Startseite The crystal structure of dichlorido-[(E)-N′,N″-bis((2E,3E)-3-(hydroxyimino)butan-2-ylidene)-2-((E)-3-(hydroxyimino)butan-2-ylidene)hydrazine-1-carbohydrazonhydrazide-κ 4 N 4]cobalt(II), C13H22N9O3Cl2Co
Artikel Open Access

The crystal structure of dichlorido-[(E)-N′,N″-bis((2E,3E)-3-(hydroxyimino)butan-2-ylidene)-2-((E)-3-(hydroxyimino)butan-2-ylidene)hydrazine-1-carbohydrazonhydrazide-κ 4 N 4]cobalt(II), C13H22N9O3Cl2Co

  • Zhi-Wei Zhai ORCID logo und Shuang-Hua Yang ORCID logo EMAIL logo
Veröffentlicht/Copyright: 29. Oktober 2024

Abstract

C13H22N9O3Cl2Co, monoclinic, P21/n (no. 14), a = 7.7939(4) Å, b = 23.1095(11) Å, c = 11.7358(7) Å, β = 108.179(6)°, V = 2008.3 (2) Å3, Z = 4, R gt(F) = 0.0485, wR ref(F 2) = 0.1002, T = 293(2) K.

CCDC no.: 2380211

Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Brown block
Size: 0.10 × 0.05 × 0.05 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 1.16 mm−1
Diffractometer, scan mode: Multiwire proportional, φ and ω
θ max, completeness: 25.5°, >99 %
N(hkl) measured , N(hkl) unique, R int: 8592, 3743, 0.042
Criterion for I obs, N(hkl) gt: I obs > 2σ(I obs), 2,636
N(param) refined: 261
Programs: CrysAlisPRO, 1 Olex2, 2 SHELX 3 , 4
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom X y z U iso*/U eq
C1 0.1552 (5) 0.96197 (16) 0.1822 (3) 0.0273 (8)
C2 −0.3700 (4) 0.94542 (16) −0.0238 (3) 0.0337 (9)
H2B −0.3170 0.9777 0.0264 0.051*
H2C −0.4597 0.9278 0.0054 0.051*
H2D −0.4254 0.9586 −0.1045 0.051*
C3 −0.2282 (4) 0.90265 (15) −0.0216 (3) 0.0256 (8)
C4 −0.2642 (4) 0.84915 (16) −0.0920 (3) 0.0271 (8)
C5 −0.4447 (4) 0.83051 (17) −0.1711 (3) 0.0369 (10)
H5A −0.4874 0.7988 −0.1343 0.055*
H5B −0.4354 0.8184 −0.2472 0.055*
H5C −0.5279 0.8622 −0.1827 0.055*
C6 0.6282 (4) 0.86120 (17) 0.2514 (3) 0.0378 (10)
H6A 0.6321 0.8502 0.3311 0.057*
H6B 0.6452 0.9023 0.2485 0.057*
H6C 0.7225 0.8416 0.2302 0.057*
C7 0.4500 (4) 0.84504 (16) 0.1654 (3) 0.0270 (8)
C8 0.4178 (5) 0.79082 (16) 0.0971 (3) 0.0303 (9)
C9 0.5564 (5) 0.74483 (17) 0.1109 (4) 0.0429 (10)
H9A 0.5145 0.7171 0.0473 0.064*
H9B 0.5770 0.7258 0.1867 0.064*
H9C 0.6670 0.7619 0.1074 0.064*
C10 0.2527 (5) 1.10877 (19) 0.3981 (4) 0.0528 (12)
H10A 0.1688 1.0878 0.4276 0.079*
H10B 0.1899 1.1255 0.3216 0.079*
H10C 0.3080 1.1389 0.4537 0.079*
C11 0.3944 (5) 1.06853 (17) 0.3850 (3) 0.0369 (10)
C12 0.5886 (5) 1.07928 (19) 0.4488 (4) 0.0443 (11)
C13 0.7323 (5) 1.0457 (2) 0.4196 (4) 0.0678 (15)
H13A 0.7510 1.0612 0.3485 0.102*
H13B 0.6961 1.0059 0.4063 0.102*
H13C 0.8426 1.0482 0.4852 0.102*
Cl1 0.02754 (12) 0.80243 (4) 0.17942 (8) 0.0384 (3)
Cl2 0.15298 (11) 0.89349 (4) −0.12160 (8) 0.0364 (3)
Co1 0.09330 (6) 0.84768 (2) 0.03082 (4) 0.02527 (15)
N1 −0.0124 (4) 0.95627 (13) 0.1154 (2) 0.0289 (7)
N2 0.3072 (4) 0.92965 (13) 0.1957 (3) 0.0309 (7)
H2A 0.4090 0.9430 0.2403 0.037*
N3 0.1881 (4) 1.01059 (14) 0.2528 (3) 0.0362 (8)
H3 0.1011 1.0326 0.2566 0.043*
N4 −0.0590 (3) 0.90858 (12) 0.0435 (2) 0.0249 (7)
N5 −0.1192 (4) 0.81804 (13) −0.0766 (3) 0.0311 (7)
N6 0.3053 (3) 0.87722 (13) 0.1419 (2) 0.0261 (7)
N7 0.2535 (4) 0.78679 (13) 0.0260 (3) 0.0302 (7)
N8 0.3642 (4) 1.02306 (14) 0.3176 (3) 0.0329 (7)
N9 0.6187 (5) 1.11998 (18) 0.5269 (3) 0.0608 (11)
O1 −0.1243 (3) 0.76766 (12) −0.1305 (2) 0.0458 (7)
O2 0.2006 (3) 0.74037 (12) −0.0432 (3) 0.0450 (7)
H2 0.0912 0.7418 −0.0761 0.067*
O3 0.8055 (4) 1.1279 (2) 0.5803 (3) 0.0900 (13)
H3A 0.8232 1.1533 0.6315 0.135*

