Home Crystal structure of the co-crystal 2,4,6-triamino-1,3,5-triazine-1,3-dioxide — acetic acid (1/2) C7H14N6O6
Article Open Access

Crystal structure of the co-crystal 2,4,6-triamino-1,3,5-triazine-1,3-dioxide — acetic acid (1/2) C7H14N6O6

  • Fei Wang , Cuilian Chen and Zhirong Suo EMAIL logo
Published/Copyright: October 29, 2024

Abstract

C7H14N6O6, monoclinic, C2/c (no. 15), a = 25.647(2) Å, b = 4.8865(4) Å, c = 21.585(2) Å, β = 111.500(6)°, V = 2516.8(4) Å3, Z = 8, R gt(F) = 0.0592, wR ref(F 2) = 0.1631, T = 100 K.

CCDC no.: 2363765

Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Colourless block
Size: 0.26 × 0.24 × 0.21 mm
Wavelength: MoKα radiation (0.71073 Å)
μ: 0.13 mm−1
Diffractometer, scan mode: Bruker APEX-II, φ and ω
θ max, completeness: 26.5°, >99 %
N(hkl)measured, N(hkl)unique, R int: 13491, 2602, 0.094
Criterion for I obs, N(hkl)gt: I obs > 2 σ(I obs), 1,537
N(param)refined: 176
Programs: Bruker, 1 SHELX, 2 , 3 , 4 Olex2 5 , 6 , 7 , 8
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
C1 0.13475 (13) 0.2255 (6) 0.26712 (15) 0.0310 (7)
C2 0.09763 (14) 0.4497 (7) 0.27470 (17) 0.0449 (9)
H2C 0.0598 0.3777 0.2651 0.067*
H2D 0.0961 0.5982 0.2436 0.067*
H2E 0.1127 0.5198 0.3204 0.067*
C3 0.50574 (14) 0.7283 (8) 0.59545 (18) 0.0496 (10)
H3A 0.5111 0.8593 0.5639 0.074*
H3B 0.5400 0.6203 0.6159 0.074*
H3C 0.4974 0.8276 0.6302 0.074*
C4 0.45838 (13) 0.5432 (7) 0.55971 (17) 0.0369 (8)
C5 0.30174 (12) 0.4277 (6) 0.48677 (14) 0.0275 (7)
C6 0.27453 (11) 0.5269 (6) 0.37612 (14) 0.0275 (7)
C7 0.33885 (11) 0.1671 (6) 0.42153 (14) 0.0259 (7)
N1 0.27129 (10) 0.5818 (5) 0.43502 (11) 0.0278 (6)
N2 0.24581 (10) 0.6709 (5) 0.32290 (12) 0.0315 (6)
H2A 0.2241 0.8055 0.3260 0.038*
H2B 0.2483 0.6324 0.2843 0.038*
N3 0.30885 (10) 0.3266 (5) 0.36894 (11) 0.0278 (6)
N4 0.37139 (10) −0.0254 (5) 0.41428 (12) 0.0298 (6)
H4A 0.3907 −0.1282 0.4484 0.036*
H4B 0.3740 −0.0524 0.3752 0.036*
N5 0.33354 (10) 0.2157 (5) 0.48017 (11) 0.0272 (6)
N6 0.30107 (10) 0.4744 (5) 0.54631 (12) 0.0308 (6)
H6A 0.2805 0.6081 0.5524 0.037*
H6B 0.3212 0.3721 0.5802 0.037*
O1 0.12665 (8) 0.1619 (4) 0.20509 (9) 0.0336 (5)
H1 0.1482 0.0332 0.2045 0.050*
O2 0.16918 (9) 0.1101 (4) 0.31503 (10) 0.0361 (6)
O3 0.31334 (8) 0.2802 (4) 0.30871 (9) 0.0301 (5)
O4 0.36441 (8) 0.0641 (4) 0.53383 (9) 0.0335 (5)
O5 0.43091 (9) 0.5609 (4) 0.50011 (11) 0.0386 (6)
O6 0.44865 (10) 0.3552 (5) 0.59789 (11) 0.0445 (6)
H6 0.4219 0.2558 0.5748 0.067*

1 Source of material

2.30 mg (0.01 mmol) TTDO·4H2O (2,4,6-triamino-1,3,5-triazine-1,3-dioxide tetrahydrate) was added to 5 mL of acetic acid stirred until completely dissolved, volatilized in a fume hood, and rod-like crystals were obtained in about 10 days.

