Home The co-crystal structure of 4-chlorobenzophenone–salicylhydrazide(1/1), C20H17ClN2O3
Article Open Access

The co-crystal structure of 4-chlorobenzophenone–salicylhydrazide(1/1), C20H17ClN2O3

  • Ji Wang ORCID logo EMAIL logo , Wenhui Wu , Wencai Zhang , Xiying Yang and Jie Qiao
Published/Copyright: October 29, 2024

Abstract

C20H17ClN2O3, triclinic, P 1 (no. 2), a = 6.2486(3) Å, b = 7.4746(4) Å, c = 19.0245(10) Å, α = 89.341(2)°, β = 85.998(2)°, γ = 83.651(2)°, V = 880.94(8) Å3, Z = 2, R gt(F) = 0.0351, wRref (F 2) = 0.0970, T = 289 K.

CCDC no.: 2392016

Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Colourless block
Size: 0.57 × 0.53 × 0.48 mm
Wavelength: Cu Kα radiation (1.54178 Å)
μ: 2.11 mm−1
Diffractometer, scan mode: Bruker P4, ω
θ max, completeness: 68.3°, >99 %
N(hkl)measured, N(hkl)unique, R int: 14,327, 3,231, 0.043
Criterion for I obs, N(hkl)gt: I obs > 2σ(I obs), 2,870
N(param)refined: 241
Programs: Bruker 1 , SHELX 2 , 3 , Olex2 4
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
C1 0.7178 (2) 0.30685 (17) 0.94646 (7) 0.0403 (3)
C2 0.5415(2) 0.24811(17) 0.90698(6) 0.0380 (3)
C3 0.5107 (2) 0.06665 (18) 0.89868 (7) 0.0448 (3)
H3 0.607402 −0.022184 0.917124 0.054*
C4 0.3414 (2) 0.0171 (2) 0.86403 (8) 0.0504 (3)
H4 0.324562 −0.103925 0.858639 0.060*
C5 0.1953 (2) 0.1495 (2) 0.83706 (8) 0.0519 (3)
H5 0.079073 0.116657 0.814091 0.062*
C6 0.2208 (2) 0.3284 (2) 0.84399 (8) 0.0495 (3)
H6 0.121598 0.415897 0.825879 0.059*
C7 0.3941 (2) 0.37932 (18) 0.87795 (7) 0.0418 (3)
N1 0.84313 (18) 0.18129 (15) 0.97950 (6) 0.0448 (3)
H1 0.818058 0.070796 0.976952 0.054*
N2 1.0151 (2) 0.22285 (17) 1.01843 (7) 0.0505 (3)
H2A 1.088748 0.296438 0.994628 0.061*
H2B 0.954 (4) 0.282 (3) 1.0576 (13) 0.093 (8)*
O1 0.74652 (18) 0.46873 (13) 0.94981 (6) 0.0552 (3)
O2 0.41310 (19) 0.55736 (13) 0.88195 (6) 0.0574 (3)
H2 0.516421 0.572441 0.904668 0.086*
C8 0.7791 (3) 0.3090 (3) 0.69240 (10) 0.0718 (5)
H8 0.825759 0.325976 0.736960 0.086*
C9 0.8976 (3) 0.3621 (2) 0.63347 (10) 0.0662 (5)
H9 1.024277 0.414072 0.638269 0.079*
C10 0.8276 (2) 0.3379 (2) 0.56722 (9) 0.0526 (3)
H10 0.907523 0.374142 0.527538 0.063*
C11 0.6385 (2) 0.25967 (19) 0.55944 (7) 0.0443 (3)
C12 0.5211 (3) 0.2070 (2) 0.61957 (8) 0.0544 (4)
H12 0.394039 0.155203 0.615287 0.065*
C13 0.5924 (3) 0.2312 (3) 0.68560 (9) 0.0685 (5)
H13 0.513805 0.194818 0.725528 0.082*
C14 0.5491 (2) 0.2372 (2) 0.48948 (8) 0.0492 (3)
C15 0.6916 (2) 0.23354 (18) 0.42298 (7) 0.0432 (3)
C16 0.9073 (2) 0.1623 (2) 0.41931 (8) 0.0476 (3)
H16 0.969215 0.117768 0.459923 0.057*
C17 1.0303 (2) 0.1568 (2) 0.35626 (8) 0.0498 (3)
H17 1.174252 0.108324 0.354126 0.060*
C18 0.9378 (2) 0.22413 (19) 0.29634 (7) 0.0476 (3)
C19 0.7231 (2) 0.2943 (2) 0.29776 (8) 0.0507 (3)
H19 0.662375 0.338282 0.256871 0.061*
C20 0.6013 (2) 0.2977 (2) 0.36108 (8) 0.0485 (3)
H20 0.456485 0.343504 0.362668 0.058*
Cl1 1.09843 (7) 0.22571 (7) 0.21778 (2) 0.06889 (16)
O3 0.35791 (18) 0.2235 (2) 0.48653 (7) 0.0778 (4)

