Home Physical Sciences Crystal structure of (E)-2,2′,3,3′-tetrahydro-[1,1′-biindenylidene]-4,4′-diol, C18H16O2
Article Open Access

Crystal structure of (E)-2,2′,3,3′-tetrahydro-[1,1′-biindenylidene]-4,4′-diol, C18H16O2

  • Yuwei Hao , Zhilin Ren , Jingjing Bi ORCID logo EMAIL logo , Haiyan Wang and Qiong Chen EMAIL logo
Published/Copyright: December 9, 2024

Abstract

C18H16O2, monoclinic, P21/c (no. 14), a = 5.6512(4) Å, b = 4.7795(3) Å, c = 22.9999(15) Å, β = 95.385(6), V = 618.48(7) Å3, Z = 2, R gt(F) = 0.0545, wR ref(F 2) = 0.1712, T = 293(2) K.

CCDC no.: 2405581

Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Colourless block
Size: 0.16 × 0.15 × 0.12 mm
Wavelength: Cu Kα radiation (1.54184 Å)
μ: 0.72 mm−1
Diffractometer, scan mode: SuperNova, ω
θ max, completeness: 71.5°, 99 %
N(hkl)measured , N(hkl)unique, R int: 2,125, 1,161, 0.023
Criterion for I obs, N(hkl)gt: I obs > 2 σ(I obs), 942
N(param)refined: 123
Programs: CrysAlisPRO, 1 Olex2, 2 SHELX 3 , 4

Diamond 5
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
C1 0.4312 (4) 0.4733 (4) 0.47514 (9) 0.0263 (5)
C2 0.2264 (4) 0.2649 (5) 0.46823 (9) 0.0292 (6)
H2A 0.110 (4) 0.302 (5) 0.4964 (11) 0.026 (6)*
H2B 0.291 (5) 0.067 (6) 0.4790 (12) 0.041 (8)*
C3 0.1151 (4) 0.2861 (5) 0.40442 (10) 0.0309 (6)
H3A 0.114 (5) 0.116 (7) 0.3833 (13) 0.041 (8)*
H3B −0.052 (6) 0.344 (7) 0.4034 (13) 0.054 (9)*
C4 0.2408 (4) 0.5955 (5) 0.32000 (9) 0.0290 (6)
C5 0.3968 (4) 0.7927 (5) 0.30191 (10) 0.0333 (6)
H5 0.375 (6) 0.863 (7) 0.2619 (15) 0.054 (9)*
C6 0.5774 (5) 0.8963 (5) 0.34129 (10) 0.0364 (6)
H6 0.699 (6) 1.046 (7) 0.3283 (14) 0.057 (10)*
C7 0.6036 (4) 0.8059 (5) 0.39876 (10) 0.0327 (6)
H7 0.734 (5) 0.881 (7) 0.4266 (13) 0.043 (8)*
C8 0.4476 (4) 0.6016 (4) 0.41710 (9) 0.0261 (5)
C9 0.2658 (4) 0.4987 (5) 0.37713 (9) 0.0275 (6)
O1 0.0551 (3) 0.4890 (4) 0.28252 (7) 0.0382 (5)
H1 0.005 (7) 0.617 (10) 0.2565 (19) 0.087 (14)*

1 Source of material

The title compound was synthesized by McMurry coupling reaction referring to the literature. 6 , 7 , 8 Firstly, TiCl4 (1.4 mL, 12.0 mmol) was slowly added to a stirred suspension of zinc powder (1.569 g, 24 mmol) in dry THF (50 mL) under a N 2 atmosphere. The solution was stirred at reflux for 1.5 h. Then, a THF solution (5 mL) of 1.1 mL pyridine and of 4-hydroxy-1-indanone (0.45 g, 3.0 mmol) was added dropwise. The mixture was stirred at 80 °C for 1 h, treated with a saturated aqueous solution of potassium carbonate, and extracted with CH2Cl2. The volume of the combined extracts was reduced to 30 mL and the precipitate was filtered off and dissolved in methanol. The crystals of the title compound were obtained by evaporation of the methanol solution at room temperature within 3 days. M.p. 234 °C–236 °C 1 H NMR (400 MHz, MeOD) 7.11 (dt, J = 15.6, 7.6 Hz, 4H), 6.64 (d, J = 7.6 Hz, 2H), 3.15 ?C 3.09 (m, 4H), 2.99 (dd, J = 8.4, 4.4 Hz, 4H). Elemental Anal. Calcd. (%) for C11H8O4(204.18): C, 64.71; H, 3.95. Found (%): C, 63.59; H, 4.08.

