Startseite Crystal structure of dicarbonyl(2-oxopyridin-1(2H)-olato-κ 2 O,O)iridium(I), C7H4IrNO4
Artikel Open Access

Crystal structure of dicarbonyl(2-oxopyridin-1(2H)-olato-κ 2 O,O)iridium(I), C7H4IrNO4

  • Mohammed A. Elmakki ORCID logo EMAIL logo , Dumisani V. Kama und Johan A. Venter
Veröffentlicht/Copyright: 29. Oktober 2024

Abstract

C7H4IrNO4, triclinic, P 1 (no. 2), a = 3.5665(2) Å, b = 10.8307(5) Å, c = 10.8865(5) Å, α = 72.9610(10)°, β = 83.631(2)°, γ = 89.189(2)°, V = 399.51(3) Å3, Z = 2, R gt (F) = 0.0484, wR ref(F 2) = 0.0201, T = 100 K.

CCDC no.: 2392171

Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Red needle
Size: 0.10 × 0.04 × 0.02 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 16.7 mm−1
Diffractometer, scan mode: Bruker (Venture), θ/2θ scans
θ max, completeness: 28.4°, >99 %
N(hkl)measured, N(hkl)unique, R int: 13437, 2009, 0.042
Criterion for I obs, N(hkl)gt: I obs > 2 σ(I obs), 1,978
N(param)refined: 118
Programs: SHELX 1 , Bruker 2 , Olex2 3 , Diamond 4
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso */U eq
Ir1 0.52333 (4) 0.31437 (2) 0.27591 (2) 0.01459 (6)
O1 0.7167 (12) 0.1772 (4) 0.0776 (3) 0.0310 (8)
O2 0.7426 (10) 0.5685 (3) 0.0830 (3) 0.0249 (7)
O4 0.3791 (9) 0.3916 (3) 0.4231 (3) 0.0190 (6)
O3 0.3683 (9) 0.1513 (3) 0.4225 (3) 0.0188 (6)
C3 0.2335 (11) 0.3036 (4) 0.5300 (4) 0.0128 (7)
N1 0.2294 (11) 0.1782 (4) 0.5296 (4) 0.0181 (7)
C7 0.0797 (13) 0.0822 (4) 0.6377 (4) 0.0202 (8)
H7 0.075533 −0.005285 0.636924 0.024*
C6 −0.0632 (12) 0.1147 (5) 0.7464 (4) 0.0207 (8)
H6 −0.165828 0.049568 0.821465 0.025*
C5 −0.0574 (12) 0.2436 (5) 0.7467 (4) 0.0201 (8)
H5 −0.155687 0.265986 0.821916 0.024*
C4 0.0891 (13) 0.3374 (4) 0.6389 (4) 0.0186 (8)
H4 0.092059 0.425238 0.638630 0.022*
C1 0.6452 (13) 0.2322 (4) 0.1517 (4) 0.0212 (9)
C2 0.6604 (13) 0.4695 (4) 0.1557 (4) 0.0192 (8)

1 Source of materials

The complex was synthesized by modifying the method used before by reduction of hydrated IrCl3 in DMF, which was refluxed for approximately 20 min to give a yellow solution of di-μ-chloro-tetra-carbonyldiiridium(I), [IrCl(CO)2]2. 5 , 6 , 7

The addition of an equivalent of 2-oxopyridine (opoH) to the aforementioned yellow solution followed by addition of ice water to precipitate the dicarbonyliridium(I) complex, [Ir(opo)(CO)2]. The precipitate was filtered off and dried. Red needle crystals were obtained from DCM and benzene.

2 Experimental details

The aromatic H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with fixed C–H distances for aromatic C–H of 0.93 Å (C–H) [U iso(H) = 1.2U eq]. The graphics were obtained using the DIAMOND 4 program with 50 % probability ellipsoids.

