Home The cocrystal structure of praziquantel-hesperetin (1/1), C35H38N2O8
Article Open Access

The cocrystal structure of praziquantel-hesperetin (1/1), C35H38N2O8

  • Wei Han ORCID logo , Mei Li , Xiang Geng and Guoshun Zhang ORCID logo EMAIL logo
Published/Copyright: November 26, 2024

Abstract

C35H38N2O8, monoclinic, P21 (no. 4), a = 14.0502(3) Å, b = 5.93007(14) Å, c = 18.3417(4) Å, β = 101.327(2)°, V = 1498.45(6) Å3, Z = 2, Rgt (F) = 0.0443, wRref (F 2) = 0.1082, T = 100(2) K.

CCDC no.: 2377413

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Colourless block
Size: 0.30 × 0.20 × 0.20 mm
Wavelength: Cu Kα radiation (1.54184 Å)
μ: 0.79 mm−1
Diffractometer, scan mode: ROD, Synergy Custom DW system, HyPix, ω
θ max, completeness: 75.9°, 99 %
N(hkl)measured, N(hkl)unique, R int: 17393, 5940, 0.028
Criterion for I obs, N(hkl)gt: I obs > 2σ(I obs), 5809
N(param)refined: 429
Programs: Bruker 1 , SHELX 2 , 3 , Olex2 4
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso */U eq
O1 0.13889 (11) −0.0006 (3) 0.37135 (8) 0.0261 (3)
O2 0.23038 (12) 0.8012 (3) 0.21087 (8) 0.0321 (4)
N1 0.15821 (12) 0.3186 (3) 0.30809 (9) 0.0234 (4)
N2 0.13008 (12) 0.5148 (3) 0.16787 (9) 0.0219 (3)
C1 0.32172 (15) 0.0178 (4) 0.46318 (12) 0.0252 (4)
H1A 0.2739 −0.0593 0.4877 0.030*
H1B 0.3409 −0.0879 0.4268 0.030*
C2 0.41097 (16) 0.0830 (4) 0.52137 (13) 0.0291 (5)
H2A 0.4378 −0.0536 0.5490 0.035*
H2B 0.4613 0.1446 0.4960 0.035*
C3 0.38729 (18) 0.2572 (4) 0.57615 (12) 0.0333 (5)
H3A 0.4479 0.3046 0.6099 0.040*
H3B 0.3441 0.1888 0.6067 0.040*
C4 0.33760 (16) 0.4636 (4) 0.53541 (12) 0.0281 (5)
H4A 0.3190 0.5693 0.5720 0.034*
H4B 0.3837 0.5423 0.5097 0.034*
C5 0.24757 (15) 0.3973 (4) 0.47884 (11) 0.0247 (4)
H5A 0.2180 0.5333 0.4523 0.030*
H5B 0.1993 0.3279 0.5046 0.030*
C6 0.27546 (14) 0.2286 (4) 0.42268 (11) 0.0213 (4)
H6 0.3241 0.3018 0.3972 0.026*
C7 0.18620 (15) 0.1712 (4) 0.36477 (11) 0.0217 (4)
C8 0.20665 (16) 0.5338 (4) 0.30061 (11) 0.0252 (4)
H8A 0.2774 0.5138 0.3180 0.030*
H8B 0.1843 0.6463 0.3334 0.030*
C9 0.18845 (15) 0.6246 (4) 0.22266 (11) 0.0232 (4)
C10 0.06933 (14) 0.3220 (3) 0.17849 (11) 0.0211 (4)
H10 0.0988 0.1812 0.1627 0.025*
C11 0.06242 (14) 0.3017 (4) 0.26020 (10) 0.0219 (4)
H11A 0.0201 0.4229 0.2730 0.026*
H11B 0.0327 0.1550 0.2686 0.026*
C12 0.11823 (16) 0.5965 (4) 0.09152 (11) 0.0263 (4)
H12A 0.1262 0.4705 0.0578 0.032*
H12B 0.1680 0.7122 0.0881 0.032*