1 Source of materials

Weigh 0.015 g of salicylhydrazide (0.1 mmol) and 0.022 g of 4-chlorobenzophenone (0.1 mmol) into a 25 mL reagent bottle, and dissolve them in 20 mL of ethanol. Ultrasonication and gentle heating were employed to ensure complete dissolution. Subsequently, the ethanol was allowed to evaporate slowly at room temperature. Crystals of the target compound were collected after 2 weeks.

2 Experimental details

Data collection was performed on a diffractometer using CuKα radiation (1.54184 Å). The structure was solved by Direct Methods using, SHELXT 2 and refined using SHELXL 3 in OLEX2. 4 Hydrogen atoms were positioned geometrically and refined using a riding model.

3 Comment

4-Chlorobenzophenone and salicylhydrazide are crucial intermediates in organic synthesis, commonly utilized as photoinitiators and UV absorbers. In the pharmaceutical industry, they serve as essential raw materials for the production of various drugs and pesticides. 5 Although the crystal structures of 4-chlorobenzophenone and salicylhydrazide, as well as some related derivatives, have been previously reported, 6 , 7 , 8 , 9 , 10 , 11 the crystal structure of 4-chlorobenzophenone with salicylhydrazide is significant for medicinal chemistry, offering potential pharmaceutical applications.

In the crystal structure discussed, salicylhydrazide and 4-chlorobenzophenone are alternately arranged. Among the various derivatives of 4-chlorobenzophenone reported in the literature, 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 the dihedral angle between the two benzene rings varies, primarily dependent on the environmental context of the 4-chlorobenzophenone structure. In the crystal structure of the titled compound, the dihedral angle between the two benzene rings in 4-chlorobenzophenone is 48.3°, which is relatively small compared to those in related crystal structures. The structure of salicylhydrazide in the crystal is similar to that of salicylhydrazide in its monocrystalline form, 20 with the atoms in the structure essentially lying in the same plane. The dihedral angles between the benzene ring in salicylhydrazide and the benzene rings in 4-chlorobenzophenone are 73.0° and 89.9°, respectively.


Corresponding author: Ji Wang, Shanxi Vocational University of Engineering Science and Technology, Jinzhong, Shanxi, China, E-mail:

Funding source: Shanxi Engineering and Technology Vocational University

Award Identifier / Grant number: Science and technology innovation project (KJ202307)

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: Science and technology innovation project of Shanxi Engineering and Technology Vocational University (KJ202307).