3 Comment

Important stages in many catalytic processes, like the carbonylation of methanol, are represented by oxidative addition reactions to metal complexes. 5 Research has shown that in the catalytic cycles of some processes, the oxidative addition phase is the rate-determining step. Consequently, any alteration to this step may dictate the trajectory of the whole catalytic cycle. Owing to the importance of this reaction, a great deal of study has been done on oxidative addition processes to comprehend its kinetic behavior and reactions to both internal and external influences. 6 , 7 There has been much discussion regarding the synthesis of M(I) and M(III) complexes (M = Rh and Ir). Many studies involve the synthesis of the precursor complex [M(L,L′-BID)(CO)2], in which one of the carbonyl ligands may be replaced by tertiary phosphine ligands to form [M(L,L′-BID)(CO)(PX3)], where M represents Rh or Ir, L,L′-BID represents monocharged bidentate ligands with different donor atoms (L,L′) such as O,O′, O,N, O,S, and N,S, and PX3 represents various neutral monodentate tertiary phosphine ligands. 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22

The 2-oxopyridine (opoH) ligand of the title complex was selected because of its small bite angle, forming a five-membered metallocycle ring when coordinated.

In the title structure, a slightly distorted square planar geometry is observed indicated by the small bite angle of 79.661(2)° for O3–Ir1–O4. The angles between the other atoms of the coordination sphere are affected as a consequence of the small bite angle and have values differing from the ideal 90°; 89.492(2)° for C1–Ir1–C2, 94.903(2)° for C2–Ir1–O4 and 95.942(2)° for C1–Ir1–O3. The Ir1–O3, Ir1–O4, Ir1–C1 and Ir1–C2 bond distances are 2.0372(1), 2.0302(1), 1.8371(1) and 1.8350(1) Å, respectively.


Corresponding author: Mohammed A. Elmakki, Department of Chemistry, University of the Free State, 9301 Bloemfontein, South Africa; and Department of Chemistry, Omdurman Islamic University, 14415 Omdurman, Sudan, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The authors acknowledge funding under the Swiss–South Africa joint research program (SSAJRP) from the SANRF (A. Roodt: UID: 107802) as well as from the Competitive Program for Rated Researchers of the SANRF (A. Roodt: UID: 111698), from the South African Department of Science Innovation (DSI) and the Department of Science and Technology (DST) respectively, “Department of Science and Innovation, Republic of South Africa” and “Department of Science and Technology, Republic of South Africa”.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Sheldrick, G. M. A Short History of SHELX. Acta Crystallogr. 2008, A64, 112–122. https://doi.org/10.1107/s0108767307043930.Suche in Google Scholar PubMed

2. Bruker. SAINT-Plus (Version 7.12) and SADABS (Version 2004/1); Bruker AXS Inc.: Madison, WI, USA, 2004.Suche in Google Scholar

3. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341. https://doi.org/10.1107/s0021889808042726.Suche in Google Scholar

4. Brandenburg, K. DIAMOND. Visual Crystal Structure Information System. 3.0c; Crystal Impact: Bonn, Germany, 2005.Suche in Google Scholar

5. Maitlis, P. M.; Haynes, A.; Sunley, G. J.; Howard, M. J. Methanol Carbonylation Revisited Thirty Years On. J. Chem. Soc., Dalton Trans. 1996, 2187–2196. https://doi.org/10.1039/dt9960002187.Suche in Google Scholar

6. Roodt, A.; Visser, H. G.; Brink, A. Structure/Reactivity Relationships and Mechanism from X-Ray Data and Spectroscopic Kinetic Analysis. Crystallogr. Rev. 2011, 17, 241–280. https://doi.org/10.1080/0889311x.2011.593032.Suche in Google Scholar

7. Muller, A. J.; Otto, S.; Roodt, A. Rapid Phosphorus (III) Ligand Evaluation Utilising Potassium Selenocyanate. Dalton Trans. 2008, 650–657. https://doi.org/10.1039/b712782k.Suche in Google Scholar PubMed

