Startseite The crystal structure of (2,7-dimethoxynaphthalene-1,8-diyl)bis((3-nitrophenyl)methanone), C26H18N2O8
Artikel Open Access

The crystal structure of (2,7-dimethoxynaphthalene-1,8-diyl)bis((3-nitrophenyl)methanone), C26H18N2O8

  • Kun Li , Hiroaki Iitsuka , Shinji Ohisa , Takahiro Nishijima , Keiichi Noguchi , Noriyuki Yonezawa und Akiko Okamoto ORCID logo EMAIL logo
Veröffentlicht/Copyright: 26. November 2024

Abstract

C26H18N2O8, triclinic, P1̄ (no. 2), a = 8.41284(15) Å, b = 10.9410(2) Å, c = 12.9659(2) Å, α = 114.567(1)°, β = 97.779(1)°, γ = 91.504(1)°, V = 1070.90(3) Å3, Z = 2, R gt (F) = 0.0382, wR ref(F 2) = 0.1083, T = 193 K.

CCDC no.: 2393117

Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Yellow platelet
Size: 0.45 × 0.30 × 0.10 mm
Wavelength:

μ:
Cu Kα radiation (1.54187 Å)

0.96 mm−1
Diffractometer, scan mode:

θ max, completeness:
Rigaku R-AXIS RAPID, ω

68.2°, 99 %
N(hkl)measured, N(hkl)unique, R int: 19384, 3867, 0.028
Criterion for I obs, N(hkl)gt: I obs > 2σ(I obs), 3171
N(param)refined: 327
Programs: Rigaku, 1 , 2 SIR2004, 3 SHELXL-2019/2, 4 ORTEPIII, 5 PLATON 6
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
O1 0.45365 (13) 0.68012 (11) 0.72846 (9) 0.0431 (3)
O2 0.07361 (14) 0.97874 (12) 1.22782 (10) 0.0488 (3)
O3 0.44838 (12) 0.64216 (11) 0.97527 (9) 0.0402 (3)
O4 0.05123 (12) 0.67224 (11) 1.00083 (9) 0.0423 (3)
O5 −0.12696 (14) 0.52600 (13) 0.57695 (10) 0.0524 (3)
O6 −0.14651 (15) 0.30780 (14) 0.48925 (11) 0.0637 (4)
O7 0.61609 (16) 0.96697 (13) 1.40985 (10) 0.0584 (4)
O8 0.64411 (16) 0.82615 (15) 1.48666 (11) 0.0647 (4)
N1 −0.08781 (16) 0.41493 (15) 0.56830 (11) 0.0443 (3)
N2 0.57945 (17) 0.85930 (15) 1.41309 (12) 0.0464 (3)
C1 0.33025 (16) 0.77742 (15) 0.89023 (12) 0.0331 (3)
C2 0.39378 (17) 0.79232 (16) 0.80222 (13) 0.0360 (3)
C3 0.40065 (18) 0.91637 (17) 0.79456 (14) 0.0416 (4)
H3 0.441687 0.924378 0.732675 0.050*
C4 0.34817 (19) 1.02457 (17) 0.87631 (14) 0.0431 (4)
H4 0.357029 1.109209 0.872356 0.052*
C5 0.22187 (19) 1.12871 (16) 1.04924 (15) 0.0448 (4)
H5 0.228832 1.212129 1.043024 0.054*
C6 0.15542 (19) 1.12208 (16) 1.13696 (15) 0.0451 (4)
H6 0.117468 1.199932 1.191550 0.054*
C7 0.14357 (18) 0.99756 (16) 1.14582 (13) 0.0391 (4)
C8 0.19788 (17) 0.88364 (15) 1.06708 (12) 0.0341 (3)
C9 0.26919 (16) 0.88944 (15) 0.97505 (12) 0.0334 (3)
C10 0.28054 (18) 1.01595 (15) 0.96750 (13) 0.0391 (4)
C11 0.5194 (2) 0.68806 (19) 0.63527 (14) 0.0479 (4)
H11A 0.434389 0.704684 0.584261 0.057*
H11B 0.563567 0.602875 0.592206 0.057*
H11C 0.605259 0.762085 0.665376 0.057*
C12 0.0197 (2) 1.09272 (18) 1.31563 (15) 0.0541 (5)
H12A −0.028896 1.063599 1.367233 0.065*
H12B −0.060569 1.133084 1.280306 0.065*
H12C 0.111454 1.159564 1.359502 0.065*
C13 0.34910 (17) 0.64623 (15) 0.89961 (12) 0.0323 (3)
C14 0.24392 (17) 0.52227 (15) 0.81708 (12) 0.0327 (3)
C15 0.13116 (17) 0.52594 (15) 0.72992 (12) 0.0343 (3)
H15 0.120703 0.606706 0.719855 0.041*
C16 0.03463 (17) 0.40936 (16) 0.65824 (12) 0.0366 (3)
C17 0.04471 (19) 0.29023 (16) 0.67005 (14) 0.0426 (4)
H17 −0.022400 0.211302 0.618682 0.051*
C18 0.1552 (2) 0.28860 (16) 0.75875 (14) 0.0435 (4)
H18 0.162738 0.208199 0.769711 0.052*
C19 0.25503 (19) 0.40359 (16) 0.83169 (13) 0.0382 (3)
H19 0.331291 0.401351 0.891881 0.046*
C20 0.15724 (16) 0.75151 (15) 1.07253 (12) 0.0336 (3)
C21 0.24974 (17) 0.71621 (15) 1.16148 (12) 0.0334 (3)
C22 0.36556 (17) 0.80728 (16) 1.24840 (12) 0.0352 (3)
H22 0.383797 0.896896 1.255974 0.042*
C23 0.45372 (18) 0.76522 (16) 1.32363 (13) 0.0377 (3)
C24 0.43233 (19) 0.63490 (17) 1.31442 (13) 0.0415 (4)
H24 0.495120 0.608074 1.366768 0.050*
C25 0.3174 (2) 0.54474 (16) 1.22720 (14) 0.0427 (4)
H25 0.300940 0.454799 1.219208 0.051*
C26 0.22621 (19) 0.58480 (16) 1.15151 (13) 0.0385 (4)
H26 0.146958 0.522317 1.092292 0.046*