2 Experimental details

Hydrogen atoms were placed in their geometrically idealized positions and constrained to ride on their parent atoms.

3 Comment

The cocrystal can regulate its performance by changing the molecular composition and stacking order of the compound while maintaining the original compound structure. It has been widely used in energetic materials, pharmaceuticals, aerospace materials and other fields. In the field of energetic materials, many new energetic explosives have been developed by using cocrystal technology, among which CL-20/TNT 9 and CL-20/HMX 10 have excellent comprehensive properties. TTDO is a new insensitive high explosive, 11 its excellent detonation performance and safety make it have great development potential in military, civil and other fields. 12 TTDO is a typical amphoteric energetic compound with strong nucleophilicity, which is easy to form cocrystal with other compounds. Therefore, this paper systematically explored the self-assembly reaction of TTDO in acid, and found that TTDO would self-assemble with acetic acid to a new cocrystal explosive. 13 , 14

TTDO–acetic acid is a cocrystal explosive formed at a stoichiometric ratio of 1:2. There are hydrogen bond interactions in the crystal structure of the title structure cocrystal, which is beneficial to ensure the stability of the crystal. The strong hydrogen bond interactions are: O1–H1⋯O3, O6–H6⋯O4, N4–H4A⋯O5.


Corresponding author: Zhirong Suo, Southwest University of Science and Technology, Mianyang 621010, P.R. China, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by the PhD Project of Southwest University of Science and Technology (No. 22zx7134).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. BRUKER. S AINT. Version 8.23B; Bruker AXS Inc.: Madison, Wisconsin, USA, 2013.Search in Google Scholar

2. Kratzert, D.; Julian, J. J.; Krossing, I. DSR: Enhanced Modelling and Refinement of Disordered Structures with SHELXL. J. Appl. Crystallogr. 2015, 48, 933–938, https://doi.org/10.1107/s1600576715005580.Search in Google Scholar PubMed PubMed Central

3. Sheldrick, G. SHELXT: Integrating Space Group Determination and Structure Solution. Acta Crystallogr. 2014, A70, C1437; https://doi.org/10.1107/s2053273314085623.Search in Google Scholar

4. Weng, N. G. Some Strategies for the Refinement of Disordered Structures with the SHELXL-97 Refinement Program. Chinese J. Chem. 2005, 24, 1425–1439.Search in Google Scholar

5. Dolomanov, O.; Pushmann, H. Olex2: A Quick Prototyping Framework for Crystallographers. Acta Crystallogr. 2007, A63, S74–S75.10.1107/S0108767307098388Search in Google Scholar

6. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2 News. Acta Crystallogr. 2009, A65, S313; https://doi.org/10.1107/s0108767309093349.Search in Google Scholar

7. Dolomanov, O. V.; Bourhis, L.; Puschmann, H.; Guildea, R.; Howard, J. A. K. OLEX2: A Portable Molecular Graphics Toolset for Crystallography. Acta Crystallogr. 2008, A64, C219; https://doi.org/10.1107/s0108767308092970.Search in Google Scholar

8. Puschmann, H.; Dolomanov, O. Olex2: Making Small-Molecule Crystallography Accessible to Everyone. Acta Crystallogr. 2007, A63, S97; https://doi.org/10.1107/s0108767307097863.Search in Google Scholar

9. Bolton, O.; Matzger, A. J. Improved Stability and Smart-Material Functionality Realized in an Energetic Cocrystal. Angew. Chem. 2011, 123, 9122–9125; https://doi.org/10.1002/ange.201104164.Search in Google Scholar

10. Feng, Y.; Deng, M.; Song, S.; Chen, S.; Zhang, Q.; Jean’ne, M. S. Construction of an Unusual Two-Dimensional Layered Structure for Fused-Ring Energetic Materials with High Energy and Good Stability. Engineering Prc 2020, 6, 1006–1012; https://doi.org/10.1016/j.eng.2020.01.013.Search in Google Scholar

