) and intermolecular hydrogen bondings (O5–H2w⋯O3A, N2–H7⋯O4B, O2–H13⋯O1C).


Corresponding author: Lai-Jun Zhang, School of Chemistry and Environmental Science, Shangrao Normal University, Shangrao 334001, China, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: College Students Innovation and Entrepreneurship Training Program of Shangrao Normal University (No. 2024-CX-10) and the Science and Technology Research Project of the Education Department of Jiangxi Province (No. 201708).

  3. Conflict of interest: The authors declare no conflicts of interest regarding this article.

References

1. Bruker. APEX2, SAINT and SADABS; Bruker AXS Inc.: Madison, Wisconsin, USA, 2004.Search in Google Scholar

2. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

3. Sheldrick, G. M. A Short History of SHELX. Acta Crystallogr. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930.Search in Google Scholar PubMed

4. Sheldrick, G. M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

5. Zhang, L. J.; Qi, L.; Chen, X. Y.; Liu, F.; Liu, L. J.; Ding, W. L.; Li, D.-L.; Yuan, G.-C.; Tong, J.-Z.; Chen, F.-Y.; Huang, H.-J.; Wang, Y.-H. Synthesis, Crystal Structure and Photophysical Properties of Two Reduced Schiff Bases Derived from 5-Aminoisophthalic Acid. J. Chem. Crystallogr. 2019, 49, 260–266; https://doi.org/10.1007/s10870-018-0761-z.Search in Google Scholar

6. Zhang, L.; Huang, H.; Li, D.; Yuan, G.; Li, Y.; Wan, S.; Xiao, H.; Chen, F.; Zou, R. A 2D Pillared-Bilayer Iron-based Metal–Organic Framework: Syntheses, Crystal Structure, UV-Light Photocatalytic and Heterogeneous Fenton-like Catalytic Activities. Transition Met. Chem. 2023, 48, 47–54; https://doi.org/10.1007/s11243-023-00522-1.Search in Google Scholar

7. Chen, X.-Y., Yao, X.-T., Cui, Y., Chen, M.-S. Crystal Structure of Poly[tetraaqua-bis(μ2-5-bromoisophthalato-κ3O,O′: O″)-(μ2-1,5-bis(imidazol-2-methyl)pentane-κ2N: N′) Dicadmium(II)] Dihydrate. Z. Kristallogr. N. Cryst. Struct. 2024; 239, 825–827.10.1515/ncrs-2024-0123Search in Google Scholar

8. Das, M. C.; Bharadwaj, P. K. A Porous Coordination Polymer Exhibiting Reversible Single-Crystal to Single-Crystal Substitution Reactions at Mn(II) Centers by Nitrile Guest Molecules. J. Am. Chem. Soc. 2009, 131, 10942–10949; https://doi.org/10.1021/ja9006035.Search in Google Scholar PubMed

9. Das, M. C.; Bharadwaj, P. K. Effect of Bulkiness on Reversible Substitution Reaction at MnII Center with Concomitant Movement of the Lattice DMF: Observation through Single-Crystal to Single-Crystal Fashion. Chem. Eur. J. 2010, 16, 5070–5077; https://doi.org/10.1002/chem.200903129.Search in Google Scholar PubMed

10. Karmakar, A.; Martins, L. M. D. R. S.; Hazra, S.; Silva, M. F. C. G.; Pombeiro, A. J. L. Metal–Organic Frameworks with Pyridyl-Based Isophthalic Acid and Their Catalytic Applications in Microwave Assisted Peroxidative Oxidation of Alcohols and Henry Reaction. Cryst. Growth Des. 2016, 16, 1837–1849; https://doi.org/10.1021/acs.cgd.5b01178.Search in Google Scholar

11. You, L. X.; Xie, S.; Xia, C. C.; Wang, J.; Xiong, G.; He, Y.; Dragutan, I.; Dragutan, V.; Fedin, V. P.; Sun, Y.-G. Unprecedented Homochiral 3D Lanthanide Coordination Polymers with Triple-Stranded Helical Architecture Constructed from a Rigid Achiral Aryldicarboxylate Ligand. CrystEngComm 2019, 21, 1758–1763; https://doi.org/10.1039/c8ce01242c.Search in Google Scholar

12. Yuan, G. C.; Zhang, L. J.; Li, D. L.; Huang, D.; Chen, F. Y.; Huang, H. J.; Wang, Y. H. Synthesis, Crystal Structure and Optical Properties of a Three-Dimensional Cadmium Complex Based on 5-{(pyridin-4-Yl-Methyl)amino} Isophthalic Acid. Chem. World 2017 (12), 736–740.Search in Google Scholar