1 Source of materials

Title compound was prepared via electrophilic aromatic substitution of 2,7-dimethoxynaphthalene with reference to literature. 7 To a solution of 3-nitrobenzoyl chloride (223 mg, 1.2 mmol) in 1,2-dichloroethane (0.5 mL), TiCl4 (341 mg, 1.8 mmol) was added and stirred at 60 °C for 30 min. To the resulting solution was added 2,7-dimethoxynaphthalene (37.6 mg, 0.20 mmol) and stirred at 60 °C for 3 h. The reaction mixture was poured into iced water (30 mL) and the obtained mixture was extracted with chloroform for five times (20 mL × 5). The combined extracts were washed with 2 M NaOH aq. for three times (20 mL × 3) to separate the residual aroyl chloride and the organic layer was dried over anhydrous magnesium sulfate. The solvent was removed under reduced pressure followed by washing with acetone to give a cake of the crude material (87 % yield). Yellow platelet single crystals were obtained by crystallization from acetone (14 %). 1H NMR δ (300 MHz, CDCl3): 3.71 (6H, s), 7.26 (2H, d, J = 9.0 Hz), 7.62 (2H, dd, J = 7.8, 7.8 Hz), 8.06 (2H, d, J = 9.0 Hz), 8.07 (2H, d (broad), J = 8.1 Hz), 8.41 (2H, d (broad), J = 9.3 Hz), 8.53 (2H, dd, J = 1.8, 1.8 Hz) ppm. 13C NMR δ (125 MHz, CDCl3): 56.48, 111.26, 119.43, 124.06, 125.68, 127.21, 129.35, 133.52, 134.63, 138.75, 140.20, 148.78, 157.15, 196.10 ppm. IR (KBr): 1672 (C=O), 1614, 1530, 1512 (Ar, naphthalene), 1350 (N=O), 1266 (O–Me) cm−1. Elemental analysis: Calcd. for C26H18N2O8: C, 64.20 %; H, 3.73 % found: C, 64.17 %; H, 3.73 %. m.p. = 292–294 °C.

