Home The crystal structure of bis[μ2-(3-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)propanoate-κ2O:N)-bis(2,2′-bipyridine-κ2 N, N′)dicopper(II)]dinitrate, C42H36Cu2N12O10
Article Open Access

The crystal structure of bis[μ2-(3-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)propanoate-κ2O:N)-bis(2,2′-bipyridine-κ2 N, N′)dicopper(II)]dinitrate, C42H36Cu2N12O10

  • Zhiwei Tang ORCID logo EMAIL logo , Ruijuan Zheng , Wei Guo and Jiangcong Zhou
Published/Copyright: October 30, 2024

Abstract

C42H36Cu2N12O10, monoclinic, P21/n (no. 14), a = 11.0161(4) Å, b = 11.8753(5) Å, c = 15.6055(5) Å, β = 95.197(3)°, V = 2033.11(13) Å3, Z = 2, R gt (F) = 0.0398, wR ref (F 2) = 0.0935, T = 293 K.

CCDC no.: 2379037

Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: block
Size 0.20 × 0.20 × 0.10 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 1.12 mm−1
Diffractometer, scan mode: New Xcalibur, EosS2, ω
θ max, completeness: 29.2°, >99 %
N(hkl)measured , N(hkl)unique, R int: 9,485, 4,678, 0.021
Criterion for I obs, N(hkl) gt: I obs > 2 σ(I obs), 3,601
N(param)refined: 298
Programs: Olex2, 1 SHELX 2 , 3
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
Cu1 0.71511 (2) 0.46963 (3) 0.60974 (2) 0.03489 (11)
O1 0.60801 (14) 0.59725 (15) 0.57182 (10) 0.0395 (4)
O2 0.78594 (15) 0.68434 (18) 0.59542 (12) 0.0561 (5)
N1 0.50966 (17) 0.73675 (17) 0.40220 (12) 0.0349 (4)
N2 0.43248 (16) 0.65781 (17) 0.36698 (12) 0.0333 (4)
N3 0.31209 (17) 0.50036 (18) 0.26610 (12) 0.0363 (5)
N4 0.86892 (17) 0.37722 (18) 0.63676 (12) 0.0385 (5)
N5 0.75967 (17) 0.44232 (17) 0.49040 (12) 0.0357 (5)
C1 0.6759 (2) 0.6845 (2) 0.57150 (14) 0.0379 (6)
C2 0.6159 (2) 0.7951 (2) 0.54214 (16) 0.0430 (6)
H2A 0.6027 0.8394 0.5927 0.052*
H2B 0.6721 0.8366 0.5095 0.052*
C3 0.4952 (2) 0.7841 (2) 0.48740 (15) 0.0401 (6)
H3A 0.4411 0.7361 0.5169 0.048*
H3B 0.4575 0.8577 0.4806 0.048*
C4 0.5891 (2) 0.7702 (2) 0.34695 (16) 0.0438 (6)
H4 0.6492 0.8248 0.3572 0.053*
C5 0.5651 (2) 0.7091 (2) 0.27249 (16) 0.0433 (6)
H5 0.6059 0.7125 0.2230 0.052*
C6 0.4666 (2) 0.6413 (2) 0.28739 (14) 0.0334 (5)
C7 0.4006 (2) 0.5590 (2) 0.23119 (14) 0.0340 (5)
C8 0.4270 (2) 0.5419 (2) 0.14669 (15) 0.0459 (6)
H8 0.4887 0.5826 0.1241 0.055*
C9 0.3608 (3) 0.4640 (3) 0.09711 (17) 0.0524 (7)
H9 0.3763 0.4521 0.0402 0.063*
C10 0.2711 (2) 0.4037 (3) 0.13261 (17) 0.0537 (7)
H10 0.2258 0.3501 0.1001 0.064*
C11 0.2491 (2) 0.4234 (2) 0.21631 (17) 0.0477 (7)
H11 0.1884 0.3821 0.2398 0.057*
C12 0.9140 (3) 0.3385 (3) 0.71371 (17) 0.0536 (7)
H12 0.8738 0.3569 0.7617 0.064*
C13 1.0161 (3) 0.2734 (3) 0.7252 (2) 0.0606 (8)
H13 1.0448 0.2481 0.7796 0.073*
C14 1.0751 (3) 0.2464 (3) 0.6549 (2) 0.0586 (8)
H14 1.1442 0.2011 0.6610 0.070*
C15 1.0324 (2) 0.2862 (2) 0.57487 (18) 0.0483 (7)
H15 1.0727 0.2691 0.5267 0.058*
C16 0.92836 (19) 0.3520 (2) 0.56763 (15) 0.0350 (5)
C17 0.8712 (2) 0.3974 (2) 0.48503 (15) 0.0334 (5)
C18 0.9250 (2) 0.3949 (2) 0.40850 (16) 0.0429 (6)
H18 1.0028 0.3653 0.4062 0.052*
C19 0.8609 (3) 0.4374 (2) 0.33558 (17) 0.0495 (7)
H19 0.8964 0.4396 0.2837 0.059*
C20 0.7445 (3) 0.4764 (2) 0.34013 (17) 0.0518 (7)
H20 0.6983 0.5007 0.2907 0.062*
C21 0.6970 (2) 0.4791 (2) 0.41827 (16) 0.0466 (7)
H21 0.6188 0.5075 0.4213 0.056*
O3 0.3997 (2) 0.9568 (2) 0.62168 (18) 0.0853 (8)
O4 0.21660 (19) 1.0133 (2) 0.61802 (16) 0.0774 (7)
O5 0.2511 (3) 0.8382 (2) 0.60035 (16) 0.0891 (8)
N6 0.2881 (2) 0.9347 (2) 0.61337 (14) 0.0522 (6)