2 Experimental details

All hydrogen atoms were added in their geometrically theoretical positions. The U iso values of all hydrogen atoms were set to 1.2 U eq(C).

3 Comment

Stiff-stilbene derivatives, with reversible photo-induced isomerization properties, have been widely studied as molecular force probes, 9 , 10 molecular rotors 11 , 12 and optical switches, 13 , 14 owing to that the structures of (E)- and (Z) isomers were very different and all have high stability. Biindenylidene 6,6′-diol, as an important material for preparing fluorescent probes, plays an important role in the synthesis of supramolecular polymers. 15 , 16 , 17 However, biindenylidene 4,4′-diol is rarely developed as the core of photoprobes, so it is of great significance to study the synthesis and crystal structure of novel stiff-stilbene derivatives with stabilized fluorescence properties.

The Ortep diagram is displayed in the Figure. The asymmetric unit contains half of a molecule. Bond lengths and angles are within the expected range and very similar to stilbene derivative given in the literature. 18 The bond angles of C1′–C1–C2 and C1′–C1–C8 are 125.8(3) and 127.5(3). The C(1) = C(1′) olefinic bond adopts the E stereochemistry. 18 The indene ring is approximately planar. 19 The torsion angles of C1′–C1–C8–C9, C1′–C1–C8–C7, C1–C8–C7–C6 and C1–C8–C9–C4 are −177.5(3), −0.2(5), −178.5(2), and 178.10(19), respectively. This enhanced conjugate system is expected to be a good fluorophore, which promotes us to further explore restricted rigid stilbene derivatives to enhance their emission properties.


Corresponding author: Jingjing Bi and Qiong Chen, School of Pharmacy, Xinyang Agriculture and Forestry University, Xinyang, Henan, 464000 P.R. China, E-mail: (J. Bi), (Q. Chen)

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Conflict of interest: The authors declare no conflicts of interest regarding this article.

  3. Research funding: National Natural Science Foundation of China (21702051), the Key Project of Henan Educational Committee (22A150041), the Henan Science and Technology Program (232102310364, 242102310575), the Science and Technology Major Projects in Henan Science and Technology Agency (241111311400) and the Young Backbone Teacher Training Objects of Colleges and Universities in Henan Province (2024GGJS154)

References

1. Oxford Diffraction Ltd, CrysAlisPRO, Abingdon, Oxfordshire, England, 2006.Search in Google Scholar

2. OlexSys Ltd. Olex2, Chemistry Department; Durham University: UK. DH1 3LE.Search in Google Scholar

3. Sheldrick, G. M. Crystal Structure Refinement with Shelxl. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

4. Sheldrick, G. M. A Short History of Shelx. Acta Crystallogr. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930.Search in Google Scholar

5. Brandenburg, K. Diamond. Visual Crystal Structure Information System. Version 3.0f; Crystal Impact: Bonn, Germany, 1998.Search in Google Scholar

6. Wu, Y. -H.; Huang, K.; Chen, S. -F.; Chen, Y. -Z.; Tung, C. -H.; Wu, L. -Z. Stiff-stilbene Derivatives as New Bright Fluorophores with Aggregation-Induced Emission. Sci. China Chem. 2019, 62, 1194–1197; https://doi.org/10.1007/s11426-019-9514-8.Search in Google Scholar

7. Oelgemöller, M.; Frank, R.; Lemmen, P.; Lenoir, D.; Lex, J.; Inoue, Y. Synthesis, Structural Characterization and Photoisomerization of Cyclic Stilbenes. Tetrahedron 2012, 68, 4048–4056; https://doi.org/10.1016/j.tet.2012.03.038.Search in Google Scholar

8. Wezenberg, S. J.; Feringa, B. L. Photocontrol of Anion Binding Affinity to a Bis-Urea Receptor Derived from Stiff-Stilbene. Org. Lett. 2017, 19, 324–327; https://doi.org/10.1021/acs.orglett.6b03423.Search in Google Scholar PubMed PubMed Central

9. Wang, Y.; Tian, Y.; Chen, Y. -Z.; Niu, L. -Y.; Wu, L. -Z.; Tung, C. -H.; Yang, Q. -Z.; Boulatovc, R. A Light-Driven Molecular Machine Based on Stiff Stilbene. Chem. Commun. 2018, 54, 7991–7994; https://doi.org/10.1039/c8cc04542a.Search in Google Scholar PubMed