8. Warsink, S.; Kotze, P. D. R.; van Rensburg, J. M. J.; Venter, J. A.; Otto, S.; Botha, E.; Roodt, A. Kinetic-Mechanistic and Solid–State Study of the Oxidative Addition and Migratory Insertion of Iodomethane to [Rhodium(S,O-BdiPT or N,O-ox) (CO)(PR1R2R3)] Complexes. Eur. J. Inorg. Chem. 2018, 2018, 3615–3625. https://doi.org/10.1002/ejic.201800293.Suche in Google Scholar

9. Basson, S. S.; Leipoldt, J. G.; Roodt, A.; Venter, J. A. Crystal Structure of Carbonyl(N-hydroxy-N-nitrosobenzenaminato-O,O′)-Triphenylphosphinerhodium(I). Inorg. Chim. Acta 1986, 118, L45–L47. https://doi.org/10.1016/s0020-1693(00)81365-1.Suche in Google Scholar

10. Elmakki, M. A.; Koen, R.; Venter, J. A.; Drost, R. Crystal Structure of Dicarbonyl(pyridine-2-olate-1-oxido-κ2O,O′)rhodium(I), C7H4NO4Rh. Z. Kristallogr. N. Cryst. Struct. 2016, 231, 703–705. https://doi.org/10.1515/ncrs-2015-0240.Suche in Google Scholar

11. Basson, S. S.; Leipoldt, J. G.; Roodt, A.; Venter, J. A. Mechanism for the Oxidative Addition of Iodomethane to Carbonyl(N-hydroxy-N-nitrosobenzenaminato-O-O′)-triarylphosphinerhodium(I) Complexes and Crystal Structure of [Rh(cupf)(CO)(CH3)(I)(PPh3)]. Inorg. Chim. Acta 1987, 128, 31–37.10.1016/S0020-1693(00)84691-5Suche in Google Scholar

12. Uguagliati, P.; Deganello, G.; Belluco, U. The System – Dichlorotetracarbonyldirhodium-Tertiary Phosphines. Inorg. Chim. Acta 1974, 9, 203–207. https://doi.org/10.1016/s0020-1693(00)89906-5.Suche in Google Scholar

13. Brink, A.; Roodt, A.; Steyl, G.; Visser, H. G. Steric vs. Electronic Anomaly Observed from Iodomethane Oxidative Addition to Tertiary Phosphine Modified Rhodium(I) Acetylacetonato Complexes Following Progressive Phenyl Replacement by Cyclohexyl [PR3 = PPh3, PPh2Cy, PPhCy2, PCy3]. Dalton Trans. 2010, 39, 5572–5578. https://doi.org/10.1039/b922083f.Suche in Google Scholar PubMed

14. Elmakki, M. A.; Koen, R.; Drost, R. M.; Alexander, O. T.; Venter, G. J. S.; Venter, J. A. Crystal Structure of Carbonyl (2-oxopyridin-1(2H-olato-κ2O,O′)(triphenylphosphine-κP) Rhodium(I), C24H19NO3PRh. Z. Kristallogr. N. Cryst. Struct. 2016, 231, 781–783. https://doi.org/10.1515/ncrs-2015-0266.Suche in Google Scholar

15. Elmakki, M. A.; Alexander, O. T.; Venter, G. J. S.; Venter, J. A. Crystal Structure of Carbonyl(2-oxopyridin-1(2H-olato-κ2O,O′) (diphenylcyclohexylphosphine-κP)rhodium(I), C24H25NO3PRh. Z. Kristallogr. N. Cryst. Struct. 2017, 232, 831–833. https://doi.org/10.1515/ncrs-2017-0066.Suche in Google Scholar

16. Elmakki, M. A.; Alexander, O. T.; Roodt, A. The Crystal Structure of trans-Carbonyl-(diphenylcyclohexyl-phosphine-κP)iodidomethyl-(2-oxopyridin-1(2H)-olato-κ2O,O′)rhodium(III), C25H28INO3PRh. Z. Kristallogr. N. Cryst. Struct. 2020, 235, 279–281. https://doi.org/10.1515/ncrs-2019-0602.Suche in Google Scholar