13. Zhou, A.-M.; Wei, H.; Gao, W.; Liu, J.-P.; Zhang, X.-M. Two 2D Multiresponsive Luminescence Coordination Polymers for Selective Sensing of Fe3+, CrVI Anions and TNP in Aqueous Medium. CrystEngComm 2019, 21, 5185–5194; https://doi.org/10.1039/c9ce01045a.Search in Google Scholar

Received: 2024-11-01
Accepted: 2024-11-29
Published Online: 2024-12-23
Published in Print: 2025-02-25

© 2024 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of the co-crystal 2,4,6-triamino-1,3,5-triazine-1,3-dioxide — acetic acid (1/2) C7H14N6O6
  4. Crystal structure of the dinuclear mercury(II) complex bis(μ2-bromido)-dibromido-bis{1-[(benzotriazol-1-yl)methyl]-1-H-1,3-(2-ethyl-5-methyl-imidazol)-κ1 N} dimercury(II), C26H30N10Hg2Br4
  5. Crystal structure of poly[hexaqua-pentakis(μ4-2,2′-bipyridine-4,4′-dicarboxylato-κ4 O:O′:O″:O‴)-(μ2-2,2′-bipyridine-4,4′-dicarboxylato-κ2 O:O)tetraytterbium(III)] hydrate, C36H26N6O16Yb2
  6. Hydrothermal synthesis and crystal structure of catena-poly[(1,10-phenanthroline-κ 2 N,N′)-bis(μ 2-nitroisophthalato-κ 3 O,O′:O″)nickel(II)], C20H13NiN3O7
  7. Crystal structure of 72,73,75,76-tetrafluoro-25,44-dimethyl-31,33,36,38-tetraoxo-31,32,33,36,37,38-hexahydro-3(2,7)-benzo[lmn][3,8]phenanthrolina-1,5(4,1)-dipyridin-1-iuma-2,4(1,2),7(1,4)-tribenzenacyclooctaphane-11,51-diium hexafluoridophosphate, [C46H28F4N4O4][PF6]2, a dicationic cyclophane
  8. Crystal structure of (E)-2-(4-(1H-imidazol-1-yl)benzylidene)-7-fluoro-3,4-dihydronaphthalen-1(2H)-one, C20H15FN2O
  9. The salt crystal structure of etoricoxib hydrochloride, C18H16Cl2N2O2S
  10. The structure of t-butyl 7-[2-(4-fluorophenyl)-3-phenyl-4-(phenylcarbamoyl)-5-(propan-2-yl)-1H-pyrrol-1-yl]-3,5-dihydroxyheptanoate, C37H43FN2O5
  11. The crystal structure of (μ4-oxo)-tri(μ4-2,2′-bipyridine-6,6′-bis(olato)-κ5 O,O′:N:N′:O″)tetrazinc(II) – methylformamide (1/1), C33H25N7O8Zn4
  12. The co-crystal structure of 4-chlorobenzophenone–salicylhydrazide(1/1), C20H17ClN2O3
  13. Crystal structure of 9-fluoro-4-(6-methoxypyridin-2-yl)-5,6-dihydrobenzo[h]quinazolin-2-amine, C18H15FN4O
  14. The crystal structure of the co-crystal composed of benzhydrazide and 5-aminoisophthalic acid, C8H7NO4⋅C7H8N2O
  15. The cocrystal structure of praziquantel-hesperetin (1/1), C35H38N2O8
  16. Crystal structure of new barium manganese fluorides dihydrates, Ba10Mn2F25·2H2O
  17. The crystal structure of bis[μ2-(3-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)propanoate-κ2O:N)-bis(2,2′-bipyridine-κ2 N, N′)dicopper(II)]dinitrate, C42H36Cu2N12O10
  18. Crystal structure of (3,6-di(2-pyridyl)-4-phenylaminopyridazine-κ2N,N′)-bis(2-(p-toluene)pyridinyl-κ2C,N)-iridium(III) hexafluorophosphate –dichloromethane (1/1), C45H37Cl2F6IrN7P
  19. The crystal structure of 2-(2′-carboxybenzyl)benzoic acid, C15H12O5
  20. The crystal structure of dichlorido-[(E)-N′,N″-bis((2E,3E)-3-(hydroxyimino)butan-2-ylidene)-2-((E)-3-(hydroxyimino)butan-2-ylidene)hydrazine-1-carbohydrazonhydrazide-κ 4 N 4]cobalt(II), C13H22N9O3Cl2Co
  21. Crystal structure of (−)-flavesine H, C15H22N2O2
  22. Crystal structure of 3-methoxybenzyl 2-(6-methoxynaphthalen-2-yl)propanoate, C22H22O4
  23. Crystal structure of dicarbonyl(2-oxopyridin-1(2H)-olato-κ 2 O,O)iridium(I), C7H4IrNO4