1 Source of material

All starting materials and solvents for syntheses were obtained commercially and used without further purification. The mixtures of 3-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)propanoic acid (0.2172 g, 1 mmol), 2,2′-bipyridine (0.0781 g, 0.5 mmol), Cu(NO3)2·3H2O (0.2416 g, 1 mmol), NaOH (0.020 g, 0.5 mmol) and H2O (15 mL) was placed in a 25 mL Teflon-lined stainless-steel bomb at 393 K for 72 h, and then slowly cooled down to room temperature for crystallization. The blue block crystals of the title compound suitable for X-ray diffraction structure analysis were obtained. The yield was 48 % (based on Cu).

2 Experimental details

Using Olex2, 1 the structure was solved with the ShelXT 2 structure solution program and refined with the ShelXL 3 refinement package. The C-bound H atoms were placed in idealized positions and were included in the refinement in the riding-model approximation [C–H = 0.93 Å(aromatic), 0.97 Å(methylene), and U iso(H) = 1.2 U eq(C)].

3 Comment

In the past few decades, metal-organic framework (MOF) materials have been widely researched, due to their flexible tailoring characteristics, unique crystalline porous nature, large specific surface area, and potential functions in various fields such as electrode materials for lithium-ion batteries/sodium-ion batteries (LIBs/SIBs), 4 hydrogen gas storage, 5 perovskite solar cells, 6 biomedical applications, 7 and so on. In particular, carboxylate ligands, especially aromatic carboxylate ligands have been shown to be good building blocks in the design of metal-organic frameworks (MOFs) with desired topologies owing to their rich coordination modes. 8 , 9 Furthermore, copper(II) complexes have received considerable attention in potential biological applications owing to their stability and biocompatibility. 10 , 11 Herein, a new binuclear Cu(II) complex using 3-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)propanolate as the bridging carboxylate ligand and 2,2′-bipyridine as a terminal chelating ligand was synthesized and structurally determined.