10. Xu, F.; Sheng, J.; Stindt, C. N.; Crespi, S.; Danowski, W.; Hilbers, M. F.; Buma, W. J.; Feringa, B. L. All-visible-light-driven Stiff-Stilbene Photoswitches. Chem. Sci. 2024, 15, 6763–6769; https://doi.org/10.1039/d4sc00983e.Search in Google Scholar PubMed PubMed Central

11. Panahi, F.; Mahmoodi, A.; Ghodrati, S.; Abdi, A. A.; Eshghi, F. New White Light-Emitting Halochromic Stilbenes with Remarkable Quantum Yields and Aggregation-Induced Emission. Sci. Rep. 2022, 12, 2385; https://doi.org/10.1038/s41598-022-06435-w.Search in Google Scholar PubMed PubMed Central

12. Liu, G.; Li, Y.; Tian, C.; Xiao, Y.; Liu, L.; Cao, Z.; Jiang, S.; Zheng, X.; Niu, C.; Ren, Y. -L.; Yang, L.; Zheng, X.; Chen, Y. Highly Reversible Photomodulated Hydrosoluble Stiff-Stilbene Supramolecular Luminophor Induced by Cucurbituril. Chinese Chem. Lett. 2024, 35, 109403; https://doi.org/10.1016/j.cclet.2023.109403.Search in Google Scholar

13. Darugar, V.; Vakili, M.; Heydari, S.; Tahriri, M.; Brandán, S. A.; Castillo, M. V. Molecular Approach of Au – Stilbene – Au and Au – TCAB – Au Molecular Optical Electronic Devices Designed for Organic Light-Sensitive Circuits. Opt. Quant. Electron. 2024, 56, 757; https://doi.org/10.1007/s11082-024-06522-4.Search in Google Scholar

14. Lvov, A. G.; Bredihhin, A. Azulene as an Ingredient for Visible-Light- and Stimuli-Responsive Photoswitches. Org. Biomol. Chem. 2021, 19, 4460–4468; https://doi.org/10.1039/d1ob00422k.Search in Google Scholar PubMed

15. Wezenberg, S. J.; Chen, L. –J.; Bos, J. E.; Feringa, B. L.; Howe, E. N. W.; Wu, X.; Siegler, M. A.; Gale, P. A. Photomodulation of Transmembrane Transport and Potential by Stiff-Stilbene Based Bis(thio)ureas. J. Am. Chem. Soc. 2022, 144, 331–338; https://doi.org/10.1021/jacs.1c10034.Search in Google Scholar PubMed PubMed Central

16. Lu, Y.; Zhang, R.; Hong, Z.; Liang, P.; Liao, R.; Wang, F. Light-triggered Transformation of Stilbene Supramolecular Polymers: Thermodynamic versus Kinetic Control. Chem. Commun. 2024, 60, 8585–8588; https://doi.org/10.1039/d4cc01977f.Search in Google Scholar PubMed

17. Weyandt, E.; Leanza, L.; Capelli, R.; Pavan, G. M.; Vantomme, G.; Meijer, E. W. Controlling the Length of Porphyrin Supramolecular Polymers via Coupled Equilibria and Dilution-Induced Supramolecular Polymerization. Nat. Commun. 2022, 13, 248; https://doi.org/10.1038/s41467-021-27831-2.Search in Google Scholar PubMed PubMed Central

18. Saltiel, J.; Mace, J. E.; Watkins, L. P.; Gormin, D. A.; Clark, R. J.; Dmitrenko, O. Biindanylidenes: Role of Central Bond Torsion in Nonvertical Triplet Excitation Transfer to the Stilbenes. J. Am. Chem. Soc. 2003, 125, 16158–16159; https://doi.org/10.1021/ja038087m.Search in Google Scholar PubMed

19. Xiong, Z. -Q.; Yang, L.; Xiao, S. -Z.; Yang, C. -Y.; Nie, X. -L. Crystal Structure of 3-Acetyl-6-Hydroxy-2H-Chromen-2-One Monohydrate. Z. Kristallogr. N. Cryst. Struct. 2022, 237, 635–637; https://doi.org/10.1515/ncrs-2022-0113.Search in Google Scholar

Received: 2024-08-18
Accepted: 2024-11-26
Published Online: 2024-12-09
Published in Print: 2025-02-25