C13 0.01750 (16) 0.6973 (4) 0.06920 (12) 0.0283 (5)
H13A 0.0137 0.8383 0.0974 0.034*
H13B 0.0047 0.7350 0.0156 0.034*
C14 −0.05829 (15) 0.5330 (4) 0.08463 (11) 0.0238 (4)
C15 −0.03298 (15) 0.3503 (4) 0.13203 (11) 0.0221 (4)
C16 −0.10368 (16) 0.1899 (4) 0.13930 (12) 0.0279 (5)
H16 −0.0863 0.0619 0.1702 0.033*
C17 −0.19877 (16) 0.2160 (5) 0.10180 (12) 0.0312 (5)
H17 −0.2459 0.1053 0.1068 0.037*
C18 −0.22538 (16) 0.4026 (5) 0.05699 (12) 0.0312 (5)
H18 −0.2909 0.4227 0.0323 0.037*
C19 −0.15510 (15) 0.5600 (4) 0.04857 (12) 0.0271 (4)
H19 −0.1730 0.6880 0.0178 0.033*
O3 −0.66848 (12) 0.3875 (3) 0.04549 (9) 0.0370 (4)
H3 −0.638 (3) 0.498 (8) 0.027 (2) 0.075 (12)*
O4 −0.63103 (12) 0.0534 (3) 0.28502 (8) 0.0327 (4)
H4 −0.678 (2) −0.043 (6) 0.2626 (17) 0.047 (9)*
O5 −0.55064 (13) 0.7119 (3) 0.03018 (9) 0.0372 (4)
O6 −0.41614 (12) 0.6235 (3) 0.24739 (8) 0.0335 (4)
O7 −0.02989 (13) 0.7807 (3) 0.32084 (10) 0.0384 (4)
H7 0.012 (2) 0.880 (6) 0.3471 (18) 0.052 (9)*
O8 −0.05877 (11) 1.1658 (3) 0.38921 (9) 0.0309 (4)
C20 −0.62116 (15) 0.3730 (4) 0.11661 (12) 0.0279 (5)
C21 −0.65235 (15) 0.2149 (4) 0.16256 (12) 0.0267 (4)
H21 −0.7048 0.1166 0.1437 0.032*
C22 −0.60531 (16) 0.2030 (4) 0.23708 (12) 0.0278 (5)
C23 −0.52780 (17) 0.3465 (4) 0.26551 (12) 0.0315 (5)
H23 −0.4978 0.3405 0.3166 0.038*
C24 −0.49546 (15) 0.4968 (4) 0.21837 (12) 0.0275 (5)
C25 −0.54131 (15) 0.5164 (4) 0.14313 (12) 0.0258 (4)
C26 −0.51026 (16) 0.6839 (4) 0.09559 (12) 0.0290 (5)
C27 −0.42544 (19) 0.8271 (5) 0.13125 (13) 0.0387 (6)
H27Aa −0.3866 0.8671 0.0936 0.046*
H27Ba −0.4497 0.9687 0.1496 0.046*
H27Cb −0.3675 0.7734 0.1132 0.046*
H27Db −0.4382 0.9835 0.1130 0.046*
C28Ab −0.4008 (8) 0.8346 (17) 0.2136 (6) 0.029 (3)
H28Ab −0.4352 0.9604 0.2338 0.034*
C28Ba −0.3630 (2) 0.7096 (6) 0.19365 (15) 0.0282 (9)
H28Ba −0.3313 0.5797 0.1731 0.034*
C29 −0.2835 (2) 0.8542 (6) 0.24098 (15) 0.0472 (7)
C30 −0.1926 (2) 0.7651 (5) 0.25825 (14) 0.0430 (7)
H30 −0.1791 0.6252 0.2371 0.052*
C31 −0.11928 (18) 0.8773 (4) 0.30659 (13) 0.0326 (5)
C32 −0.13671 (16) 1.0824 (4) 0.33967 (12) 0.0300 (5)
C33 −0.22727 (18) 1.1792 (5) 0.31943 (15) 0.0419 (6)
H33 −0.2403 1.3228 0.3383 0.050*
C34 −0.30081 (18) 1.0609 (6) 0.26990 (15) 0.0486 (7)
H34 −0.3636 1.1261 0.2564 0.058*
C35 −0.0759 (2) 1.3506 (5) 0.43448 (14) 0.0397 (6)
H35A −0.0945 1.4835 0.4032 0.060*
H35B −0.0166 1.3834 0.4710 0.060*
H35C −0.1283 1.3120 0.4605 0.060*
  1. aOccupancy: 0.780 (8), boccupancy: 0.220 (8).