  24. The crystal structure of 4-(3-(triphenylphosphonio)propyl)piperazin-1-ium dibromide trihydrate, C25H37Br2N2O3P
  25. The crystal structure of ethyl 5,6-dihydroxybenzofuran-3-carboxylate, C11H10O5
  26. Crystal structure of 14-(R)-(2′-cyano-phenoxy)-3,19-diacetyl andrographolide, C31H37NO7
  27. The twinned crystal structure of 10-(4-methyl benzoate)-2,8-diethyl-5,5-difluoro-1,3,7,9-tetramethyl-5H-di-pyrrolo[1,2-c:2′,1′-f] [1,3,2]diazaborinin-4-ium-5-uide, C25H29BF2N2O2
  28. The crystal structure of (9H-thioxanthen-9- ylidene)hydrazine monohydrate, C13H11N2SO0.5
  29. The crystal structure of pyridinium diaqua-{1,2-phenylenebis((carboxylatocarbonyl)amido-κ4 N,N′,O,O′)manganese(III), C15H14MnN3O8
  30. Crystal structure of the hydrogen storage active high entropy phase Tb0.82Sm0.18Ni0.83Co0.17Mg
  31. Crystal structure of diaqua-bis[5-methyl-1-(1H-pyrazol-3-yl)-1H-1,2,3-triazole-4-carboxylato-κ 2 N,O)]manganese(II), C14H16MnN10O6
  32. Crystal structures of diiodido-3-((pyridin-2-ylmethylene)amino)-2-(pyridin-3-yl)-2,3-dihydroquinazolin-4(1H)-one-cadmium(II)
  33. Synthesis and crystal structure of methyl 4-(2-ethoxy-2-oxoethoxy)-3,5-dimethoxybenzoate, C14H18O7
  34. Crystal structure of isoxazolo[4,5-b]pyridin-3-amine, C6H5N3O
  35. Crystal structure of 4-chloro-1-isobutyl-1H-imidazo, C14H14ClN3
  36. The crystal structure of 1,1,1,2,2,2-hexakis(2-methyl-2-phenylpropyl)distannane,C60H78Sn2
  37. The crystal structure of (2,7-dimethoxynaphthalene-1,8-diyl)bis((3-nitrophenyl)methanone), C26H18N2O8
  38. Crystal structure of diaqua-tetra((E)-(RS)-1-(2,4-dichlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)pent-1-en-3-ol-κ 1 N)zinc(II) dinitrate dihydrate, C60H76Cl8N14O14Zn
  39. The crystal structure of diphenyl bis(2-((diphenoxyphosphoryl)amino)ethyl)phosphoramidate monohydrate C40H42N3O10P3
  40. Crystal structure of 4,4′-bis(dibromomethyl)-1,1′-biphenyl, C14H10Br4
  41. Crystal structure of CaPtZn
  42. Crystal structure of 3-chloro-5-(trifluoromethyl)pyridine-2-carboxylic acid, C7H3ClF3NO2
  43. The crystal structure of (3′-(2-bromophenyl)-2-phenyl-[2,2′-bioxiran]-3-yl)(phenyl)methanone, C92H68O12Br4
  44. Crystal structure of ethyl 4-(4-benzylpiperazin-1-yl)benzoate, C20H24N2O2
  45. The crystal structure of bis(selenocyanato-κ1 N)-bis(methanol)-bis((1E,2E)-1,2-bis (1-(pyridin-4-yl)ethylidene)-hydrazine)iron(II) methanol solvate, C34H44FeN10O4Se2
  46. Crystal structure of (E)-1-(5-bromo-2-hydroxyphenyl)-3-(5-(4-methoxyphenoxy)-3-methyl-1-phenyl-1H-pyrazol-4-yl)prop-2-en-1-one, C26H21BrN2O4
  47. The crystal structure of methyl 4-(4-(methylsulfonyl)phenyl)-2-methyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate, C19H21NO5S
  48. Crystal structure of 1′,3′-dihydro-2,2′-spirobi[indene]-1,3-dione, C17H12O2
  49. Crystal structure of (E)-2,2′,3,3′-tetrahydro-[1,1′-biindenylidene]-4,4′-diol, C18H16O2
  50. Crystal structure of di-glycylglycinium squarate dihydrate, C12H22N4O12, at 105 K
  51. Crystal structure of {[(4-fluorophenyl)methyl]triphenylphosphonium}dibromocopper(I), [C25H21FP]+[CuBr2]
  52. Crystal structure of poly[diaqua-bis(μ2-5-((pyridin-4-yl-methyl)amino)benzene-1,3-dicarboxylato-κ 2 N:O)cadmium(II)], C28H26CdN4O10
Downloaded on 22.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2024-0430/html
Scroll to top button