1 Source of materials

A mixture of triaminoguanidine hydrochloride (10 mmol, 1.4 g), 2,3-butanedione monoxime (40 mmol, 4 g) were dissolved in methanol (50 mL) and stirred for 2 h at room temperature. Subsequently, reaction mixture was filtered, washed successively with water (10 mL) and methanol (10 mL). The residue was recrystallized in methanol so as to obtain the pure ligand compound (E)-N′,N″-bis((2E,3E)-3-(hydroxyimino)butan-2-ylidene)-2-((E)-3-(hydroxyimino)butan-2-ylidene)hydrazine-1-carbohydrazonhydrazide (L). Yield: 1.8 g (51 %, based on triaminoguanidine hydrochloride). The pure ligand L (1.4 mmol, 0.5 g) and cobalt chloride hexahydrate (5 mmol, 1.2 g) were dissolved in methanol (30 mL), and stired for 30 min. Next the mixture was filtered, and the filtrate was put aside for a few days under room temperature. And then the crystals of title compound were obtained. Yield: 0.3 g (43 %, based on ligand L). Anal. Calcd. for C13H22N9O3Cl2Co (%): C, 32.38; H, 4.60; N, 26.14; Cl, 14.70. Found: C, 32.25.; H, 4.61; N, 26.06; Cl, 14.51.

2 Experimental details

Crystallographic data collection and reduction were performed using the program CrysAlis pro . 1 Using Olex2, 2 the structure was solved with the ShelXT 3 structure solution program and refined with the ShelXL 4 refinement package. Coordinates of hydrogen atoms were refined without any constraints or restraints. The U iso values were set to be 1.5 U eq of the carrier atom for methyl hydrogen atoms and 1.2 U eq for aryl hydrogen atom.

3 Comment

As well-known, Schiff bases and their metal complexes possess good chemical and biological properties, which have been applied to many fields, such as analytical chemistry, 5 , 6 , 7 catalysis, 8 , 9 , 10 extraction metallurgy, 11 fluorescence, 12 , 13 magnetic properties, 14 , 15 medicine. 16 , 17 , 18 Moreover, many of cobalt complexes have been synthesized successfully in recent years, because of their good catalysis and magnetic performance. 19 , 20 , 21 Additionally, catalysis is becoming increasingly important in the field of new energy. 22 Herein, the ligand compound (E)-N′,N″-bis((2E,3E)-3-(hydroxyimino)butan-2-ylidene)-2-((E)-3-(hydroxyimino)butan-2-ylidene)hydrazine-1-carbohydrazonhydrazide (L) was synthesized by triaminoguanidine hydrochloride reacting with 2,3-butanedione monoxime.