17. Elmakki, M. A.; Alexander, O. T.; Venter, J. A.; Roodt, A. Crystal Structure of Carbonyl(2-oxopyridin-1(2H)-olato-κ2O,O′)(triphenylarsine-κAs)rhodium(I), C24H19AsNO3Rh. Z. Kristallogr. N. Cryst. Struct. 2021, 236, 223–225. https://doi.org/10.1515/ncrs-2020-0490.Suche in Google Scholar

18. Elmakki, M. A.; Alexander, O. T.; Venter, J. A.; Roodt, A. Crystal Structure of Carbonyl(2-methylquinolin-8-olato-κ2N,O)(triphenylarsine-κAs)rhodium(I), C29H23AsNO2Rh. Z. Kristallogr. N. Cryst. Struct. 2021, 236, 215–217. https://doi.org/10.1515/ncrs-2020-0494.Suche in Google Scholar

19. Elmakki, M. A. E.; Alexander, O. T.; Venter, G. J. S.; Venter, J. A.; Roodt, A. Synthesis and Structural Determination of [Rh(opo)(CO)(PR3)] Complexes (Opo- = 2-Oxopyridin-1-olate) and in situ Isomeric Behavior from Preliminary Kinetic Study of Iodomethane Oxidative Addition. J. Coord. Chem. 2021, 74, 444–466. https://doi.org/10.1080/00958972.2021.1879385.Suche in Google Scholar

20. Basson, S. S.; Leipoldt, J. G.; Venter, J. A. Structure of Pentacoordinated b-Carbonyl-cd-(N-hydroxy-N-nitrosobenzenaminato-O,O′)-ae-bis(triphenylphosphine)rhodium(I). Acta Crystallogr. 1990, C46, 1324–1326. https://doi.org/10.1107/s0108270190002074.Suche in Google Scholar

21. Venter, J. A.; Leipoldt, J. G.; van Eldik, R. Solvent, Temperature, and Pressure Dependence of the Oxidative Addition of Iodomethane to Complexes of the Type RhI(β-diketonate)(CO)( PPh3). Inorg. Chem. 1991, 30, 2207–2209. https://doi.org/10.1021/ic00009a046.Suche in Google Scholar

22. Venter, J. A.; Purcell, W.; Visser, H. G.; Muller, T. J. Carbonyl(N-nitroso-N-oxido-1-naphtylamine-k2O,O’)(triphenyl-phosphine-kP) rhodium(I) Acetone Solvate. Acta Cryst. 2009, 65, m1578–m1587.10.1107/S1600536809047321Suche in Google Scholar PubMed PubMed Central

Received: 2024-09-12
Accepted: 2024-10-19
Published Online: 2024-10-29
Published in Print: 2025-02-25

© 2024 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Artikel in diesem Heft