2 Experimental details

All H atoms were found in a difference map and were subsequently refined as riding atoms, with C–H = 0.95 (aromatic) and 0.98 (methyl) Å, and with U iso (H) = 1.2U eq (C).

3 Comment

Understanding the nature and effectiveness of non-covalent bonding interactions in solid organic molecular substances have gained profound recognition from wide range of research fields, pharmaceutical development and manufacturing, 8 crystal structure prediction, 9 and crystal engineering. 10 Since the intramolecular conjugation plane formation of aromatic rings is extremely hindered, crystals of compounds of non-coplanarly accumulated aromatic rings can be expected to reveal distinguished contributions of rather weak non-covalent bonding interactions 11 other than π···π stacking interactions or classical hydrogen bonds as spatial structure determining factors.

In the molecular structure of the title compound, the benzene rings of the 3-nitrobenzoyl groups at the 1,8-positions are twisted away from the naphthalene ring (see the Figure). Two 3-nitrobenzoyl groups are situated in anti-orientation against the naphthalene ring. On the other hand, the two benzene rings are situated in an almost parallel manner. The dihedral angles between the benzene rings of the 3-nitrobenzoyl groups and the naphthalene ring system are 72.41(6)° [C14–C19 ring, C9–C1–C13–O3 torsion angle = 67.25(19)°] and 71.88(6)° [C21–C26 ring, C9–C8–C20–O4 torsion angle = 67.17(19)°], respectively. The dihedral angle between the best planes of the two benzene rings is 1.18(7)°. The nitro groups are bound to the benzene rings in a twisted manner [dihedral angles between bridging NO2 plane and benzene ring: O5–O6–N1–C16 plane and C1–C19 ring = 18.67(9)°; O7–O8–N2–C23 plane and C21–C26 ring = 10.11(9)°]. On the other hand, the carbonyl moieties are almost coplanar against the benzene rings [O3–C13–C14–C15 torsion angle = 179.49(14)°; O4–C20–C21–C22 torsion angle = 176.42(14)°]. In the crystal packing, five types of centrosymmetric dimeric aggregations connected by non-covalent bonding interactions are observed: type I is formed by three types of π···π stacking interactions between the naphthalene rings [Cg1···Cg5, 3.5068(8) Å (slippage 0.807 Å), Cg1···Cg1, 3.6337(9) Å (slippage 1.286 Å), and Cg1···Cg2, 3.7931(9) Å (slippage 1.633 Å); Cg1 = C1–C2–C3–C4–C10–C9 ring, Cg5=C1–C2–C3–C4–C10–C5–C6–C7–C8–C9 ring, Cg2 = C5–C6–C7–C8–C9–C10 ring] and (naphthalene)C–H···O=N non-classical hydrogen bond [H3···O7, 2.58 Å](symmetry code: 1−x, 2−y, 2−z); type II is formed by π···π stacking interaction between the naphthalene rings [Cg2···Cg2, 3.6383(9) Å (slippage 0.958 Å)] and (methoxy) C–H···π (naphthalene) non-classical hydrogen bond [H12B···Cg1, 2.83 Å] (symmetry code: −x, 2−y, 2−z); type III is formed by (benzene)C–H···O=C non-classical hydrogen bond [H26···O4, 2.43 Å] (symmetry code: −x, 1−y, 2−z); type IV is formed by (benzene)C–H···O=C and N=O···π(benzene) non-classical hydrogen bonds [H19···O3, 2.55 Å; O8···Cg3, 3.7376(15) Å; Cg3 = C14–C19 ring] (symmetry code: 1−x, 1−y, 2−z); type V is formed by (methoxy) C–H···O=N non-classical hydrogen bond [H11A···O6, 2.46 Å] (symmetry code: −x, 1−y, 1−z). Centrosymmetric dimeric aggregations in types I and II are bult up with π···π stacking between naphthalene rings, whereas those in types III, IV, and V include non-classical hydrogen bonds. Interactions involving nitro groups assist both π···π stacking and C–H···O=C non-classical hydrogen bonds as shown in types I and IV.