The molecular structure of the binuclear Cu(II) complex is shown in the figure (A: 1-x, 1-y, 1-z). Single-crystal X-ray diffraction analysis reveals that the asymmetric unit of title complex contains one independent Cu(II) cation, one 3-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)propanoic ligand anion, one 2,2′-bipyridine ligand and one nitrate anion. Each Cu(II) ion is five-coordinated by one carboxylate oxygen atom (O1 or O1A) from 3-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)propanoic ligand anions, two nitrogen atoms (N4, N5 or N4A, N5A) of neutral 2,2′-bipyridine ligands and two nitrogen atoms (N2A, N3A or N2, N3) from the other 3-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)-propanoate ligand anions, which forms a distorted CuN4O tetrahedral coordination geometry. One carboxylate oxygen atom (O1 or O1A) and three nitrogen atoms (N5, N4, N3A or N5A, N4A, N3) form a relatively normal square plane of the tetragonal pyramid, with the torsion angle of 10.248(76), and the Cu atom is slightly deviated from the plane (0.2097 nm), while another nitrogen atom (N2A or N2) occupies the apical position. The Cu–O and Cu–N bond lengths are 1.9781(16) Å and in the range of 1.9950(19) to 2.2743(19) Å, respectively, which are similar to those found in other Cu(II) complexes with similar coordination environment. 12 The angles around Cu center range from 78.10(7) to 174.28(7).

There exist extensive intermolecular hydrogen bonds involving nitrate anions, 2,2′-bipyridine molecules and 3-(3-(pyridin-2-yl)-1H-pyrazol-1-yl) propanoate ligands in the neighboring dimeric units (C–H⋯O with the donor-acceptor distances between 3.179 and 3.486 Å, as well as C–H⋯N with the donor-acceptor distance 3.180 Å). In addition, weak face to face π-π interactions are observed between pyridine rings of the neighbour 2,2′-bipyridine ligands with a centroid-centroid distance of 3.973 Å.


Corresponding author: Zhiwei Tang, Fujian Provincial Key Laboratory of Clean Energy Materials, College of Chemistry and Material Science, Longyan University, Longyan, Fujian, 364012, People's Republic of China, E-mail:

Funding source: Natural Science Foundation of Fujian Province

Award Identifier / Grant number: 2023J01987

Funding source: Educational and Scientific Research Project for Young and Middle-Aged Teachers of Fujian Province

Award Identifier / Grant number: JAT210435

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was funded by the Natural Science Foundation of Fujian Province (2023J01987) and the Educational and Scientific Research Project for Young and Middle–Aged Teachers of Fujian Province (JAT210435).

  3. Conflict of interest: The authors declare no conflicts of interest regarding this article.

References

1. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: a Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

2. Sheldrick, G. M. SHELXTL-Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. 2015, A71, 3–8.10.1107/S2053273314026370Search in Google Scholar PubMed PubMed Central

3. Sheldrick, G. M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

4. Wang, W.; Chen, D.; Li, F.; Xiao, X.; Xu, Q. Metal-organic Framework-Based Materials as Platforms for Energy Applications. Chem 2024, 10, 86–133; https://doi.org/10.1016/j.chempr.2023.09.009.Search in Google Scholar

5. Yuvaraj, A. R.; Jayarama, A.; Sharma, D.; Nagarkar, S. S.; Duttagupta, S. P.; Pinto, R. Role of Metal-Organic Framework in Hydrogen Gas Storage: A Critical Review. Int. J. Hydrogen Energ. 2024, 59, 1434–1458; https://doi.org/10.1016/j.ijhydene.2024.02.060.Search in Google Scholar

6. Ye, Y.; Yin, Y.; Chen, Y.; Li, S.; Li, L.; Yamauchi, Y. Metal-organic Framework Materials in Perovskite Solar Cells: Recent Advancements and Perspectives. Small 2023, 19, 2208119; https://doi.org/10.1002/smll.202208119.Search in Google Scholar PubMed