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of the co-crystal 2,4,6-triamino-1,3,5-triazine-1,3-dioxide — acetic acid (1/2) C7H14N6O6
  4. Crystal structure of the dinuclear mercury(II) complex bis(μ2-bromido)-dibromido-bis{1-[(benzotriazol-1-yl)methyl]-1-H-1,3-(2-ethyl-5-methyl-imidazol)-κ1 N} dimercury(II), C26H30N10Hg2Br4
  5. Crystal structure of poly[hexaqua-pentakis(μ4-2,2′-bipyridine-4,4′-dicarboxylato-κ4 O:O′:O″:O‴)-(μ2-2,2′-bipyridine-4,4′-dicarboxylato-κ2 O:O)tetraytterbium(III)] hydrate, C36H26N6O16Yb2
  6. Hydrothermal synthesis and crystal structure of catena-poly[(1,10-phenanthroline-κ 2 N,N′)-bis(μ 2-nitroisophthalato-κ 3 O,O′:O″)nickel(II)], C20H13NiN3O7
  7. Crystal structure of 72,73,75,76-tetrafluoro-25,44-dimethyl-31,33,36,38-tetraoxo-31,32,33,36,37,38-hexahydro-3(2,7)-benzo[lmn][3,8]phenanthrolina-1,5(4,1)-dipyridin-1-iuma-2,4(1,2),7(1,4)-tribenzenacyclooctaphane-11,51-diium hexafluoridophosphate, [C46H28F4N4O4][PF6]2, a dicationic cyclophane
  8. Crystal structure of (E)-2-(4-(1H-imidazol-1-yl)benzylidene)-7-fluoro-3,4-dihydronaphthalen-1(2H)-one, C20H15FN2O
  9. The salt crystal structure of etoricoxib hydrochloride, C18H16Cl2N2O2S
  10. The structure of t-butyl 7-[2-(4-fluorophenyl)-3-phenyl-4-(phenylcarbamoyl)-5-(propan-2-yl)-1H-pyrrol-1-yl]-3,5-dihydroxyheptanoate, C37H43FN2O5
  11. The crystal structure of (μ4-oxo)-tri(μ4-2,2′-bipyridine-6,6′-bis(olato)-κ5 O,O′:N:N′:O″)tetrazinc(II) – methylformamide (1/1), C33H25N7O8Zn4
  12. The co-crystal structure of 4-chlorobenzophenone–salicylhydrazide(1/1), C20H17ClN2O3
  13. Crystal structure of 9-fluoro-4-(6-methoxypyridin-2-yl)-5,6-dihydrobenzo[h]quinazolin-2-amine, C18H15FN4O
  14. The crystal structure of the co-crystal composed of benzhydrazide and 5-aminoisophthalic acid, C8H7NO4⋅C7H8N2O
  15. The cocrystal structure of praziquantel-hesperetin (1/1), C35H38N2O8
  16. Crystal structure of new barium manganese fluorides dihydrates, Ba10Mn2F25·2H2O
  17. The crystal structure of bis[μ2-(3-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)propanoate-κ2O:N)-bis(2,2′-bipyridine-κ2 N, N′)dicopper(II)]dinitrate, C42H36Cu2N12O10
  18. Crystal structure of (3,6-di(2-pyridyl)-4-phenylaminopyridazine-κ2N,N′)-bis(2-(p-toluene)pyridinyl-κ2C,N)-iridium(III) hexafluorophosphate –dichloromethane (1/1), C45H37Cl2F6IrN7P
  19. The crystal structure of 2-(2′-carboxybenzyl)benzoic acid, C15H12O5
  20. The crystal structure of dichlorido-[(E)-N′,N″-bis((2E,3E)-3-(hydroxyimino)butan-2-ylidene)-2-((E)-3-(hydroxyimino)butan-2-ylidene)hydrazine-1-carbohydrazonhydrazide-κ 4 N 4]cobalt(II), C13H22N9O3Cl2Co
  21. Crystal structure of (−)-flavesine H, C15H22N2O2
  22. Crystal structure of 3-methoxybenzyl 2-(6-methoxynaphthalen-2-yl)propanoate, C22H22O4
  23. Crystal structure of dicarbonyl(2-oxopyridin-1(2H)-olato-κ 2 O,O)iridium(I), C7H4IrNO4
  24. The crystal structure of 4-(3-(triphenylphosphonio)propyl)piperazin-1-ium dibromide trihydrate, C25H37Br2N2O3P
  25. The crystal structure of ethyl 5,6-dihydroxybenzofuran-3-carboxylate, C11H10O5