The authors reported the crystal structure of the homologous compound having mono(1-aroylated) structure, (2,7-dimethoxynaphthalen-1-yl)(3-nitrophenyl)methanone (space group P21/n, Z = 4). 12 The monoaroylated homologue shows similar spatial situation of the aroyl group on naphthalene ring [dihedral angle between benzene ring and naphthalene ring: 69.59(5)°] with the title compound. In the crystal of the monoaroylated homologue, (benzene)C–H···O=N non-classical hydrogen bond (2.37 Å) and weak (naphthalene)C–H···O=C interactions (2.60 Å) link the molecules in translational relationship (symmetry code: x−1, y, z) along a-axis. The carbonyl group is connected intramolecularly to C–H hydrogen atom at 8-position of the naphthalene ring (C–H···O=C, 2.56 Å). Consequence of this, the nitro group plays a role to interact with the neighbouring molecule solely. On the other hand, the dual 3-nitrobenzoyl groups at the 1,8-positions on the naphthalene ring of the title compound can be used for non-covalent bonding interactions with the naphthalene ring and pairs of nitro groups, carbonyl groups, and benzene rings intermolecularly. The symmetrical arrangements of the pairs of these functional groups afford centrosymmetric dimeric aggregation structures via complementary non-covalent bonding interactions in multi-directions evenly well. As the 1,8-diaroylnaphthalene (peri-aroylnaphthalene) compounds generally have characteristic molecular structures in which aromatic rings of the molecules are situated non-coplanarly and the dihedral angles between the arene and naphthalene rings have satisfactory room to adjust the conformation of the molecule and the contact shape minutely. So the title compound, one of the peri-aroylnaphthalene compounds, can intermolecularly arrange the π···π stackings of arene rings and non-classical hydrogen bondings between Csp3–H hydrogen atoms and aromatic π-systems/nitrogen atoms or Csp2–H hydrogen atoms and oxygen/nitrogen atoms most densely to achieve highly effective centrosymmetrical intermolecular network of non-covalent bonding interactions. This structural advantage of the title compound probably enables highly raised molecular proximity compared to the monoaroylated homologue (crystalline density 1.508 g cm−3 for the title compound [P1̄]; 1.39 g cm−3 for the monoaroylated homologue [P21/n]).


Corresponding author: Akiko Okamoto, Department of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture and Technology, 2-24-16 Naka-machi, Koganei, Tokyo, Japan, E-mail:

Acknowledgments

We gratefully acknowledge support by Tokyo Ohka Foundation for The Promotion of Science and Technology for financial support (Grant Number 246089).

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: Tokyo Ohka Foundation for The Promotion of Science and Technology for financial support (Grant Number 246089).

  3. Conflict of interest: The authors declare no conflicts of interest regarding this article.

References

1. Rigaku. PROCESS–AUTO; Rigaku Corporation: Tokyo, Japan, 1998.Suche in Google Scholar

2. Rigaku. CrystalStructure; Rigaku Corporation: Tokyo, Japan, 2010.Suche in Google Scholar

3. Burla, M. C.; Caliandro, R.; Camalli, M.; Carrozzini, B.; Cascarano, G. L.; De Caro, L.; Giacovazzo, C.; Polidori, G.; Spagna, R. SIR2004: An Improved Tool for Crystal Structure Determination and Refinement. J. Appl. Crystallogr. 2005, 38, 381–388; https://doi.org/10.1107/s002188980403225x.Suche in Google Scholar