7. Abánades Lázaro, I.; Chen, X.; Ding, M.; Eskandari, A.; Fairen- Jimenez, D.; Giménez–Marqués, M.; Gref, R.; Lin, W.; Luo, T.; Forgan, R. S. Metal-organic Frameworks for Biological Applications. Nat. Rev. Methods Primers 2024, 4, 42; https://doi.org/10.1038/s43586-024-00320-8.Search in Google Scholar

8. Rashid, F.; Uddin, N.; Ali, S.; Haider, A.; Tirmizi, S. A.; Diaconescu, P. L.; Iqbal, J. New Triorganotin (Iv) Compounds with Aromatic Carboxylate Ligands: Synthesis and Evaluation of the Pro-apoptotic Mechanism. RSC Adv. 2021, 11, 4499–4514; https://doi.org/10.1039/d0ra06695h.Search in Google Scholar PubMed PubMed Central

9. Thuéry, P.; Atoini, Y.; Harrowfield, J. Functionalized Aromatic Dicarboxylate Ligands in Uranyl–Organic Assemblies: The Cases of Carboxycinnamate and 1,2-/1,3–Phenylenedioxydiacetate. Inorg. Chem. 2020, 59, 2923–2936; https://doi.org/10.1021/acs.inorgchem.9b03273.Search in Google Scholar PubMed

10. Kharpan, B.; Pyngrope, H.; Bhattacharyya, M.; Shyam, A.; Wangkheimayum, J.; Pramanik, H. A. R.; Paul, P. C.; Majaw, S.; Bhattacharjee, A.; Mondal, P. Design Amino Acids Schiff Base Ligands and Their Cu(II) and Zn(II) Complexes as Potent Anticancer Agent on Human Lung Carcinoma, Efficient CT–DNA Binder, Antibacterial and Mesomorphic Properties. J. Mol. Struct. 2024, 1317, 139075.10.1016/j.molstruc.2024.139075Search in Google Scholar

11. Mo, D.; Shi, J.; Zhao, D.; Zhang, Y.; Guan, Y.; Shen, Y.; Bian, H.; Huang, F.; Wu, S. Synthesis and Characterization of FeIII/CoIII/CuIII Complexes with Schiff Base Ligand and Their Hybrid Proteins, SOD Activity and Asymmetric Catalytic Oxidation of Sulfides. J. Mol. Struct. 2021, 1223, 129229; https://doi.org/10.1016/j.molstruc.2020.129229.Search in Google Scholar

12. Iqbal, M.; Karim, A.; Ullah, S.; Ali, S.; Tahir, M. N. Synthesis, Characterization, Structural Elucidation, Molecular Docking and Antidiabetic Studies of 1, 10-phenanthroline Based Mononuclear Cu(II) and Zn(II) Complexes. Polyhedron 2023, 246, 116698; https://doi.org/10.1016/j.poly.2023.116698.Search in Google Scholar

Received: 2024-08-24
Accepted: 2024-10-18
Published Online: 2024-10-30
Published in Print: 2025-02-25

