Home Physical Sciences The crystal structure of 1,1,1,2,2,2-hexakis(2-methyl-2-phenylpropyl)distannane,C60H78Sn2
Article Open Access

The crystal structure of 1,1,1,2,2,2-hexakis(2-methyl-2-phenylpropyl)distannane,C60H78Sn2

Published/Copyright: November 14, 2024

Abstract

C60H78Sn2, cubic, Pa3̄ (no. 206), a = 17.621(2) Å, V = 5,472(2) Å3, Z = 4, R gt (F) = 0.0214, wR ref (F 2) = 0.0600, T = 296 (2) K.

CCDC no.: 2387962

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Colorless block
Size 0.22 × 0.20 × 0.20 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 0.95 mm−1
Diffractometer, scan mode: Bruker APEX-II, φ and ω
θ max, completeness: 27.0°, >99 %
N(hkl)measured , N(hkl)unique, R int: 31,064, 2002, 0.031
Criterion for I obs, N(hkl)gt: I obs > 2 σ(I obs), 1,673
N(param)refined: 96
Programs: Bruker, 1 SHELX, 2 , 3 WinGX/ORTEP 4
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

Atom x y z U iso*/U eq
C1 0.50776 (10) 0.73737 (10) 0.12487 (9) 0.0399 (4)
C2 0.44649 (11) 0.74656 (13) 0.17385 (13) 0.0547 (5)
H2 0.438570 0.710909 0.211959 0.066*
C3 0.39698 (14) 0.80724 (14) 0.16750 (15) 0.0703 (6)
H3 0.356436 0.811733 0.200983 0.084*
C4 0.40755 (15) 0.86076 (14) 0.11194 (17) 0.0753 (7)
H4 0.374099 0.901312 0.107234 0.090*
C5 0.46768 (16) 0.85382 (14) 0.06371 (16) 0.0716 (7)
H5 0.475276 0.890096 0.026139 0.086*
C6 0.51792 (13) 0.79296 (12) 0.07005 (13) 0.0564 (5)
H6 0.558913 0.789596 0.036971 0.068*
C7 0.56184 (10) 0.66992 (11) 0.13443 (10) 0.0409 (4)
C8 0.51755 (10) 0.59442 (10) 0.14220 (10) 0.0389 (4)
H8A 0.482151 0.600772 0.183878 0.047*
H8B 0.553786 0.556072 0.157887 0.047*
C9 0.61864 (12) 0.66363 (13) 0.06891 (13) 0.0600 (6)
H9A 0.591628 0.657920 0.021947 0.090*
H9B 0.650728 0.620317 0.076791 0.090*
H9C 0.649154 0.708721 0.066943 0.090*
C10 0.60724 (12) 0.68265 (13) 0.20853 (12) 0.0600 (6)
H10A 0.635994 0.728749 0.204518 0.090*
H10B 0.641134 0.640743 0.216485 0.090*
H10C 0.572763 0.686348 0.250547 0.090*
Sn1 0.45321 (2) 0.54679 (2) 0.04679 (2) 0.03107 (8)

1 Source of material

All chemicals were purchased from commercial sources and used as received without further purification. The fenbutatin oxide (1 mmol, 1.053 g) and cinnamic acid (2 mmol, 0.296 g) were dissolved in MeOH (50 mL). The mixture was refluxed for 10 h. Finally, the title crystal was precipitated by controlling slowly cooling.

2 Experimental details

All H-atoms bound to C atoms were placed geometrically and refined using a riding model with common isotropic displacement factors U iso (H) = 1.2 or 1.5 U eq (parent C-atom).

3 Comment

Organotin compounds have been extensively studied in various fields, including industry, agriculture, medicine and so on. 5 , 6 In recent years, they have garnered significant attention for their exceptional performance in organic synthesis and nonlinear optics. 7 , 8 In general, bulky sterically hindered substituents attached to the tin atom typically have a significant impact on the properties of organotin compounds. Additionally, the unique characteristics of Sn–Sn bonds have prompted their investigation in organic synthesis. 9

Single-crystal structure analysis revealed that the title compound crystallized in the cubic space group Pa3̄. The title molecule in the crystal structure is located on a special position. The ORTEP diagram is presented in Figure. Bond lengths and angles are all in the expected ranges. The bond length of Sn1–Sn1‴ is 2.8562(5) Å (‴ = -x+1,-y+1,-z), which is longer than those reported in the literature. 10 , 11 , 12 The observed phenomenon may be attributed to the significant steric hindrance posed by the 2-methyl-2-phenylpropyl group, which is similar to the situation reported in literature 13 regarding bulky o-methylphenyl groups.