4. Sheldrick, G. M. Crystal Structure Refinement with Shelxl. Acta Crystallogr. 2015, C71 (1), 3–8; https://doi.org/10.1107/s2053229614024218.Suche in Google Scholar

5. Burnett, M. N.; Johnson, C. K. ORTEPIII. Report ORNL-6895; Oak Ridgeational Laboratory: Tennessee, USA, 1996.Suche in Google Scholar

6. Spek, A. L. Structure Validation in Chemical Crystallography. Acta Crystallogr. 2009, D65, 148–155; https://doi.org/10.1107/s090744490804362x.Suche in Google Scholar

7. Okamoto, A.; Yonezawa, N. Unique and Specific Reaction Behavior and Characteristic Spatial Organization of Non-coplanarly Aromatic-Ring-Accumulated Molecular Compounds. J. Synth. Org. Chem. Jpn. 2015, 73, 339–360; https://doi.org/10.5059/yukigoseikyokaishi.73.339.Suche in Google Scholar

8. Tabora, J. E.; Brueggemeier, S.; Sweeney, J.; Lovette, M. Introduction to Chiral Crystallization in Pharmaceutical Development and Manufacturing; John Wiley & Sons, Inc: Hoboken, NJ, United States, 2019; pp. 569–589.10.1002/9781119600800.ch25Suche in Google Scholar

9. Thakur, T. S.; Dubey, R.; Desiraju, G. R. Crystal Structure and Prediction. Annu. Rev. Phys. Chem. 2015, 66, 21–42; https://doi.org/10.1146/annurev-physchem-040214-121452.Suche in Google Scholar PubMed

10. Nangia, A. Supramolecular Chemistry and Crystal Engineering. J. Chem. Sci. 2010, 122, 295–310; https://doi.org/10.1007/s12039-010-0035-6.Suche in Google Scholar

11. Desiraju, G. R.; Steiner, T. The Weak Hydrogen Bond in Structural Chemistry and Biology; Oxford University Press: Oxford, 1999.Suche in Google Scholar

12. Kataoka, K.; Nishijima, T.; Nagasawa, A.; Okamoto, A.; Yonezawa, N. (2,7-dimethoxynaphthalen-1-yl)((3-nitrophenyl)methanone). Acta Crystallogr. 2010, E66, o2972; https://doi.org/10.1107/s1600536810042819.Suche in Google Scholar

Received: 2024-10-03
Accepted: 2024-10-23
Published Online: 2024-11-26
Published in Print: 2025-02-25

© 2024 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Artikel in diesem Heft