  3. Conflict of interest: The authors declare no conflicts of interest regarding this article.

References

1. Bruker. SAINT, APEX2 and SADABS; Bruker AXS Inc.: Madison, WI, USA, 2012.Search in Google Scholar

2. Sheldrick, G. M. SHELXT–Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. 2015, A71, 3–8. https://doi.org/10.1107/s2053273314026370.Search in Google Scholar PubMed PubMed Central

3. Sheldrick, G. M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8. https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

4. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341. https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

5. Ouyang, J.; Liu, L.; Zhou, L.; Liu, Z.; Li, Y.; Zhang, C. Solubility, Dissolution Thermodynamics, Hansen Solubility Parameter and Molecular Simulation of 4-Chlorobenzophenone with Different Solvents. J. Mol. Liq. 2022, 360, 119438. https://doi.org/10.1016/j.molliq.2022.119438.Search in Google Scholar

6. Wang, P.; Wu, X.; Jin, S.; Lu, Y.; Liu, B.; Dong, K.; Wang, D. Preparation and Structure Analysis of Non-Covalent Interactions Directed 11 Adducts from 2-Amino-5-Methylthiazole and Organic Acids. J. Mol. Struct. 2022, 1263, 133031. https://doi.org/10.1016/j.molstruc.2022.133031.Search in Google Scholar

7. Durge, C. P.; Menon, A. M.; Mathew, D.; Chopra, D. Exploring Polymorphism and Diversity in Intermolecular Interactions in Substituted Crystalline Benzophenones. Cryst. Growth Des. 2022, 22, 6686–6702. https://doi.org/10.1021/acs.cgd.2c00881.Search in Google Scholar

8. Mahey, J. K.; Pawara, C. B.; Kamble, S. B. A Single-Pot Synthesis of 4-Hydroxybenzophenones via Acid-Catalyzed Alkoxylation of p-Quinone Methides Followed by DDQ-Assisted Oxo-Demethoxylation. New J. Chem. 2023, 47, 18419–18429. https://doi.org/10.1039/d3nj03163b.Search in Google Scholar

9. Kargar, H.; Kia, R.; Tahir, M. N. 4-Amino-2-Hydroxybenzohydrazide. Acta Crystallogr. 2012, E68, o2117. https://doi.org/10.1107/s1600536812026190.Search in Google Scholar PubMed PubMed Central

10. Mitra, S.; Sasmal, H. S.; Kundu, T.; Kandambeth, S.; Illath, K.; Díaz Díaz, D.; Banerjee, R. Targeted Drug Delivery in Covalent Organic Nanosheets (CONs) via Sequential Postsynthetic Modification. J. Am. Chem. Soc. 2017, 139, 4513–4520. https://doi.org/10.1021/jacs.7b00925.Search in Google Scholar PubMed

11. Owczarzak, A. M.; Samshuddin, S.; Narayana, B.; Yathirajan, H. S.; Kubicki, M. Pseudosymmetry, Polymorphism and Weak Interactions: 4,4″-Difluoro-5′-Hydroxy-1,1′:3′,1″-Terphenyl-4′-Carboxylic Acid and its Derivatives. CrystEngComm 2013, 15, 9893–9898. https://doi.org/10.1039/c3ce41639a.Search in Google Scholar

12. Zuniga, F. J.; Criado, A. Structure at 140 K, Lattice Dynamics and Phase Transition of 4,4′-Dichlorobenzophenone. Acta Crystallogr. 1995, B51, 880–888. https://doi.org/10.1107/s0108768194014321.Search in Google Scholar

13. Mitkevich, V. V.; Lirtsman, V. G.; Strzhemechny, M. A.; Avdeenko, A. A.; Eremenko, V. V. Investigation of the Structural Phase Transitions Near 190 K in 4,4′-Dichlorobenzophenone. Acta Crystallogr. 1999, B55, 799–806. https://doi.org/10.1107/s0108768199005480.Search in Google Scholar PubMed

14. Devaiah, V. T.; Naveen, S.; Shashikanth, S.; Anandalwar, S. M.; Prasad, J. S. Synthesis and Crystal Structure of (5-Chloro-2-Hydroxyphenyl)-(4-Chlorophenyl) Methanone. X-Ray Struct. Anal. Online 2006, 22, x157–x158. https://doi.org/10.2116/analscix.22.x157.Search in Google Scholar