1 Source of material

Praziquantel and hesperitin purchased from Beijing Mairuida Technology Co., Ltd. were used without further purification. Ethyl acetate was of analytical grade. A mixture of praziquantel (185 mg) and hesperitin (180 mg) in a 1:1 molar ratio, was totally dissolved in 3 mL of ethyl acetate at 313 K. Then the solution was filtered and placed under room temperature. Light yellow, block crystals were obtained after 24 h.

2 Experimental details

H atoms bonded to N or O were determined by the experimental electron density map. All other H atoms were located in geometrically calculated positions and refined using a riding model.

3 Comment

Schistosomiasis is a widely prevalent and harmful parasitic disease, with over 230 million people infected worldwide, of which 5 %–10 % of infected individuals will suffer from liver fibrosis. 5 However, liver fibrosis could further develop into cirrhosis, and even liver cancer. Thus, preventing liver fibrosis is of great significance during the treatment of schistosomiasis.

Praziquantel (PZQ) as a derivative of pyrazine isoquinoline, is a potent and preferred drug for the treatment of schistosomiasis with high efficiency and low toxicity. 6 In recent years, it has been also found that PZQ has anti-inflammatory and anti-fibrotic effects in the liver. 7 Hesperetin (HESP) extracted from citrus fruits, is a dihydroflavonoid compound with the pharmacological activities such as antioxidant, anti-inflammatory, anti-apoptotic and anti-tumor 8 , 9 etc. An increasing number of studies have been reported that HESP also has markedly protective effects against cardiac fibrosis, liver fibrosis and pulmonary fibrosis. 10 , 11 , 12 Therefore, the combination of the above two components may prevent liver fibrosis while treating schistosomiasis.

Cocrystals consist of active pharmaceutical ingredients (APIs) and one or more other cocrystal formers (CCFs) at a definite stoichiometric proportion in the same crystal lattice through noncovalent interactions. 13 Cocrystal technology, as an effective strategy for ameliorating the physico-chemical properties of active pharmaceutical ingredients (API), such as hygroscopicity, dissolution rate, solubility, stability and bioavailability has attracted increasing attention. 14 , 15 Moreover, the cocrystal technology involving in more than two components, could achieve the combined application of two drugs. 16 Thus, in this study, we aim to synthetize the cocrystal of PZQ and HESP for simultaneously treating schistosomiasis and preventing liver fibrosis.

Here, we successfully prepared the cocrystal of PZQ–HESP through cooling recrystallization method. The complete set of X-ray diffraction data for the title compound was deposited to the Cambridge Crystallographic Data Center (CCDC entry no. 2377413). PZQ–HESP crystallizes in a monoclinic space group P21 with one PZQ molecule and one HESP molecule in the asymmetric unit. The C27–C28 in PZQ–HESP is disordered and split into two positions. The hydrogen atom of the phenolic hydroxyl group from HESP was not transferred to PZQ, indicating that the obtained product is cocrystal rather than salt.

Intramolecular hydrogen bond with O3–H⋯O5 in PZQ–HESP was generated to form a five-membered ring-like structure. PZQ molecule and HESP molecule were connected alternately together via intermolecular hydrogen bond with O4–H⋯O2 and O7–H⋯O1. The torsion angles for C10–N2–C12–C13 with 67.504°, N1–C8–C9–N2 with 2.016° and N1–C7–C6–C1 with −157.037° in PZQ–HESP respectively, were different from those in PZQ. 16 In addition, the calculated angle between the mean planes of the amide functions with N1–C7–O1 and N2–C9–O2 in PZQ–HESP was 24.494°. Those demonstrated that the conformation of the PZQ molecule had undergone a certain change after the formation of a PZQ cocrystal.