Corresponding author: Yi Shen, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi 710129, China, E-mail:

Funding source: The Innovation and Entrepreneurship Training Program for College students

Award Identifier / Grant number: S202410699644

Funding source: China International College Students’ Innovation Competition Program

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Conflict of interest: The authors declare no conflicts of interest regarding this article.

  3. Research funding: This work was supported by the Innovation and Entrepreneurship Training Program for College students (No. S202410699644) and China International College Students’ Innovation Competition Program.

References

1. Bruker SAINT, APEX2 and SADABS; Bruker AXS Inc.: Madison, WI, USA, 2012.Search in Google Scholar

2. Sheldrick, G. M. SHELXTL – Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. 2015, A71, 3–8.10.1107/S2053273314026370Search in Google Scholar PubMed PubMed Central

3. Sheldrick, G. M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

4. Farrugia, L. J. WinGX and ORTEP for Windows: an Update. J. Appl. Cryst. 2012, 45, 849–854; https://doi.org/10.1107/s0021889812029111.Search in Google Scholar

5. Hu, L.; Wang, H.; Xia, T.; Fang, B.; Shen, Y.; Zhang, Q.; Tian, X.; Zhou, H.; Wu, J.; Tian, Y. Two-photon-active Organotin(IV) Complexes for Antibacterial Function and Superresolution Bacteria Imaging. Inorg. Chem. 2018, 57, 6340–6348; https://doi.org/10.1021/acs.inorgchem.8b00413.Search in Google Scholar PubMed

6. Patra, S. A.; Sahu, G.; Pattanayak, P. D.; Sasamori, T.; Dinda, R. Mitochondria-targeted Luminescent Organotin(IV) Complexes: Synthesis, Photophysical Characterization, and Live Cell Imaging. Inorg. Chem. 2022, 61, 16914–16928; https://doi.org/10.1021/acs.inorgchem.2c02959.Search in Google Scholar PubMed

7. Elangovan, S.; Randt, T.; Irran, E.; Klare, H. F. T.; Oestreich, M. Synthesis of a Cationic Cobalt-Selenolate Complex for Cooperative Sn—H Bond Activation: Solvent-dependent Stereoselectivity in Alkyne Hydrostannylation. Organometallics 2024, 43, 1619–1624; https://doi.org/10.1021/acs.organomet.4c00236.Search in Google Scholar

8. Luo, M. B.; Lai, H. D.; Huang, S. L.; Zhang, J.; Lin, Q. Pseudotetrahedral Organotin-Capped Chalcogenidometalate Supermolecules with Optical Limiting Performance. J. Am. Chem. Soc. 2024, 146, 7690–7697; https://doi.org/10.1021/jacs.3c14333.Search in Google Scholar PubMed

9. Liu, Z.; Tan, H.; Fu, T.; Xia, Y.; Qiu, D.; Zhang, Y.; Wang, J. Pd(0)-catalyzed Carbene Insertion into Si—Si and Sn – Sn Bonds. J. Am. Chem. Soc. 2015, 137, 12800–12803; https://doi.org/10.1021/jacs.5b09135.Search in Google Scholar PubMed

10. Preut, H.; Haupt, H. J.; Huber, F. Die Kristall- und Molekularstruktur des Hexaphenyl-distannans. Z. Anorg. Allg. Chem. 1973, 396, 81–89; https://doi.org/10.1002/zaac.19733960109.Search in Google Scholar

11. Bauer, J. O. The Crystal Structure of the First Ether Solvate of Hexaphenyldistannane [(Ph3 Sn)2. 2 THF]. Main Group Met. Chem. 2020, 43, 1–6; https://doi.org/10.1515/mgmc-2020-0001.Search in Google Scholar

12. Zarl, E.; Baumgartner, J.; Decker, K.; Fischer, R.; Seibt, B.; Uhlig, F. Solvent Influence in Reactions of Fluoroalkyl Sulfonic Acids with Phenyldistannanes. Phosphorus Sulfur. 2008, 183, 1923–1934; https://doi.org/10.1080/10426500701804910.Search in Google Scholar

13. Schneider–Koglin, C.; Behrends, K.; Dräger, M. Über gemischte gruppe 14-gruppe 14-bindungen: VI. Hexa-o-tolylethan-analoga o–Tol6 Sn2, o–Tol6 PbSn und o–Tol6 Pb2: ein vergleich von bindungsstärke und polarität in der reihung Sn—Sn, Pb—Sn, Pb—Pb. J. Organomet. Chem. 1993, 448, 29–38; https://doi.org/10.1016/0022-328x(93)80063-h.Search in Google Scholar