The title compound crystallizes in the monoclinic crystal system with P21/n space group. Its asymmetric unit contains one cobalt ion, one ligand molecule (L), and two chloride ions (the figure). The cobalt ion center shows a six-coordinated distorted octahedron geometry (CoN4Cl2) by four nitrogen atoms from ligand L and two chloride ions. The Co–N bond lengths are in the range of 1.871 (3) and 1.894 (3) Å. The Co–Cl bond lengths are in the range of 2.2260(10) and 2.2486(10) Å. The N–Co–N bond angles are in the range from 81.13 (13) to 178.70 (12)°. The Cl–Co–Cl bond angle is 178.69(4)°. The N–Co–Cl bond angles are in the range from 89.10 (9) to 91.46 (9)°. In the crystal structure, the title compound molecules are stacked by C–H⋯Cl interactions, C–H⋯O interactions and Van der Waals forces to extend into a three-dimensional supermolecular structure. All bond lengths and bond angles within the title structure are in the normal range. 23


Corresponding author: Shuang-Hua Yang, School of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang, Henan, 471023, People’s Republic of China, E-mail:

References

1. Rigaku Oxford Diffraction Ltd. CrysAlisPRO, Version 1.171.39.28b; Rigaku Oxford Diffraction Ltd: England, 2015.Suche in Google Scholar

2. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Suche in Google Scholar

3. Sheldrick, G. M. Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Suche in Google Scholar PubMed PubMed Central

4. Sheldrick, G. M. Crystal Structure Refinement with ShelXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Suche in Google Scholar

5. Zhang, J.; Wang, K.; Sun, Y. A Simple Schiff Base Probe for Quintuplicate-Metal Analytes with Four Emission–Wavelength Responses. Molecules 2023, 28, 6400; https://doi.org/10.3390/molecules28176400.Suche in Google Scholar PubMed PubMed Central

6. Anand, V. Highly Sensitive, Naked Eye, and On-Spot Detection of pH Change Using Novel Phenothiazine Based Schiff Base. Curr. Phys. Chem. 2021, 11, 153–159; https://doi.org/10.2174/1877946811666210301143021.Suche in Google Scholar

7. Mahajan, G. P.; Dige, C. N.; Vanjare, D. B.; Kamaraj, E.; Seo, S. Y.; Lee, K. H. Nano Molar Level Chromogenic and Fluorogenic Sensing of Heavy Metal Ions Using Multi-Responsive Novel Schiff Base as a Dual Mode Chemosensor. J. Photochem. Photobiol. A 2019, 385, 112089; https://doi.org/10.1016/j.jphotochem.2019.112089.Suche in Google Scholar

8. Saleh, R. M.; Gendy, E. A. R.; Bakier, M. Y.; Bery, H. M. E. Modulating g–C3N4 Photocatalyst for H2 Production via Water Splitting: The Impact of Schiff Base Incorporation. J. Environ. Chem. Eng. 2024, 12, 113866.10.1016/j.jece.2024.113866Suche in Google Scholar

9. Ji, J.; Wu, H.; Li, X. Y.; Ma, L. Y.; Lv, J.; Ling, Y. N.; Wang, J. L.; Hou, Y. L.; Xin, X. Y.; Wang, W. M. A Novel CuII4 Cluster Based on Schiff Base Ligand: Crystal Structure, Efficient Conversion of CO2 to Cyclic Carbonates and Biological Activity. Polyhedron 2024, 262, 117165; https://doi.org/10.1016/j.poly.2024.117165.Suche in Google Scholar

10. Xie, Y.; Li, J.; Li, C.; Wang, X.; Zhang, J. Preparation of Schiff Base Metal Catalyst and its Catalytic Synthesis of Propylene Carbonate from CO2. Sustain. Chem. Pharm. 2024, 41, 101696; https://doi.org/10.1016/j.scp.2024.101696.Suche in Google Scholar

11. Dong, W. K.; Gong, S. S.; Tong, W. J.; Sun, Y. X.; Wu, J. C. Syntheses and Structures of Two Copper(II) Complexes with Salicyl Mono-Oxime Ligands. Chin. J. Inorg. Chem. 2010, 26, 1868–1874.Suche in Google Scholar

12. Palta, A.; Kumar, G.; Paul, K.; Luxami, V. Highly Selective Colorimetric and Fluorescent Probe for F− and P2O74− Based on AIEE and Dual ESIPT. J. Mol. Struct. 2024, 1316, 138880; https://doi.org/10.1016/j.molstruc.2024.138880.Suche in Google Scholar

13. Priya, J. M.; Revanasiddappa, H.; Jayalakshmi, B.; Swamynayaka, A.; Madegowda, M.; Iqbal, M.; Shivamallu, C.; Kollur, S. P. A Simple Fluorescent “Turn-Off” Schiff Base Sensor for Cu2+ and Fe2+ Ions and its Applications in Real Water Sample Analysis and Logic Gate Construction. Polyhedron 2024, 260, 117110; https://doi.org/10.1016/j.poly.2024.117110.Suche in Google Scholar