  26. Crystal structure of 14-(R)-(2′-cyano-phenoxy)-3,19-diacetyl andrographolide, C31H37NO7
  27. The twinned crystal structure of 10-(4-methyl benzoate)-2,8-diethyl-5,5-difluoro-1,3,7,9-tetramethyl-5H-di-pyrrolo[1,2-c:2′,1′-f] [1,3,2]diazaborinin-4-ium-5-uide, C25H29BF2N2O2
  28. The crystal structure of (9H-thioxanthen-9- ylidene)hydrazine monohydrate, C13H11N2SO0.5
  29. The crystal structure of pyridinium diaqua-{1,2-phenylenebis((carboxylatocarbonyl)amido-κ4 N,N′,O,O′)manganese(III), C15H14MnN3O8
  30. Crystal structure of the hydrogen storage active high entropy phase Tb0.82Sm0.18Ni0.83Co0.17Mg
  31. Crystal structure of diaqua-bis[5-methyl-1-(1H-pyrazol-3-yl)-1H-1,2,3-triazole-4-carboxylato-κ 2 N,O)]manganese(II), C14H16MnN10O6
  32. Crystal structures of diiodido-3-((pyridin-2-ylmethylene)amino)-2-(pyridin-3-yl)-2,3-dihydroquinazolin-4(1H)-one-cadmium(II)
  33. Synthesis and crystal structure of methyl 4-(2-ethoxy-2-oxoethoxy)-3,5-dimethoxybenzoate, C14H18O7
  34. Crystal structure of isoxazolo[4,5-b]pyridin-3-amine, C6H5N3O
  35. Crystal structure of 4-chloro-1-isobutyl-1H-imidazo, C14H14ClN3
  36. The crystal structure of 1,1,1,2,2,2-hexakis(2-methyl-2-phenylpropyl)distannane,C60H78Sn2
  37. The crystal structure of (2,7-dimethoxynaphthalene-1,8-diyl)bis((3-nitrophenyl)methanone), C26H18N2O8
  38. Crystal structure of diaqua-tetra((E)-(RS)-1-(2,4-dichlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)pent-1-en-3-ol-κ 1 N)zinc(II) dinitrate dihydrate, C60H76Cl8N14O14Zn
  39. The crystal structure of diphenyl bis(2-((diphenoxyphosphoryl)amino)ethyl)phosphoramidate monohydrate C40H42N3O10P3
  40. Crystal structure of 4,4′-bis(dibromomethyl)-1,1′-biphenyl, C14H10Br4
  41. Crystal structure of CaPtZn
  42. Crystal structure of 3-chloro-5-(trifluoromethyl)pyridine-2-carboxylic acid, C7H3ClF3NO2
  43. The crystal structure of (3′-(2-bromophenyl)-2-phenyl-[2,2′-bioxiran]-3-yl)(phenyl)methanone, C92H68O12Br4
  44. Crystal structure of ethyl 4-(4-benzylpiperazin-1-yl)benzoate, C20H24N2O2
  45. The crystal structure of bis(selenocyanato-κ1 N)-bis(methanol)-bis((1E,2E)-1,2-bis (1-(pyridin-4-yl)ethylidene)-hydrazine)iron(II) methanol solvate, C34H44FeN10O4Se2
  46. Crystal structure of (E)-1-(5-bromo-2-hydroxyphenyl)-3-(5-(4-methoxyphenoxy)-3-methyl-1-phenyl-1H-pyrazol-4-yl)prop-2-en-1-one, C26H21BrN2O4
  47. The crystal structure of methyl 4-(4-(methylsulfonyl)phenyl)-2-methyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate, C19H21NO5S
  48. Crystal structure of 1′,3′-dihydro-2,2′-spirobi[indene]-1,3-dione, C17H12O2
  49. Crystal structure of (E)-2,2′,3,3′-tetrahydro-[1,1′-biindenylidene]-4,4′-diol, C18H16O2
  50. Crystal structure of di-glycylglycinium squarate dihydrate, C12H22N4O12, at 105 K
  51. Crystal structure of {[(4-fluorophenyl)methyl]triphenylphosphonium}dibromocopper(I), [C25H21FP]+[CuBr2]
  52. Crystal structure of poly[diaqua-bis(μ2-5-((pyridin-4-yl-methyl)amino)benzene-1,3-dicarboxylato-κ 2 N:O)cadmium(II)], C28H26CdN4O10
Heruntergeladen am 9.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2024-0368/html
Button zum nach oben scrollen