Received: 2024-10-03
Accepted: 2024-10-25
Published Online: 2024-11-14
Published in Print: 2025-02-25

© 2024 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of the co-crystal 2,4,6-triamino-1,3,5-triazine-1,3-dioxide — acetic acid (1/2) C7H14N6O6
  4. Crystal structure of the dinuclear mercury(II) complex bis(μ2-bromido)-dibromido-bis{1-[(benzotriazol-1-yl)methyl]-1-H-1,3-(2-ethyl-5-methyl-imidazol)-κ1 N} dimercury(II), C26H30N10Hg2Br4
  5. Crystal structure of poly[hexaqua-pentakis(μ4-2,2′-bipyridine-4,4′-dicarboxylato-κ4 O:O′:O″:O‴)-(μ2-2,2′-bipyridine-4,4′-dicarboxylato-κ2 O:O)tetraytterbium(III)] hydrate, C36H26N6O16Yb2
  6. Hydrothermal synthesis and crystal structure of catena-poly[(1,10-phenanthroline-κ 2 N,N′)-bis(μ 2-nitroisophthalato-κ 3 O,O′:O″)nickel(II)], C20H13NiN3O7
  7. Crystal structure of 72,73,75,76-tetrafluoro-25,44-dimethyl-31,33,36,38-tetraoxo-31,32,33,36,37,38-hexahydro-3(2,7)-benzo[lmn][3,8]phenanthrolina-1,5(4,1)-dipyridin-1-iuma-2,4(1,2),7(1,4)-tribenzenacyclooctaphane-11,51-diium hexafluoridophosphate, [C46H28F4N4O4][PF6]2, a dicationic cyclophane
  8. Crystal structure of (E)-2-(4-(1H-imidazol-1-yl)benzylidene)-7-fluoro-3,4-dihydronaphthalen-1(2H)-one, C20H15FN2O
  9. The salt crystal structure of etoricoxib hydrochloride, C18H16Cl2N2O2S
  10. The structure of t-butyl 7-[2-(4-fluorophenyl)-3-phenyl-4-(phenylcarbamoyl)-5-(propan-2-yl)-1H-pyrrol-1-yl]-3,5-dihydroxyheptanoate, C37H43FN2O5
  11. The crystal structure of (μ4-oxo)-tri(μ4-2,2′-bipyridine-6,6′-bis(olato)-κ5 O,O′:N:N′:O″)tetrazinc(II) – methylformamide (1/1), C33H25N7O8Zn4
  12. The co-crystal structure of 4-chlorobenzophenone–salicylhydrazide(1/1), C20H17ClN2O3
  13. Crystal structure of 9-fluoro-4-(6-methoxypyridin-2-yl)-5,6-dihydrobenzo[h]quinazolin-2-amine, C18H15FN4O
  14. The crystal structure of the co-crystal composed of benzhydrazide and 5-aminoisophthalic acid, C8H7NO4⋅C7H8N2O
  15. The cocrystal structure of praziquantel-hesperetin (1/1), C35H38N2O8
  16. Crystal structure of new barium manganese fluorides dihydrates, Ba10Mn2F25·2H2O
  17. The crystal structure of bis[μ2-(3-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)propanoate-κ2O:N)-bis(2,2′-bipyridine-κ2 N, N′)dicopper(II)]dinitrate, C42H36Cu2N12O10
  18. Crystal structure of (3,6-di(2-pyridyl)-4-phenylaminopyridazine-κ2N,N′)-bis(2-(p-toluene)pyridinyl-κ2C,N)-iridium(III) hexafluorophosphate –dichloromethane (1/1), C45H37Cl2F6IrN7P
  19. The crystal structure of 2-(2′-carboxybenzyl)benzoic acid, C15H12O5
  20. The crystal structure of dichlorido-[(E)-N′,N″-bis((2E,3E)-3-(hydroxyimino)butan-2-ylidene)-2-((E)-3-(hydroxyimino)butan-2-ylidene)hydrazine-1-carbohydrazonhydrazide-κ 4 N 4]cobalt(II), C13H22N9O3Cl2Co
  21. Crystal structure of (−)-flavesine H, C15H22N2O2
  22. Crystal structure of 3-methoxybenzyl 2-(6-methoxynaphthalen-2-yl)propanoate, C22H22O4
  23. Crystal structure of dicarbonyl(2-oxopyridin-1(2H)-olato-κ 2 O,O)iridium(I), C7H4IrNO4
  24. The crystal structure of 4-(3-(triphenylphosphonio)propyl)piperazin-1-ium dibromide trihydrate, C25H37Br2N2O3P
  25. The crystal structure of ethyl 5,6-dihydroxybenzofuran-3-carboxylate, C11H10O5