14. Pramanik, K.; Jana, C. N.; Sun, C. Y.; Brandäo, P.; Wang, X. Y.; Saha, A.; Panja, A. Structure and Magnetism of Dy2III Based Triple-Stranded Helicates Derived from Dinucleating Schiff Base Ligands. Inorg. Chim. Acta 2024, 571, 122219; https://doi.org/10.1016/j.ica.2024.122219.Suche in Google Scholar

15. Gusev, A.; Baluda, Y.; Matiukhina, K. A.; Kiskin, M.; Linert, W. Coordination Number Impact on Magnetic Properties of Schiff Base Co(II) Complexes. Polyhedron 2024, 259, 117074; https://doi.org/10.1016/j.poly.2024.117074.Suche in Google Scholar

16. Shikha, K.; Kumar, S. P.; Patil, V. M. Promising Schiff Bases in Antiviral Drug Design and Discovery. Med. Chem. Res. 2023, 32, 1063–1076; https://doi.org/10.1007/s00044-023-03068-0.Suche in Google Scholar PubMed PubMed Central

17. Kulsum, H.; Satya, S. G.; Armeen, S.; Tahmeena, K.; Seema, J.; Joshi, S. Medicinal Applications of Vanadium Complexes with Schiff Bases. J. Trace Elem. Med. Biol. 2023, 79, 127245; https://doi.org/10.1016/j.jtemb.2023.127245.Suche in Google Scholar PubMed

18. Kanupriya, M. I.; Mittal, K. R.; Biswas, T.; Sharma, V.; Mishra, I. Schiff Bases: Versatile Mediators of Medicinal and Multifunctional Advancements. Lett. Org. Chem. 2024, 21, 505–519; https://doi.org/10.2174/0115701786278580231126034039.Suche in Google Scholar

19. Jabeur, W.; Korb, M.; Hamdi, M.; Holub, M.; Princík, D.; Zelenák, V.; Coronilla, A. S.; Shalash, M.; Cižmár, E.; Naïli, H. A Structural, Optical and Magnetic Properties of a New Metal-Organic CoII-Based Complex. RSC Adv. 2023, 14, 25048–25061; https://doi.org/10.1039/d4ra02149e.Suche in Google Scholar PubMed PubMed Central

20. Gong, N. Y.; Zhao, Q. S.; Wang, J. H.; Ge, Z. M.; Liao, C.; Tao, K. Y.; Zhong, D. C.; Sakai, K.; Lu, T. B. A Planar-Structured Dinuclear Cobalt(II) Complex with Indirect Synergy for Photocatalytic CO2-to-CO Conversion. Ang. Chem. Int. Ed. Engl. 2024, e202411639.10.1002/anie.202411639Suche in Google Scholar PubMed

21. Intrator, A. J.; Velazquez, A. D.; Fan, S.; Mastrobattista, E.; Yu, C.; Marinescu, S. C. Electrocatalytic CO2 Reduction to Formate by a Cobalt Phosphino-Thiolate Complex. Chem. Sci. 2024, 15, 6385–6396; https://doi.org/10.1039/d3sc06805f.Suche in Google Scholar PubMed PubMed Central

22. Shi, R.; Wang, B.; Tang, D.; Wei, X.; Zhou, G. Towards High Value-Added Recycling of Spent Lithium–Ion Batteries for Catalysis Application. Electrochem. Energy Rev. 2024, 7, 28; https://doi.org/10.1007/s41918-024-00220-1.Suche in Google Scholar

23. Tandon, S. S.; Dul, M.-C.; Lee, J. L.; Dawe, L. N.; Anwar, M. U.; Thompson, L. K. Complexes of Ditopic Carbo- and Thio-Carbohydrazone Ligands – Mononuclear, 1D Chain, Dinuclear and Tetranuclear Examples. Dalton Trans. 2011, 40, 3466–3475; https://doi.org/10.1039/c0dt01487g.Suche in Google Scholar PubMed

Received: 2024-09-09
Accepted: 2024-10-18
Published Online: 2024-10-29
Published in Print: 2025-02-25

© 2024 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Artikel in diesem Heft