The density of the reported PZQ with 1.250 g/cm3 was remarkably lower than the obtained cocrystal of PZQ–HESP with 1.362 g/cm3, indicating that the tighter packing between molecules in PZQ–HESP was one of the main reasons for cocrystal formation. 16 In addition, the traditional strong hydrogen bonding with O–H⋯O in PZQ–HESP replaces the weak hydrogen bonding with C–H⋯O in PZQ. 14 This signifies that the stronger intermolecular force in PZQ–HESP relative to that in PZQ, is also one of the main reasons for the formation of cocrystal.

The Hirshfeld surface analysis for PZQ–HESP was performed using Crystal Explorer 17.5 17 and its fingerprint plots were explored to obtain quantitatively various intermolecular interactions. It is obvious that the H⋯H interactions with 51.4 %, O⋯H interactions with 25.7 % and C⋯H interactions with 18.7 % contributed significantly to the Hirshfeld surfaces.


Corresponding author: Guoshun Zhang, Department of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi 030001, China, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The work was sponsored by the Scientific Research Project of Shanxi Health Committee (2019093).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Bruker. SAINT, APEX2 and SADABS; Bruker AXS Inc.: Madison, WI, USA, 2012.Search in Google Scholar

2. Sheldrick, G. M. SHELXTL – Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. 2015, A71, 3–8.10.1107/S2053273314026370Search in Google Scholar PubMed PubMed Central

3. Sheldrick, G. M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8. https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

4. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341. https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

5. Colley, D. G.; Bustinduy, A. L.; Secor, W. E.; King, C. H. Human Schistosomiasis. Lancet 2014, 383, 2253–2264. https://doi.org/10.1016/s0140-6736(13)61949-2.Search in Google Scholar

6. de Moraes, M. G. F.; Barreto, A. G.; Secchi, A. R.; de Souza, M. B.; Lage, P. L. d. C.; Myerson, A. S. Polymorphism of Praziquantel: Role of Cooling Crystallization in Access to Solid Forms and Discovery of New Polymorphs. Cryst. Growth Des. 2023, 23, 1247–1258. https://doi.org/10.1021/acs.cgd.2c01381.Search in Google Scholar

7. Liang, Y. J.; Luo, J.; Yuan, Q.; Zheng, D.; Liu, Y. P.; Shi, L.; Zhou, Y.; Chen, A. L.; Ren, Y. Y.; Sun, K. Y.; Sun, Y.; Wang, Y.; Zhang, Z. S. New Insight into the Antifibrotic Effects of Praziquantel on Mice in Infection with Schistosoma Japonicum. PLoS One 2011, 6, e20247. https://doi.org/10.1371/journal.pone.0020247.Search in Google Scholar PubMed PubMed Central

8. Elango, R.; Athinarayanan, J.; Subbarayan, V. P.; Lei, D. K. Y.; Alshatwi, A. A. Hesperetin Induces an Apoptosis-Triggered Extrinsic Pathway and a p53-Independent Pathway in Human Lung Cancer H522 Cells. J. Asian Nat. Prod. Res. 2018, 20, 559–569. https://doi.org/10.1080/10286020.2017.1327949.Search in Google Scholar PubMed

9. Kim, D. S.; Lim, S. B. Semi-Continuous Subcritical Water Extraction of Flavonoids from Citrus Unshiu Peel: Their Antioxidant and Enzyme Inhibitory Activities. Antioxidants 2020, 9, 360. https://doi.org/10.3390/antiox9050360.Search in Google Scholar PubMed PubMed Central

10. Kong, R.; Wang, N.; Luo, H.; Lu, J. Hesperetin Mitigates Bile Duct Ligation-Induced Liver Fibrosis by Inhibiting Extracellular Matrix and Cell Apoptosis via the TGF-Beta1/Smad Pathway. Curr. Mol. Med. 2018, 18, 15–24. https://doi.org/10.2174/1566524018666180608084947.Search in Google Scholar PubMed