11. Feng, Z.; Chen, S.; Li, Y.; Ma, H.; Xu, K. Amphoteric Ionization and Cocrystallization Synergistically Applied to Two Melamine-Based N-Oxides: Achieving Regulation for the Comprehensive Performance of Energetic Materials. Cryst. Growth Des. 2021, 22, 513–523; https://doi.org/10.1021/acs.cgd.1c01112.Search in Google Scholar

12. Song, S.; Wang, Y.; He, W.; Wang, K.; Yan, M.; Yan, Q.; Zhang, Q. Melamine N-Oxide Based Self-Assembled Energetic Materials with Balanced Energy & Sensitivity and Enhanced Combustion Behavior. Chem. Eng. J. 2020, 395, 125114; https://doi.org/10.1016/j.cej.2020.125114.Search in Google Scholar

13. Feng, Z.; Zhang, Y.; Li, Y.; Xu, K. Adjacent N → O and C–NH2 Groups – A Highly Efficient Amphoteric Structure for Energetic Materials Resulting from Tautomerization Proved by Crystal Engineering. CrystEngComm 2021, 23, 1544–1549, https://doi.org/10.1039/d0ce01427c.Search in Google Scholar

14. Christabel, M.; Zhou, R.; Yan, T.; Zhang, H.; Ding, L.; Wang, R. Crystal Structure of C12H15N7O3. Z. Kristallogr. - N. Cryst. Struct. 2022, 237, 853–855; https://doi.org/10.1515/ncrs-2022-0261.Search in Google Scholar

Received: 2024-06-19
Accepted: 2024-10-18
Published Online: 2024-10-29
Published in Print: 2025-02-25