  26. Crystal structure of 14-(R)-(2′-cyano-phenoxy)-3,19-diacetyl andrographolide, C31H37NO7
  27. The twinned crystal structure of 10-(4-methyl benzoate)-2,8-diethyl-5,5-difluoro-1,3,7,9-tetramethyl-5H-di-pyrrolo[1,2-c:2′,1′-f] [1,3,2]diazaborinin-4-ium-5-uide, C25H29BF2N2O2
  28. The crystal structure of (9H-thioxanthen-9- ylidene)hydrazine monohydrate, C13H11N2SO0.5
  29. The crystal structure of pyridinium diaqua-{1,2-phenylenebis((carboxylatocarbonyl)amido-κ4 N,N′,O,O′)manganese(III), C15H14MnN3O8
  30. Crystal structure of the hydrogen storage active high entropy phase Tb0.82Sm0.18Ni0.83Co0.17Mg
  31. Crystal structure of diaqua-bis[5-methyl-1-(1H-pyrazol-3-yl)-1H-1,2,3-triazole-4-carboxylato-κ 2 N,O)]manganese(II), C14H16MnN10O6
  32. Crystal structures of diiodido-3-((pyridin-2-ylmethylene)amino)-2-(pyridin-3-yl)-2,3-dihydroquinazolin-4(1H)-one-cadmium(II)
  33. Synthesis and crystal structure of methyl 4-(2-ethoxy-2-oxoethoxy)-3,5-dimethoxybenzoate, C14H18O7
  34. Crystal structure of isoxazolo[4,5-b]pyridin-3-amine, C6H5N3O
  35. Crystal structure of 4-chloro-1-isobutyl-1H-imidazo, C14H14ClN3
  36. The crystal structure of 1,1,1,2,2,2-hexakis(2-methyl-2-phenylpropyl)distannane,C60H78Sn2
  37. The crystal structure of (2,7-dimethoxynaphthalene-1,8-diyl)bis((3-nitrophenyl)methanone), C26H18N2O8
  38. Crystal structure of diaqua-tetra((E)-(RS)-1-(2,4-dichlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)pent-1-en-3-ol-κ 1 N)zinc(II) dinitrate dihydrate, C60H76Cl8N14O14Zn
  39. The crystal structure of diphenyl bis(2-((diphenoxyphosphoryl)amino)ethyl)phosphoramidate monohydrate C40H42N3O10P3
  40. Crystal structure of 4,4′-bis(dibromomethyl)-1,1′-biphenyl, C14H10Br4
  41. Crystal structure of CaPtZn
  42. Crystal structure of 3-chloro-5-(trifluoromethyl)pyridine-2-carboxylic acid, C7H3ClF3NO2
  43. The crystal structure of (3′-(2-bromophenyl)-2-phenyl-[2,2′-bioxiran]-3-yl)(phenyl)methanone, C92H68O12Br4
  44. Crystal structure of ethyl 4-(4-benzylpiperazin-1-yl)benzoate, C20H24N2O2
  45. The crystal structure of bis(selenocyanato-κ1 N)-bis(methanol)-bis((1E,2E)-1,2-bis (1-(pyridin-4-yl)ethylidene)-hydrazine)iron(II) methanol solvate, C34H44FeN10O4Se2
  46. Crystal structure of (E)-1-(5-bromo-2-hydroxyphenyl)-3-(5-(4-methoxyphenoxy)-3-methyl-1-phenyl-1H-pyrazol-4-yl)prop-2-en-1-one, C26H21BrN2O4
  47. The crystal structure of methyl 4-(4-(methylsulfonyl)phenyl)-2-methyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate, C19H21NO5S
  48. Crystal structure of 1′,3′-dihydro-2,2′-spirobi[indene]-1,3-dione, C17H12O2
  49. Crystal structure of (E)-2,2′,3,3′-tetrahydro-[1,1′-biindenylidene]-4,4′-diol, C18H16O2
  50. Crystal structure of di-glycylglycinium squarate dihydrate, C12H22N4O12, at 105 K
  51. Crystal structure of {[(4-fluorophenyl)methyl]triphenylphosphonium}dibromocopper(I), [C25H21FP]+[CuBr2]
  52. Crystal structure of poly[diaqua-bis(μ2-5-((pyridin-4-yl-methyl)amino)benzene-1,3-dicarboxylato-κ 2 N:O)cadmium(II)], C28H26CdN4O10
Downloaded on 22.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2024-0390/html
Scroll to top button