11. Wang, B.; Li, L.; Jin, P.; Li, M.; Li, J. Hesperetin Protects Against Inflammatory Response and Cardiac Fibrosis in Postmyocardial Infarction Mice by Inhibiting Nuclear Factor κB Signaling Pathway. Exp. Ther. Med. 2017, 14, 2255–2260. https://doi.org/10.3892/etm.2017.4729.Search in Google Scholar PubMed PubMed Central

12. Li, S.; Shao, L.; Fang, J.; Zhang, J.; Chen, Y.; Yeo, A. J.; Lavin, M. F.; Yu, G.; Shao, H. Hesperetin Attenuates Silica-Induced Lung Injury by Reducing Oxidative Damage and Inflammatory Response. Exp. Ther. Med. 2021, 21, 297. https://doi.org/10.3892/etm.2021.9728.Search in Google Scholar PubMed PubMed Central

13. Wang, F. Y.; Zhang, Q.; Zhang, Z.; Gong, X.; Wang, J. R.; Mei, X. Solid-State Characterization and Solubility Enhancement of Apremilast Drug-Drug Cocrystals. CrystEngComm 2018, 20, 5945–5948. https://doi.org/10.1039/c8ce00689j.Search in Google Scholar

14. Roca-Paixão, L.; Correia, N. T.; Danède, F.; Guerain, M.; Affouard, F. Carbamazepine/Tartaric Acid Cocrystalline Forms: When Stoichiometry and Synthesis Method Matter. Cryst. Growth Des. 2022, 23, 1355–1369. https://doi.org/10.1021/acs.cgd.2c00859.Search in Google Scholar

15. Li, J. M.; Dai, X. L.; Li, G. J.; Lu, T. B.; Chen, J. M. Constructing Anti-Glioma Drug Combination with Optimized Properties Through Cocrystallization. Cryst. Growth Des. 2018, 18, 4270–4274. https://doi.org/10.1021/acs.cgd.8b00807.Search in Google Scholar

16. Espinosa-Lara, J. C.; Guzman-Villanueva, D.; Arenas-García, J. I.; Herrera-Ruiz, D.; Rivera-Islas, J.; Román-Bravo, P.; Morales-Rojas, H.; Höpfl, H. Cocrystals of Active Pharmaceutical Ingredients-Praziquantel in Combination with Oxalic, Malonic, Succinic, Maleic, Fumaric, Glutaric, Adipic, and Pimelic Acids. Cryst. Growth Des. 2012, 13, 169–185. https://doi.org/10.1021/cg301314w.Search in Google Scholar

17. Spackman, P. R.; Turner, M. J.; McKinnon, J. J.; Wolff, S. K.; Grimwood, D. J.; Jayatilaka, D.; Spackman, M. A. CrystalExplorer: A Program for Hirshfeld Surface Analysis, Visualization and Quantitative Analysis of Molecular Crystals. J. Appl. Crystallogr. 2021, 54, 1006–1011. https://doi.org/10.1107/s1600576721002910.Search in Google Scholar PubMed PubMed Central

Received: 2024-08-14
Accepted: 2024-10-18
Published Online: 2024-11-26
Published in Print: 2025-02-25