© 2024 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of the co-crystal 2,4,6-triamino-1,3,5-triazine-1,3-dioxide — acetic acid (1/2) C7H14N6O6
  4. Crystal structure of the dinuclear mercury(II) complex bis(μ2-bromido)-dibromido-bis{1-[(benzotriazol-1-yl)methyl]-1-H-1,3-(2-ethyl-5-methyl-imidazol)-κ1 N} dimercury(II), C26H30N10Hg2Br4
  5. Crystal structure of poly[hexaqua-pentakis(μ4-2,2′-bipyridine-4,4′-dicarboxylato-κ4 O:O′:O″:O‴)-(μ2-2,2′-bipyridine-4,4′-dicarboxylato-κ2 O:O)tetraytterbium(III)] hydrate, C36H26N6O16Yb2
  6. Hydrothermal synthesis and crystal structure of catena-poly[(1,10-phenanthroline-κ 2 N,N′)-bis(μ 2-nitroisophthalato-κ 3 O,O′:O″)nickel(II)], C20H13NiN3O7
  7. Crystal structure of 72,73,75,76-tetrafluoro-25,44-dimethyl-31,33,36,38-tetraoxo-31,32,33,36,37,38-hexahydro-3(2,7)-benzo[lmn][3,8]phenanthrolina-1,5(4,1)-dipyridin-1-iuma-2,4(1,2),7(1,4)-tribenzenacyclooctaphane-11,51-diium hexafluoridophosphate, [C46H28F4N4O4][PF6]2, a dicationic cyclophane
  8. Crystal structure of (E)-2-(4-(1H-imidazol-1-yl)benzylidene)-7-fluoro-3,4-dihydronaphthalen-1(2H)-one, C20H15FN2O
  9. The salt crystal structure of etoricoxib hydrochloride, C18H16Cl2N2O2S
  10. The structure of t-butyl 7-[2-(4-fluorophenyl)-3-phenyl-4-(phenylcarbamoyl)-5-(propan-2-yl)-1H-pyrrol-1-yl]-3,5-dihydroxyheptanoate, C37H43FN2O5
  11. The crystal structure of (μ4-oxo)-tri(μ4-2,2′-bipyridine-6,6′-bis(olato)-κ5 O,O′:N:N′:O″)tetrazinc(II) – methylformamide (1/1), C33H25N7O8Zn4
  12. The co-crystal structure of 4-chlorobenzophenone–salicylhydrazide(1/1), C20H17ClN2O3
  13. Crystal structure of 9-fluoro-4-(6-methoxypyridin-2-yl)-5,6-dihydrobenzo[h]quinazolin-2-amine, C18H15FN4O
  14. The crystal structure of the co-crystal composed of benzhydrazide and 5-aminoisophthalic acid, C8H7NO4⋅C7H8N2O
  15. The cocrystal structure of praziquantel-hesperetin (1/1), C35H38N2O8
  16. Crystal structure of new barium manganese fluorides dihydrates, Ba10Mn2F25·2H2O
  17. The crystal structure of bis[μ2-(3-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)propanoate-κ2O:N)-bis(2,2′-bipyridine-κ2 N, N′)dicopper(II)]dinitrate, C42H36Cu2N12O10
  18. Crystal structure of (3,6-di(2-pyridyl)-4-phenylaminopyridazine-κ2N,N′)-bis(2-(p-toluene)pyridinyl-κ2C,N)-iridium(III) hexafluorophosphate –dichloromethane (1/1), C45H37Cl2F6IrN7P
  19. The crystal structure of 2-(2′-carboxybenzyl)benzoic acid, C15H12O5
  20. The crystal structure of dichlorido-[(E)-N′,N″-bis((2E,3E)-3-(hydroxyimino)butan-2-ylidene)-2-((E)-3-(hydroxyimino)butan-2-ylidene)hydrazine-1-carbohydrazonhydrazide-κ 4 N 4]cobalt(II), C13H22N9O3Cl2Co
  21. Crystal structure of (−)-flavesine H, C15H22N2O2
  22. Crystal structure of 3-methoxybenzyl 2-(6-methoxynaphthalen-2-yl)propanoate, C22H22O4
  23. Crystal structure of dicarbonyl(2-oxopyridin-1(2H)-olato-κ 2 O,O)iridium(I), C7H4IrNO4
  24. The crystal structure of 4-(3-(triphenylphosphonio)propyl)piperazin-1-ium dibromide trihydrate, C25H37Br2N2O3P
  25. The crystal structure of ethyl 5,6-dihydroxybenzofuran-3-carboxylate, C11H10O5