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of the co-crystal 2,4,6-triamino-1,3,5-triazine-1,3-dioxide — acetic acid (1/2) C7H14N6O6
  4. Crystal structure of the dinuclear mercury(II) complex bis(μ2-bromido)-dibromido-bis{1-[(benzotriazol-1-yl)methyl]-1-H-1,3-(2-ethyl-5-methyl-imidazol)-κ1 N} dimercury(II), C26H30N10Hg2Br4
  5. Crystal structure of poly[hexaqua-pentakis(μ4-2,2′-bipyridine-4,4′-dicarboxylato-κ4 O:O′:O″:O‴)-(μ2-2,2′-bipyridine-4,4′-dicarboxylato-κ2 O:O)tetraytterbium(III)] hydrate, C36H26N6O16Yb2
  6. Hydrothermal synthesis and crystal structure of catena-poly[(1,10-phenanthroline-κ 2 N,N′)-bis(μ 2-nitroisophthalato-κ 3 O,O′:O″)nickel(II)], C20H13NiN3O7
  7. Crystal structure of 72,73,75,76-tetrafluoro-25,44-dimethyl-31,33,36,38-tetraoxo-31,32,33,36,37,38-hexahydro-3(2,7)-benzo[lmn][3,8]phenanthrolina-1,5(4,1)-dipyridin-1-iuma-2,4(1,2),7(1,4)-tribenzenacyclooctaphane-11,51-diium hexafluoridophosphate, [C46H28F4N4O4][PF6]2, a dicationic cyclophane
  8. Crystal structure of (E)-2-(4-(1H-imidazol-1-yl)benzylidene)-7-fluoro-3,4-dihydronaphthalen-1(2H)-one, C20H15FN2O
  9. The salt crystal structure of etoricoxib hydrochloride, C18H16Cl2N2O2S
  10. The structure of t-butyl 7-[2-(4-fluorophenyl)-3-phenyl-4-(phenylcarbamoyl)-5-(propan-2-yl)-1H-pyrrol-1-yl]-3,5-dihydroxyheptanoate, C37H43FN2O5
  11. The crystal structure of (μ4-oxo)-tri(μ4-2,2′-bipyridine-6,6′-bis(olato)-κ5 O,O′:N:N′:O″)tetrazinc(II) – methylformamide (1/1), C33H25N7O8Zn4
  12. The co-crystal structure of 4-chlorobenzophenone–salicylhydrazide(1/1), C20H17ClN2O3
  13. Crystal structure of 9-fluoro-4-(6-methoxypyridin-2-yl)-5,6-dihydrobenzo[h]quinazolin-2-amine, C18H15FN4O
  14. The crystal structure of the co-crystal composed of benzhydrazide and 5-aminoisophthalic acid, C8H7NO4⋅C7H8N2O
  15. The cocrystal structure of praziquantel-hesperetin (1/1), C35H38N2O8
  16. Crystal structure of new barium manganese fluorides dihydrates, Ba10Mn2F25·2H2O
  17. The crystal structure of bis[μ2-(3-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)propanoate-κ2O:N)-bis(2,2′-bipyridine-κ2 N, N′)dicopper(II)]dinitrate, C42H36Cu2N12O10
  18. Crystal structure of (3,6-di(2-pyridyl)-4-phenylaminopyridazine-κ2N,N′)-bis(2-(p-toluene)pyridinyl-κ2C,N)-iridium(III) hexafluorophosphate –dichloromethane (1/1), C45H37Cl2F6IrN7P
  19. The crystal structure of 2-(2′-carboxybenzyl)benzoic acid, C15H12O5
  20. The crystal structure of dichlorido-[(E)-N′,N″-bis((2E,3E)-3-(hydroxyimino)butan-2-ylidene)-2-((E)-3-(hydroxyimino)butan-2-ylidene)hydrazine-1-carbohydrazonhydrazide-κ 4 N 4]cobalt(II), C13H22N9O3Cl2Co
  21. Crystal structure of (−)-flavesine H, C15H22N2O2
  22. Crystal structure of 3-methoxybenzyl 2-(6-methoxynaphthalen-2-yl)propanoate, C22H22O4
  23. Crystal structure of dicarbonyl(2-oxopyridin-1(2H)-olato-κ 2 O,O)iridium(I), C7H4IrNO4
  24. The crystal structure of 4-(3-(triphenylphosphonio)propyl)piperazin-1-ium dibromide trihydrate, C25H37Br2N2O3P
  25. The crystal structure of ethyl 5,6-dihydroxybenzofuran-3-carboxylate, C11H10O5