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of the co-crystal 2,4,6-triamino-1,3,5-triazine-1,3-dioxide — acetic acid (1/2) C7H14N6O6
  4. Crystal structure of the dinuclear mercury(II) complex bis(μ2-bromido)-dibromido-bis{1-[(benzotriazol-1-yl)methyl]-1-H-1,3-(2-ethyl-5-methyl-imidazol)-κ1 N} dimercury(II), C26H30N10Hg2Br4
  5. Crystal structure of poly[hexaqua-pentakis(μ4-2,2′-bipyridine-4,4′-dicarboxylato-κ4 O:O′:O″:O‴)-(μ2-2,2′-bipyridine-4,4′-dicarboxylato-κ2 O:O)tetraytterbium(III)] hydrate, C36H26N6O16Yb2
  6. Hydrothermal synthesis and crystal structure of catena-poly[(1,10-phenanthroline-κ 2 N,N′)-bis(μ 2-nitroisophthalato-κ 3 O,O′:O″)nickel(II)], C20H13NiN3O7
  7. Crystal structure of 72,73,75,76-tetrafluoro-25,44-dimethyl-31,33,36,38-tetraoxo-31,32,33,36,37,38-hexahydro-3(2,7)-benzo[lmn][3,8]phenanthrolina-1,5(4,1)-dipyridin-1-iuma-2,4(1,2),7(1,4)-tribenzenacyclooctaphane-11,51-diium hexafluoridophosphate, [C46H28F4N4O4][PF6]2, a dicationic cyclophane
  8. Crystal structure of (E)-2-(4-(1H-imidazol-1-yl)benzylidene)-7-fluoro-3,4-dihydronaphthalen-1(2H)-one, C20H15FN2O
  9. The salt crystal structure of etoricoxib hydrochloride, C18H16Cl2N2O2S
  10. The structure of t-butyl 7-[2-(4-fluorophenyl)-3-phenyl-4-(phenylcarbamoyl)-5-(propan-2-yl)-1H-pyrrol-1-yl]-3,5-dihydroxyheptanoate, C37H43FN2O5
  11. The crystal structure of (μ4-oxo)-tri(μ4-2,2′-bipyridine-6,6′-bis(olato)-κ5 O,O′:N:N′:O″)tetrazinc(II) – methylformamide (1/1), C33H25N7O8Zn4
  12. The co-crystal structure of 4-chlorobenzophenone–salicylhydrazide(1/1), C20H17ClN2O3
  13. Crystal structure of 9-fluoro-4-(6-methoxypyridin-2-yl)-5,6-dihydrobenzo[h]quinazolin-2-amine, C18H15FN4O
  14. The crystal structure of the co-crystal composed of benzhydrazide and 5-aminoisophthalic acid, C8H7NO4⋅C7H8N2O
  15. The cocrystal structure of praziquantel-hesperetin (1/1), C35H38N2O8
  16. Crystal structure of new barium manganese fluorides dihydrates, Ba10Mn2F25·2H2O
  17. The crystal structure of bis[μ2-(3-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)propanoate-κ2O:N)-bis(2,2′-bipyridine-κ2 N, N′)dicopper(II)]dinitrate, C42H36Cu2N12O10
  18. Crystal structure of (3,6-di(2-pyridyl)-4-phenylaminopyridazine-κ2N,N′)-bis(2-(p-toluene)pyridinyl-κ2C,N)-iridium(III) hexafluorophosphate –dichloromethane (1/1), C45H37Cl2F6IrN7P
  19. The crystal structure of 2-(2′-carboxybenzyl)benzoic acid, C15H12O5
  20. The crystal structure of dichlorido-[(E)-N′,N″-bis((2E,3E)-3-(hydroxyimino)butan-2-ylidene)-2-((E)-3-(hydroxyimino)butan-2-ylidene)hydrazine-1-carbohydrazonhydrazide-κ 4 N 4]cobalt(II), C13H22N9O3Cl2Co
  21. Crystal structure of (−)-flavesine H, C15H22N2O2
  22. Crystal structure of 3-methoxybenzyl 2-(6-methoxynaphthalen-2-yl)propanoate, C22H22O4
  23. Crystal structure of dicarbonyl(2-oxopyridin-1(2H)-olato-κ 2 O,O)iridium(I), C7H4IrNO4
  24. The crystal structure of 4-(3-(triphenylphosphonio)propyl)piperazin-1-ium dibromide trihydrate, C25H37Br2N2O3P
  25. The crystal structure of ethyl 5,6-dihydroxybenzofuran-3-carboxylate, C11H10O5