© 2024 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of the co-crystal 2,4,6-triamino-1,3,5-triazine-1,3-dioxide — acetic acid (1/2) C7H14N6O6
  4. Crystal structure of the dinuclear mercury(II) complex bis(μ2-bromido)-dibromido-bis{1-[(benzotriazol-1-yl)methyl]-1-H-1,3-(2-ethyl-5-methyl-imidazol)-κ1 N} dimercury(II), C26H30N10Hg2Br4
  5. Crystal structure of poly[hexaqua-pentakis(μ4-2,2′-bipyridine-4,4′-dicarboxylato-κ4 O:O′:O″:O‴)-(μ2-2,2′-bipyridine-4,4′-dicarboxylato-κ2 O:O)tetraytterbium(III)] hydrate, C36H26N6O16Yb2
  6. Hydrothermal synthesis and crystal structure of catena-poly[(1,10-phenanthroline-κ 2 N,N′)-bis(μ 2-nitroisophthalato-κ 3 O,O′:O″)nickel(II)], C20H13NiN3O7
  7. Crystal structure of 72,73,75,76-tetrafluoro-25,44-dimethyl-31,33,36,38-tetraoxo-31,32,33,36,37,38-hexahydro-3(2,7)-benzo[lmn][3,8]phenanthrolina-1,5(4,1)-dipyridin-1-iuma-2,4(1,2),7(1,4)-tribenzenacyclooctaphane-11,51-diium hexafluoridophosphate, [C46H28F4N4O4][PF6]2, a dicationic cyclophane
  8. Crystal structure of (E)-2-(4-(1H-imidazol-1-yl)benzylidene)-7-fluoro-3,4-dihydronaphthalen-1(2H)-one, C20H15FN2O
  9. The salt crystal structure of etoricoxib hydrochloride, C18H16Cl2N2O2S
  10. The structure of t-butyl 7-[2-(4-fluorophenyl)-3-phenyl-4-(phenylcarbamoyl)-5-(propan-2-yl)-1H-pyrrol-1-yl]-3,5-dihydroxyheptanoate, C37H43FN2O5
  11. The crystal structure of (μ4-oxo)-tri(μ4-2,2′-bipyridine-6,6′-bis(olato)-κ5 O,O′:N:N′:O″)tetrazinc(II) – methylformamide (1/1), C33H25N7O8Zn4
  12. The co-crystal structure of 4-chlorobenzophenone–salicylhydrazide(1/1), C20H17ClN2O3
  13. Crystal structure of 9-fluoro-4-(6-methoxypyridin-2-yl)-5,6-dihydrobenzo[h]quinazolin-2-amine, C18H15FN4O
  14. The crystal structure of the co-crystal composed of benzhydrazide and 5-aminoisophthalic acid, C8H7NO4⋅C7H8N2O
  15. The cocrystal structure of praziquantel-hesperetin (1/1), C35H38N2O8
  16. Crystal structure of new barium manganese fluorides dihydrates, Ba10Mn2F25·2H2O
  17. The crystal structure of bis[μ2-(3-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)propanoate-κ2O:N)-bis(2,2′-bipyridine-κ2 N, N′)dicopper(II)]dinitrate, C42H36Cu2N12O10
  18. Crystal structure of (3,6-di(2-pyridyl)-4-phenylaminopyridazine-κ2N,N′)-bis(2-(p-toluene)pyridinyl-κ2C,N)-iridium(III) hexafluorophosphate –dichloromethane (1/1), C45H37Cl2F6IrN7P
  19. The crystal structure of 2-(2′-carboxybenzyl)benzoic acid, C15H12O5
  20. The crystal structure of dichlorido-[(E)-N′,N″-bis((2E,3E)-3-(hydroxyimino)butan-2-ylidene)-2-((E)-3-(hydroxyimino)butan-2-ylidene)hydrazine-1-carbohydrazonhydrazide-κ 4 N 4]cobalt(II), C13H22N9O3Cl2Co
  21. Crystal structure of (−)-flavesine H, C15H22N2O2
  22. Crystal structure of 3-methoxybenzyl 2-(6-methoxynaphthalen-2-yl)propanoate, C22H22O4
  23. Crystal structure of dicarbonyl(2-oxopyridin-1(2H)-olato-κ 2 O,O)iridium(I), C7H4IrNO4
  24. The crystal structure of 4-(3-(triphenylphosphonio)propyl)piperazin-1-ium dibromide trihydrate, C25H37Br2N2O3P
  25. The crystal structure of ethyl 5,6-dihydroxybenzofuran-3-carboxylate, C11H10O5