  26. Crystal structure of 14-(R)-(2′-cyano-phenoxy)-3,19-diacetyl andrographolide, C31H37NO7
  27. The twinned crystal structure of 10-(4-methyl benzoate)-2,8-diethyl-5,5-difluoro-1,3,7,9-tetramethyl-5H-di-pyrrolo[1,2-c:2′,1′-f] [1,3,2]diazaborinin-4-ium-5-uide, C25H29BF2N2O2
  28. The crystal structure of (9H-thioxanthen-9- ylidene)hydrazine monohydrate, C13H11N2SO0.5
  29. The crystal structure of pyridinium diaqua-{1,2-phenylenebis((carboxylatocarbonyl)amido-κ4 N,N′,O,O′)manganese(III), C15H14MnN3O8
  30. Crystal structure of the hydrogen storage active high entropy phase Tb0.82Sm0.18Ni0.83Co0.17Mg
  31. Crystal structure of diaqua-bis[5-methyl-1-(1H-pyrazol-3-yl)-1H-1,2,3-triazole-4-carboxylato-κ 2 N,O)]manganese(II), C14H16MnN10O6
  32. Crystal structures of diiodido-3-((pyridin-2-ylmethylene)amino)-2-(pyridin-3-yl)-2,3-dihydroquinazolin-4(1H)-one-cadmium(II)
  33. Synthesis and crystal structure of methyl 4-(2-ethoxy-2-oxoethoxy)-3,5-dimethoxybenzoate, C14H18O7
  34. Crystal structure of isoxazolo[4,5-b]pyridin-3-amine, C6H5N3O
  35. Crystal structure of 4-chloro-1-isobutyl-1H-imidazo, C14H14ClN3
  36. The crystal structure of 1,1,1,2,2,2-hexakis(2-methyl-2-phenylpropyl)distannane,C60H78Sn2
  37. The crystal structure of (2,7-dimethoxynaphthalene-1,8-diyl)bis((3-nitrophenyl)methanone), C26H18N2O8
  38. Crystal structure of diaqua-tetra((E)-(RS)-1-(2,4-dichlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)pent-1-en-3-ol-κ 1 N)zinc(II) dinitrate dihydrate, C60H76Cl8N14O14Zn
  39. The crystal structure of diphenyl bis(2-((diphenoxyphosphoryl)amino)ethyl)phosphoramidate monohydrate C40H42N3O10P3
  40. Crystal structure of 4,4′-bis(dibromomethyl)-1,1′-biphenyl, C14H10Br4
  41. Crystal structure of CaPtZn
  42. Crystal structure of 3-chloro-5-(trifluoromethyl)pyridine-2-carboxylic acid, C7H3ClF3NO2
  43. The crystal structure of (3′-(2-bromophenyl)-2-phenyl-[2,2′-bioxiran]-3-yl)(phenyl)methanone, C92H68O12Br4
  44. Crystal structure of ethyl 4-(4-benzylpiperazin-1-yl)benzoate, C20H24N2O2
  45. The crystal structure of bis(selenocyanato-κ1 N)-bis(methanol)-bis((1E,2E)-1,2-bis (1-(pyridin-4-yl)ethylidene)-hydrazine)iron(II) methanol solvate, C34H44FeN10O4Se2
  46. Crystal structure of (E)-1-(5-bromo-2-hydroxyphenyl)-3-(5-(4-methoxyphenoxy)-3-methyl-1-phenyl-1H-pyrazol-4-yl)prop-2-en-1-one, C26H21BrN2O4
  47. The crystal structure of methyl 4-(4-(methylsulfonyl)phenyl)-2-methyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate, C19H21NO5S
  48. Crystal structure of 1′,3′-dihydro-2,2′-spirobi[indene]-1,3-dione, C17H12O2
  49. Crystal structure of (E)-2,2′,3,3′-tetrahydro-[1,1′-biindenylidene]-4,4′-diol, C18H16O2
  50. Crystal structure of di-glycylglycinium squarate dihydrate, C12H22N4O12, at 105 K
  51. Crystal structure of {[(4-fluorophenyl)methyl]triphenylphosphonium}dibromocopper(I), [C25H21FP]+[CuBr2]
  52. Crystal structure of poly[diaqua-bis(μ2-5-((pyridin-4-yl-methyl)amino)benzene-1,3-dicarboxylato-κ 2 N:O)cadmium(II)], C28H26CdN4O10
Heruntergeladen am 8.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2024-0391/html
Button zum nach oben scrollen