15. Naveen, S.; Venu, T. D.; Shashikanth, S.; Sridhar, M. A.; Shashidhara Prasad, J. (4-Chlorophenyl)(2-Hydroxy-5-Methylphenyl)Methanone. Acta Crystallogr. 2006, E62, o2233–o2234. https://doi.org/10.1107/s1600536806013651.Search in Google Scholar

16. Song, H.; Chen, D.; Pi, C.; Cui, X.; Wu, Y. Palladium(II)-Catalyzed Direct Regioselectively Oxidative Acylation of Azobenzenes with Toluene Derivatives. J. Org. Chem. 2014, 79, 2955–2962. https://doi.org/10.1021/jo5000219.Search in Google Scholar PubMed

17. Bordawekar, S.; Kuvadia, Z.; Dandekar, P.; Mukherjee, S.; Doherty, M. Interesting Morphological Behavior of Organic Salt Choline Fenofibrate: Effect of Supersaturation and Polymeric Impurity. Cryst. Growth Des. 2014, 14, 3800–3812. https://doi.org/10.1021/cg500283y.Search in Google Scholar

18. Skrzat, Z. Structure of 2-(4′-Chloro-2′-Hydroxybenzoyl)benzoic Acid. Acta Crystallogr. 1980, B36, 2812–2814. https://doi.org/10.1107/s0567740880010138.Search in Google Scholar

19. Yang, X.; Zhu, Y.; Chen, X.; Gao, X.; Jin, S.; Liu, B.; He, L.; Chen, B.; Wang, D. Molecular Structures of Ten Ionic Hydrogen Bond-Mediated Anhydrous Tert-Butylammonium Salts from Different Carboxylic Acids. J. Mol. Struct. 2022, 1251, 131917. https://doi.org/10.1016/j.molstruc.2021.131917.Search in Google Scholar

20. Sen, P.; Dege, N.; Yildiz, S. Z. Tri-Nuclear Phthalocyanine Complexes Carrying N/O Donor Ligands as Hydrogen Peroxide Catalysts, and Their Bleaching Activity Measurements by an Online Spectrophotometric Method. J. Coord. Chem. 2017, 70, 2751–2770. https://doi.org/10.1080/00958972.2017.1360490.Search in Google Scholar

Received: 2024-07-28
Accepted: 2024-10-18
Published Online: 2024-10-29
Published in Print: 2025-02-25