  26. Crystal structure of 14-(R)-(2′-cyano-phenoxy)-3,19-diacetyl andrographolide, C31H37NO7
  27. The twinned crystal structure of 10-(4-methyl benzoate)-2,8-diethyl-5,5-difluoro-1,3,7,9-tetramethyl-5H-di-pyrrolo[1,2-c:2′,1′-f] [1,3,2]diazaborinin-4-ium-5-uide, C25H29BF2N2O2
  28. The crystal structure of (9H-thioxanthen-9- ylidene)hydrazine monohydrate, C13H11N2SO0.5
  29. The crystal structure of pyridinium diaqua-{1,2-phenylenebis((carboxylatocarbonyl)amido-κ4 N,N′,O,O′)manganese(III), C15H14MnN3O8
  30. Crystal structure of the hydrogen storage active high entropy phase Tb0.82Sm0.18Ni0.83Co0.17Mg
  31. Crystal structure of diaqua-bis[5-methyl-1-(1H-pyrazol-3-yl)-1H-1,2,3-triazole-4-carboxylato-κ 2 N,O)]manganese(II), C14H16MnN10O6
  32. Crystal structures of diiodido-3-((pyridin-2-ylmethylene)amino)-2-(pyridin-3-yl)-2,3-dihydroquinazolin-4(1H)-one-cadmium(II)
  33. Synthesis and crystal structure of methyl 4-(2-ethoxy-2-oxoethoxy)-3,5-dimethoxybenzoate, C14H18O7
  34. Crystal structure of isoxazolo[4,5-b]pyridin-3-amine, C6H5N3O
  35. Crystal structure of 4-chloro-1-isobutyl-1H-imidazo, C14H14ClN3
  36. The crystal structure of 1,1,1,2,2,2-hexakis(2-methyl-2-phenylpropyl)distannane,C60H78Sn2
  37. The crystal structure of (2,7-dimethoxynaphthalene-1,8-diyl)bis((3-nitrophenyl)methanone), C26H18N2O8
  38. Crystal structure of diaqua-tetra((E)-(RS)-1-(2,4-dichlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)pent-1-en-3-ol-κ 1 N)zinc(II) dinitrate dihydrate, C60H76Cl8N14O14Zn
  39. The crystal structure of diphenyl bis(2-((diphenoxyphosphoryl)amino)ethyl)phosphoramidate monohydrate C40H42N3O10P3
  40. Crystal structure of 4,4′-bis(dibromomethyl)-1,1′-biphenyl, C14H10Br4
  41. Crystal structure of CaPtZn
  42. Crystal structure of 3-chloro-5-(trifluoromethyl)pyridine-2-carboxylic acid, C7H3ClF3NO2
  43. The crystal structure of (3′-(2-bromophenyl)-2-phenyl-[2,2′-bioxiran]-3-yl)(phenyl)methanone, C92H68O12Br4
  44. Crystal structure of ethyl 4-(4-benzylpiperazin-1-yl)benzoate, C20H24N2O2
  45. The crystal structure of bis(selenocyanato-κ1 N)-bis(methanol)-bis((1E,2E)-1,2-bis (1-(pyridin-4-yl)ethylidene)-hydrazine)iron(II) methanol solvate, C34H44FeN10O4Se2
  46. Crystal structure of (E)-1-(5-bromo-2-hydroxyphenyl)-3-(5-(4-methoxyphenoxy)-3-methyl-1-phenyl-1H-pyrazol-4-yl)prop-2-en-1-one, C26H21BrN2O4
  47. The crystal structure of methyl 4-(4-(methylsulfonyl)phenyl)-2-methyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate, C19H21NO5S
  48. Crystal structure of 1′,3′-dihydro-2,2′-spirobi[indene]-1,3-dione, C17H12O2
  49. Crystal structure of (E)-2,2′,3,3′-tetrahydro-[1,1′-biindenylidene]-4,4′-diol, C18H16O2
  50. Crystal structure of di-glycylglycinium squarate dihydrate, C12H22N4O12, at 105 K
  51. Crystal structure of {[(4-fluorophenyl)methyl]triphenylphosphonium}dibromocopper(I), [C25H21FP]+[CuBr2]
  52. Crystal structure of poly[diaqua-bis(μ2-5-((pyridin-4-yl-methyl)amino)benzene-1,3-dicarboxylato-κ 2 N:O)cadmium(II)], C28H26CdN4O10
Downloaded on 9.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2024-0340/html
Scroll to top button