  26. Crystal structure of 14-(R)-(2′-cyano-phenoxy)-3,19-diacetyl andrographolide, C31H37NO7
  27. The twinned crystal structure of 10-(4-methyl benzoate)-2,8-diethyl-5,5-difluoro-1,3,7,9-tetramethyl-5H-di-pyrrolo[1,2-c:2′,1′-f] [1,3,2]diazaborinin-4-ium-5-uide, C25H29BF2N2O2
  28. The crystal structure of (9H-thioxanthen-9- ylidene)hydrazine monohydrate, C13H11N2SO0.5
  29. The crystal structure of pyridinium diaqua-{1,2-phenylenebis((carboxylatocarbonyl)amido-κ4 N,N′,O,O′)manganese(III), C15H14MnN3O8
  30. Crystal structure of the hydrogen storage active high entropy phase Tb0.82Sm0.18Ni0.83Co0.17Mg
  31. Crystal structure of diaqua-bis[5-methyl-1-(1H-pyrazol-3-yl)-1H-1,2,3-triazole-4-carboxylato-κ 2 N,O)]manganese(II), C14H16MnN10O6
  32. Crystal structures of diiodido-3-((pyridin-2-ylmethylene)amino)-2-(pyridin-3-yl)-2,3-dihydroquinazolin-4(1H)-one-cadmium(II)
  33. Synthesis and crystal structure of methyl 4-(2-ethoxy-2-oxoethoxy)-3,5-dimethoxybenzoate, C14H18O7
  34. Crystal structure of isoxazolo[4,5-b]pyridin-3-amine, C6H5N3O
  35. Crystal structure of 4-chloro-1-isobutyl-1H-imidazo, C14H14ClN3
  36. The crystal structure of 1,1,1,2,2,2-hexakis(2-methyl-2-phenylpropyl)distannane,C60H78Sn2
  37. The crystal structure of (2,7-dimethoxynaphthalene-1,8-diyl)bis((3-nitrophenyl)methanone), C26H18N2O8
  38. Crystal structure of diaqua-tetra((E)-(RS)-1-(2,4-dichlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)pent-1-en-3-ol-κ 1 N)zinc(II) dinitrate dihydrate, C60H76Cl8N14O14Zn
  39. The crystal structure of diphenyl bis(2-((diphenoxyphosphoryl)amino)ethyl)phosphoramidate monohydrate C40H42N3O10P3
  40. Crystal structure of 4,4′-bis(dibromomethyl)-1,1′-biphenyl, C14H10Br4
  41. Crystal structure of CaPtZn
  42. Crystal structure of 3-chloro-5-(trifluoromethyl)pyridine-2-carboxylic acid, C7H3ClF3NO2
  43. The crystal structure of (3′-(2-bromophenyl)-2-phenyl-[2,2′-bioxiran]-3-yl)(phenyl)methanone, C92H68O12Br4
  44. Crystal structure of ethyl 4-(4-benzylpiperazin-1-yl)benzoate, C20H24N2O2
  45. The crystal structure of bis(selenocyanato-κ1 N)-bis(methanol)-bis((1E,2E)-1,2-bis (1-(pyridin-4-yl)ethylidene)-hydrazine)iron(II) methanol solvate, C34H44FeN10O4Se2
  46. Crystal structure of (E)-1-(5-bromo-2-hydroxyphenyl)-3-(5-(4-methoxyphenoxy)-3-methyl-1-phenyl-1H-pyrazol-4-yl)prop-2-en-1-one, C26H21BrN2O4
  47. The crystal structure of methyl 4-(4-(methylsulfonyl)phenyl)-2-methyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate, C19H21NO5S
  48. Crystal structure of 1′,3′-dihydro-2,2′-spirobi[indene]-1,3-dione, C17H12O2
  49. Crystal structure of (E)-2,2′,3,3′-tetrahydro-[1,1′-biindenylidene]-4,4′-diol, C18H16O2
  50. Crystal structure of di-glycylglycinium squarate dihydrate, C12H22N4O12, at 105 K
  51. Crystal structure of {[(4-fluorophenyl)methyl]triphenylphosphonium}dibromocopper(I), [C25H21FP]+[CuBr2]
  52. Crystal structure of poly[diaqua-bis(μ2-5-((pyridin-4-yl-methyl)amino)benzene-1,3-dicarboxylato-κ 2 N:O)cadmium(II)], C28H26CdN4O10
Downloaded on 8.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2024-0348/html
Scroll to top button