© 2024 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of the co-crystal 2,4,6-triamino-1,3,5-triazine-1,3-dioxide — acetic acid (1/2) C7H14N6O6
  4. Crystal structure of the dinuclear mercury(II) complex bis(μ2-bromido)-dibromido-bis{1-[(benzotriazol-1-yl)methyl]-1-H-1,3-(2-ethyl-5-methyl-imidazol)-κ1 N} dimercury(II), C26H30N10Hg2Br4
  5. Crystal structure of poly[hexaqua-pentakis(μ4-2,2′-bipyridine-4,4′-dicarboxylato-κ4 O:O′:O″:O‴)-(μ2-2,2′-bipyridine-4,4′-dicarboxylato-κ2 O:O)tetraytterbium(III)] hydrate, C36H26N6O16Yb2
  6. Hydrothermal synthesis and crystal structure of catena-poly[(1,10-phenanthroline-κ 2 N,N′)-bis(μ 2-nitroisophthalato-κ 3 O,O′:O″)nickel(II)], C20H13NiN3O7
  7. Crystal structure of 72,73,75,76-tetrafluoro-25,44-dimethyl-31,33,36,38-tetraoxo-31,32,33,36,37,38-hexahydro-3(2,7)-benzo[lmn][3,8]phenanthrolina-1,5(4,1)-dipyridin-1-iuma-2,4(1,2),7(1,4)-tribenzenacyclooctaphane-11,51-diium hexafluoridophosphate, [C46H28F4N4O4][PF6]2, a dicationic cyclophane
  8. Crystal structure of (E)-2-(4-(1H-imidazol-1-yl)benzylidene)-7-fluoro-3,4-dihydronaphthalen-1(2H)-one, C20H15FN2O
  9. The salt crystal structure of etoricoxib hydrochloride, C18H16Cl2N2O2S
  10. The structure of t-butyl 7-[2-(4-fluorophenyl)-3-phenyl-4-(phenylcarbamoyl)-5-(propan-2-yl)-1H-pyrrol-1-yl]-3,5-dihydroxyheptanoate, C37H43FN2O5
  11. The crystal structure of (μ4-oxo)-tri(μ4-2,2′-bipyridine-6,6′-bis(olato)-κ5 O,O′:N:N′:O″)tetrazinc(II) – methylformamide (1/1), C33H25N7O8Zn4
  12. The co-crystal structure of 4-chlorobenzophenone–salicylhydrazide(1/1), C20H17ClN2O3
  13. Crystal structure of 9-fluoro-4-(6-methoxypyridin-2-yl)-5,6-dihydrobenzo[h]quinazolin-2-amine, C18H15FN4O
  14. The crystal structure of the co-crystal composed of benzhydrazide and 5-aminoisophthalic acid, C8H7NO4⋅C7H8N2O
  15. The cocrystal structure of praziquantel-hesperetin (1/1), C35H38N2O8
  16. Crystal structure of new barium manganese fluorides dihydrates, Ba10Mn2F25·2H2O
  17. The crystal structure of bis[μ2-(3-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)propanoate-κ2O:N)-bis(2,2′-bipyridine-κ2 N, N′)dicopper(II)]dinitrate, C42H36Cu2N12O10
  18. Crystal structure of (3,6-di(2-pyridyl)-4-phenylaminopyridazine-κ2N,N′)-bis(2-(p-toluene)pyridinyl-κ2C,N)-iridium(III) hexafluorophosphate –dichloromethane (1/1), C45H37Cl2F6IrN7P
  19. The crystal structure of 2-(2′-carboxybenzyl)benzoic acid, C15H12O5
  20. The crystal structure of dichlorido-[(E)-N′,N″-bis((2E,3E)-3-(hydroxyimino)butan-2-ylidene)-2-((E)-3-(hydroxyimino)butan-2-ylidene)hydrazine-1-carbohydrazonhydrazide-κ 4 N 4]cobalt(II), C13H22N9O3Cl2Co
  21. Crystal structure of (−)-flavesine H, C15H22N2O2
  22. Crystal structure of 3-methoxybenzyl 2-(6-methoxynaphthalen-2-yl)propanoate, C22H22O4
  23. Crystal structure of dicarbonyl(2-oxopyridin-1(2H)-olato-κ 2 O,O)iridium(I), C7H4IrNO4
  24. The crystal structure of 4-(3-(triphenylphosphonio)propyl)piperazin-1-ium dibromide trihydrate, C25H37Br2N2O3P
  25. The crystal structure of ethyl 5,6-dihydroxybenzofuran-3-carboxylate, C11H10O5