© 2024 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of the co-crystal 2,4,6-triamino-1,3,5-triazine-1,3-dioxide — acetic acid (1/2) C7H14N6O6
  4. Crystal structure of the dinuclear mercury(II) complex bis(μ2-bromido)-dibromido-bis{1-[(benzotriazol-1-yl)methyl]-1-H-1,3-(2-ethyl-5-methyl-imidazol)-κ1 N} dimercury(II), C26H30N10Hg2Br4
  5. Crystal structure of poly[hexaqua-pentakis(μ4-2,2′-bipyridine-4,4′-dicarboxylato-κ4 O:O′:O″:O‴)-(μ2-2,2′-bipyridine-4,4′-dicarboxylato-κ2 O:O)tetraytterbium(III)] hydrate, C36H26N6O16Yb2
  6. Hydrothermal synthesis and crystal structure of catena-poly[(1,10-phenanthroline-κ 2 N,N′)-bis(μ 2-nitroisophthalato-κ 3 O,O′:O″)nickel(II)], C20H13NiN3O7
  7. Crystal structure of 72,73,75,76-tetrafluoro-25,44-dimethyl-31,33,36,38-tetraoxo-31,32,33,36,37,38-hexahydro-3(2,7)-benzo[lmn][3,8]phenanthrolina-1,5(4,1)-dipyridin-1-iuma-2,4(1,2),7(1,4)-tribenzenacyclooctaphane-11,51-diium hexafluoridophosphate, [C46H28F4N4O4][PF6]2, a dicationic cyclophane
  8. Crystal structure of (E)-2-(4-(1H-imidazol-1-yl)benzylidene)-7-fluoro-3,4-dihydronaphthalen-1(2H)-one, C20H15FN2O
  9. The salt crystal structure of etoricoxib hydrochloride, C18H16Cl2N2O2S
  10. The structure of t-butyl 7-[2-(4-fluorophenyl)-3-phenyl-4-(phenylcarbamoyl)-5-(propan-2-yl)-1H-pyrrol-1-yl]-3,5-dihydroxyheptanoate, C37H43FN2O5
  11. The crystal structure of (μ4-oxo)-tri(μ4-2,2′-bipyridine-6,6′-bis(olato)-κ5 O,O′:N:N′:O″)tetrazinc(II) – methylformamide (1/1), C33H25N7O8Zn4
  12. The co-crystal structure of 4-chlorobenzophenone–salicylhydrazide(1/1), C20H17ClN2O3
  13. Crystal structure of 9-fluoro-4-(6-methoxypyridin-2-yl)-5,6-dihydrobenzo[h]quinazolin-2-amine, C18H15FN4O
  14. The crystal structure of the co-crystal composed of benzhydrazide and 5-aminoisophthalic acid, C8H7NO4⋅C7H8N2O
  15. The cocrystal structure of praziquantel-hesperetin (1/1), C35H38N2O8
  16. Crystal structure of new barium manganese fluorides dihydrates, Ba10Mn2F25·2H2O
  17. The crystal structure of bis[μ2-(3-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)propanoate-κ2O:N)-bis(2,2′-bipyridine-κ2 N, N′)dicopper(II)]dinitrate, C42H36Cu2N12O10
  18. Crystal structure of (3,6-di(2-pyridyl)-4-phenylaminopyridazine-κ2N,N′)-bis(2-(p-toluene)pyridinyl-κ2C,N)-iridium(III) hexafluorophosphate –dichloromethane (1/1), C45H37Cl2F6IrN7P
  19. The crystal structure of 2-(2′-carboxybenzyl)benzoic acid, C15H12O5
  20. The crystal structure of dichlorido-[(E)-N′,N″-bis((2E,3E)-3-(hydroxyimino)butan-2-ylidene)-2-((E)-3-(hydroxyimino)butan-2-ylidene)hydrazine-1-carbohydrazonhydrazide-κ 4 N 4]cobalt(II), C13H22N9O3Cl2Co
  21. Crystal structure of (−)-flavesine H, C15H22N2O2
  22. Crystal structure of 3-methoxybenzyl 2-(6-methoxynaphthalen-2-yl)propanoate, C22H22O4
  23. Crystal structure of dicarbonyl(2-oxopyridin-1(2H)-olato-κ 2 O,O)iridium(I), C7H4IrNO4
  24. The crystal structure of 4-(3-(triphenylphosphonio)propyl)piperazin-1-ium dibromide trihydrate, C25H37Br2N2O3P
  25. The crystal structure of ethyl 5,6-dihydroxybenzofuran-3-carboxylate, C11H10O5