  26. Crystal structure of 14-(R)-(2′-cyano-phenoxy)-3,19-diacetyl andrographolide, C31H37NO7
  27. The twinned crystal structure of 10-(4-methyl benzoate)-2,8-diethyl-5,5-difluoro-1,3,7,9-tetramethyl-5H-di-pyrrolo[1,2-c:2′,1′-f] [1,3,2]diazaborinin-4-ium-5-uide, C25H29BF2N2O2
  28. The crystal structure of (9H-thioxanthen-9- ylidene)hydrazine monohydrate, C13H11N2SO0.5
  29. The crystal structure of pyridinium diaqua-{1,2-phenylenebis((carboxylatocarbonyl)amido-κ4 N,N′,O,O′)manganese(III), C15H14MnN3O8
  30. Crystal structure of the hydrogen storage active high entropy phase Tb0.82Sm0.18Ni0.83Co0.17Mg
  31. Crystal structure of diaqua-bis[5-methyl-1-(1H-pyrazol-3-yl)-1H-1,2,3-triazole-4-carboxylato-κ 2 N,O)]manganese(II), C14H16MnN10O6
  32. Crystal structures of diiodido-3-((pyridin-2-ylmethylene)amino)-2-(pyridin-3-yl)-2,3-dihydroquinazolin-4(1H)-one-cadmium(II)
  33. Synthesis and crystal structure of methyl 4-(2-ethoxy-2-oxoethoxy)-3,5-dimethoxybenzoate, C14H18O7
  34. Crystal structure of isoxazolo[4,5-b]pyridin-3-amine, C6H5N3O
  35. Crystal structure of 4-chloro-1-isobutyl-1H-imidazo, C14H14ClN3
  36. The crystal structure of 1,1,1,2,2,2-hexakis(2-methyl-2-phenylpropyl)distannane,C60H78Sn2
  37. The crystal structure of (2,7-dimethoxynaphthalene-1,8-diyl)bis((3-nitrophenyl)methanone), C26H18N2O8
  38. Crystal structure of diaqua-tetra((E)-(RS)-1-(2,4-dichlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)pent-1-en-3-ol-κ 1 N)zinc(II) dinitrate dihydrate, C60H76Cl8N14O14Zn
  39. The crystal structure of diphenyl bis(2-((diphenoxyphosphoryl)amino)ethyl)phosphoramidate monohydrate C40H42N3O10P3
  40. Crystal structure of 4,4′-bis(dibromomethyl)-1,1′-biphenyl, C14H10Br4
  41. Crystal structure of CaPtZn
  42. Crystal structure of 3-chloro-5-(trifluoromethyl)pyridine-2-carboxylic acid, C7H3ClF3NO2
  43. The crystal structure of (3′-(2-bromophenyl)-2-phenyl-[2,2′-bioxiran]-3-yl)(phenyl)methanone, C92H68O12Br4
  44. Crystal structure of ethyl 4-(4-benzylpiperazin-1-yl)benzoate, C20H24N2O2
  45. The crystal structure of bis(selenocyanato-κ1 N)-bis(methanol)-bis((1E,2E)-1,2-bis (1-(pyridin-4-yl)ethylidene)-hydrazine)iron(II) methanol solvate, C34H44FeN10O4Se2
  46. Crystal structure of (E)-1-(5-bromo-2-hydroxyphenyl)-3-(5-(4-methoxyphenoxy)-3-methyl-1-phenyl-1H-pyrazol-4-yl)prop-2-en-1-one, C26H21BrN2O4
  47. The crystal structure of methyl 4-(4-(methylsulfonyl)phenyl)-2-methyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate, C19H21NO5S
  48. Crystal structure of 1′,3′-dihydro-2,2′-spirobi[indene]-1,3-dione, C17H12O2
  49. Crystal structure of (E)-2,2′,3,3′-tetrahydro-[1,1′-biindenylidene]-4,4′-diol, C18H16O2
  50. Crystal structure of di-glycylglycinium squarate dihydrate, C12H22N4O12, at 105 K
  51. Crystal structure of {[(4-fluorophenyl)methyl]triphenylphosphonium}dibromocopper(I), [C25H21FP]+[CuBr2]
  52. Crystal structure of poly[diaqua-bis(μ2-5-((pyridin-4-yl-methyl)amino)benzene-1,3-dicarboxylato-κ 2 N:O)cadmium(II)], C28H26CdN4O10
Heruntergeladen am 8.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2024-0363/html
Button zum nach oben scrollen