  26. Crystal structure of 14-(R)-(2′-cyano-phenoxy)-3,19-diacetyl andrographolide, C31H37NO7
  27. The twinned crystal structure of 10-(4-methyl benzoate)-2,8-diethyl-5,5-difluoro-1,3,7,9-tetramethyl-5H-di-pyrrolo[1,2-c:2′,1′-f] [1,3,2]diazaborinin-4-ium-5-uide, C25H29BF2N2O2
  28. The crystal structure of (9H-thioxanthen-9- ylidene)hydrazine monohydrate, C13H11N2SO0.5
  29. The crystal structure of pyridinium diaqua-{1,2-phenylenebis((carboxylatocarbonyl)amido-κ4 N,N′,O,O′)manganese(III), C15H14MnN3O8
  30. Crystal structure of the hydrogen storage active high entropy phase Tb0.82Sm0.18Ni0.83Co0.17Mg
  31. Crystal structure of diaqua-bis[5-methyl-1-(1H-pyrazol-3-yl)-1H-1,2,3-triazole-4-carboxylato-κ 2 N,O)]manganese(II), C14H16MnN10O6
  32. Crystal structures of diiodido-3-((pyridin-2-ylmethylene)amino)-2-(pyridin-3-yl)-2,3-dihydroquinazolin-4(1H)-one-cadmium(II)
  33. Synthesis and crystal structure of methyl 4-(2-ethoxy-2-oxoethoxy)-3,5-dimethoxybenzoate, C14H18O7
  34. Crystal structure of isoxazolo[4,5-b]pyridin-3-amine, C6H5N3O
  35. Crystal structure of 4-chloro-1-isobutyl-1H-imidazo, C14H14ClN3
  36. The crystal structure of 1,1,1,2,2,2-hexakis(2-methyl-2-phenylpropyl)distannane,C60H78Sn2
  37. The crystal structure of (2,7-dimethoxynaphthalene-1,8-diyl)bis((3-nitrophenyl)methanone), C26H18N2O8
  38. Crystal structure of diaqua-tetra((E)-(RS)-1-(2,4-dichlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)pent-1-en-3-ol-κ 1 N)zinc(II) dinitrate dihydrate, C60H76Cl8N14O14Zn
  39. The crystal structure of diphenyl bis(2-((diphenoxyphosphoryl)amino)ethyl)phosphoramidate monohydrate C40H42N3O10P3
  40. Crystal structure of 4,4′-bis(dibromomethyl)-1,1′-biphenyl, C14H10Br4
  41. Crystal structure of CaPtZn
  42. Crystal structure of 3-chloro-5-(trifluoromethyl)pyridine-2-carboxylic acid, C7H3ClF3NO2
  43. The crystal structure of (3′-(2-bromophenyl)-2-phenyl-[2,2′-bioxiran]-3-yl)(phenyl)methanone, C92H68O12Br4
  44. Crystal structure of ethyl 4-(4-benzylpiperazin-1-yl)benzoate, C20H24N2O2
  45. The crystal structure of bis(selenocyanato-κ1 N)-bis(methanol)-bis((1E,2E)-1,2-bis (1-(pyridin-4-yl)ethylidene)-hydrazine)iron(II) methanol solvate, C34H44FeN10O4Se2
  46. Crystal structure of (E)-1-(5-bromo-2-hydroxyphenyl)-3-(5-(4-methoxyphenoxy)-3-methyl-1-phenyl-1H-pyrazol-4-yl)prop-2-en-1-one, C26H21BrN2O4
  47. The crystal structure of methyl 4-(4-(methylsulfonyl)phenyl)-2-methyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate, C19H21NO5S
  48. Crystal structure of 1′,3′-dihydro-2,2′-spirobi[indene]-1,3-dione, C17H12O2
  49. Crystal structure of (E)-2,2′,3,3′-tetrahydro-[1,1′-biindenylidene]-4,4′-diol, C18H16O2
  50. Crystal structure of di-glycylglycinium squarate dihydrate, C12H22N4O12, at 105 K
  51. Crystal structure of {[(4-fluorophenyl)methyl]triphenylphosphonium}dibromocopper(I), [C25H21FP]+[CuBr2]
  52. Crystal structure of poly[diaqua-bis(μ2-5-((pyridin-4-yl-methyl)amino)benzene-1,3-dicarboxylato-κ 2 N:O)cadmium(II)], C28H26CdN4O10
Downloaded on 8.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2024-0319/html
Scroll to top button