  26. Crystal structure of 14-(R)-(2′-cyano-phenoxy)-3,19-diacetyl andrographolide, C31H37NO7
  27. The twinned crystal structure of 10-(4-methyl benzoate)-2,8-diethyl-5,5-difluoro-1,3,7,9-tetramethyl-5H-di-pyrrolo[1,2-c:2′,1′-f] [1,3,2]diazaborinin-4-ium-5-uide, C25H29BF2N2O2
  28. The crystal structure of (9H-thioxanthen-9- ylidene)hydrazine monohydrate, C13H11N2SO0.5
  29. The crystal structure of pyridinium diaqua-{1,2-phenylenebis((carboxylatocarbonyl)amido-κ4 N,N′,O,O′)manganese(III), C15H14MnN3O8
  30. Crystal structure of the hydrogen storage active high entropy phase Tb0.82Sm0.18Ni0.83Co0.17Mg
  31. Crystal structure of diaqua-bis[5-methyl-1-(1H-pyrazol-3-yl)-1H-1,2,3-triazole-4-carboxylato-κ 2 N,O)]manganese(II), C14H16MnN10O6
  32. Crystal structures of diiodido-3-((pyridin-2-ylmethylene)amino)-2-(pyridin-3-yl)-2,3-dihydroquinazolin-4(1H)-one-cadmium(II)
  33. Synthesis and crystal structure of methyl 4-(2-ethoxy-2-oxoethoxy)-3,5-dimethoxybenzoate, C14H18O7
  34. Crystal structure of isoxazolo[4,5-b]pyridin-3-amine, C6H5N3O
  35. Crystal structure of 4-chloro-1-isobutyl-1H-imidazo, C14H14ClN3
  36. The crystal structure of 1,1,1,2,2,2-hexakis(2-methyl-2-phenylpropyl)distannane,C60H78Sn2
  37. The crystal structure of (2,7-dimethoxynaphthalene-1,8-diyl)bis((3-nitrophenyl)methanone), C26H18N2O8
  38. Crystal structure of diaqua-tetra((E)-(RS)-1-(2,4-dichlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)pent-1-en-3-ol-κ 1 N)zinc(II) dinitrate dihydrate, C60H76Cl8N14O14Zn
  39. The crystal structure of diphenyl bis(2-((diphenoxyphosphoryl)amino)ethyl)phosphoramidate monohydrate C40H42N3O10P3
  40. Crystal structure of 4,4′-bis(dibromomethyl)-1,1′-biphenyl, C14H10Br4
  41. Crystal structure of CaPtZn
  42. Crystal structure of 3-chloro-5-(trifluoromethyl)pyridine-2-carboxylic acid, C7H3ClF3NO2
  43. The crystal structure of (3′-(2-bromophenyl)-2-phenyl-[2,2′-bioxiran]-3-yl)(phenyl)methanone, C92H68O12Br4
  44. Crystal structure of ethyl 4-(4-benzylpiperazin-1-yl)benzoate, C20H24N2O2
  45. The crystal structure of bis(selenocyanato-κ1 N)-bis(methanol)-bis((1E,2E)-1,2-bis (1-(pyridin-4-yl)ethylidene)-hydrazine)iron(II) methanol solvate, C34H44FeN10O4Se2
  46. Crystal structure of (E)-1-(5-bromo-2-hydroxyphenyl)-3-(5-(4-methoxyphenoxy)-3-methyl-1-phenyl-1H-pyrazol-4-yl)prop-2-en-1-one, C26H21BrN2O4
  47. The crystal structure of methyl 4-(4-(methylsulfonyl)phenyl)-2-methyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate, C19H21NO5S
  48. Crystal structure of 1′,3′-dihydro-2,2′-spirobi[indene]-1,3-dione, C17H12O2
  49. Crystal structure of (E)-2,2′,3,3′-tetrahydro-[1,1′-biindenylidene]-4,4′-diol, C18H16O2
  50. Crystal structure of di-glycylglycinium squarate dihydrate, C12H22N4O12, at 105 K
  51. Crystal structure of {[(4-fluorophenyl)methyl]triphenylphosphonium}dibromocopper(I), [C25H21FP]+[CuBr2]
  52. Crystal structure of poly[diaqua-bis(μ2-5-((pyridin-4-yl-methyl)amino)benzene-1,3-dicarboxylato-κ 2 N:O)cadmium(II)], C28H26CdN4O10
Downloaded on 21.1.2026 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2024-0415/html
Scroll to top button