© 2024 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of the co-crystal 2,4,6-triamino-1,3,5-triazine-1,3-dioxide — acetic acid (1/2) C7H14N6O6
  4. Crystal structure of the dinuclear mercury(II) complex bis(μ2-bromido)-dibromido-bis{1-[(benzotriazol-1-yl)methyl]-1-H-1,3-(2-ethyl-5-methyl-imidazol)-κ1 N} dimercury(II), C26H30N10Hg2Br4
  5. Crystal structure of poly[hexaqua-pentakis(μ4-2,2′-bipyridine-4,4′-dicarboxylato-κ4 O:O′:O″:O‴)-(μ2-2,2′-bipyridine-4,4′-dicarboxylato-κ2 O:O)tetraytterbium(III)] hydrate, C36H26N6O16Yb2
  6. Hydrothermal synthesis and crystal structure of catena-poly[(1,10-phenanthroline-κ 2 N,N′)-bis(μ 2-nitroisophthalato-κ 3 O,O′:O″)nickel(II)], C20H13NiN3O7
  7. Crystal structure of 72,73,75,76-tetrafluoro-25,44-dimethyl-31,33,36,38-tetraoxo-31,32,33,36,37,38-hexahydro-3(2,7)-benzo[lmn][3,8]phenanthrolina-1,5(4,1)-dipyridin-1-iuma-2,4(1,2),7(1,4)-tribenzenacyclooctaphane-11,51-diium hexafluoridophosphate, [C46H28F4N4O4][PF6]2, a dicationic cyclophane
  8. Crystal structure of (E)-2-(4-(1H-imidazol-1-yl)benzylidene)-7-fluoro-3,4-dihydronaphthalen-1(2H)-one, C20H15FN2O
  9. The salt crystal structure of etoricoxib hydrochloride, C18H16Cl2N2O2S
  10. The structure of t-butyl 7-[2-(4-fluorophenyl)-3-phenyl-4-(phenylcarbamoyl)-5-(propan-2-yl)-1H-pyrrol-1-yl]-3,5-dihydroxyheptanoate, C37H43FN2O5
  11. The crystal structure of (μ4-oxo)-tri(μ4-2,2′-bipyridine-6,6′-bis(olato)-κ5 O,O′:N:N′:O″)tetrazinc(II) – methylformamide (1/1), C33H25N7O8Zn4
  12. The co-crystal structure of 4-chlorobenzophenone–salicylhydrazide(1/1), C20H17ClN2O3
  13. Crystal structure of 9-fluoro-4-(6-methoxypyridin-2-yl)-5,6-dihydrobenzo[h]quinazolin-2-amine, C18H15FN4O
  14. The crystal structure of the co-crystal composed of benzhydrazide and 5-aminoisophthalic acid, C8H7NO4⋅C7H8N2O
  15. The cocrystal structure of praziquantel-hesperetin (1/1), C35H38N2O8
  16. Crystal structure of new barium manganese fluorides dihydrates, Ba10Mn2F25·2H2O
  17. The crystal structure of bis[μ2-(3-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)propanoate-κ2O:N)-bis(2,2′-bipyridine-κ2 N, N′)dicopper(II)]dinitrate, C42H36Cu2N12O10
  18. Crystal structure of (3,6-di(2-pyridyl)-4-phenylaminopyridazine-κ2N,N′)-bis(2-(p-toluene)pyridinyl-κ2C,N)-iridium(III) hexafluorophosphate –dichloromethane (1/1), C45H37Cl2F6IrN7P
  19. The crystal structure of 2-(2′-carboxybenzyl)benzoic acid, C15H12O5
  20. The crystal structure of dichlorido-[(E)-N′,N″-bis((2E,3E)-3-(hydroxyimino)butan-2-ylidene)-2-((E)-3-(hydroxyimino)butan-2-ylidene)hydrazine-1-carbohydrazonhydrazide-κ 4 N 4]cobalt(II), C13H22N9O3Cl2Co
  21. Crystal structure of (−)-flavesine H, C15H22N2O2
  22. Crystal structure of 3-methoxybenzyl 2-(6-methoxynaphthalen-2-yl)propanoate, C22H22O4
  23. Crystal structure of dicarbonyl(2-oxopyridin-1(2H)-olato-κ 2 O,O)iridium(I), C7H4IrNO4
  24. The crystal structure of 4-(3-(triphenylphosphonio)propyl)piperazin-1-ium dibromide trihydrate, C25H37Br2N2O3P
  25. The crystal structure of ethyl 5,6-dihydroxybenzofuran-3-carboxylate, C11H10O5
  26. Crystal structure of 14-(R)-(2′-cyano-phenoxy)-3,19-diacetyl andrographolide, C31H37NO7
  27. The twinned crystal structure of 10-(4-methyl benzoate)-2,8-diethyl-5,5-difluoro-1,3,7,9-tetramethyl-5H-di-pyrrolo[1,2-c:2′,1′-f] [1,3,2]diazaborinin-4-ium-5-uide, C25H29BF2N2O2
  28. The crystal structure of (9H-thioxanthen-9- ylidene)hydrazine monohydrate, C13H11N2SO0.5
  29. The crystal structure of pyridinium diaqua-{1,2-phenylenebis((carboxylatocarbonyl)amido-κ4 N,N′,O,O′)manganese(III), C15H14MnN3O8
  30. Crystal structure of the hydrogen storage active high entropy phase Tb0.82Sm0.18Ni0.83Co0.17Mg
  31. Crystal structure of diaqua-bis[5-methyl-1-(1H-pyrazol-3-yl)-1H-1,2,3-triazole-4-carboxylato-κ 2 N,O)]manganese(II), C14H16MnN10O6
  32. Crystal structures of diiodido-3-((pyridin-2-ylmethylene)amino)-2-(pyridin-3-yl)-2,3-dihydroquinazolin-4(1H)-one-cadmium(II)
  33. Synthesis and crystal structure of methyl 4-(2-ethoxy-2-oxoethoxy)-3,5-dimethoxybenzoate, C14H18O7
  34. Crystal structure of isoxazolo[4,5-b]pyridin-3-amine, C6H5N3O
  35. Crystal structure of 4-chloro-1-isobutyl-1H-imidazo, C14H14ClN3
  36. The crystal structure of 1,1,1,2,2,2-hexakis(2-methyl-2-phenylpropyl)distannane,C60H78Sn2
  37. The crystal structure of (2,7-dimethoxynaphthalene-1,8-diyl)bis((3-nitrophenyl)methanone), C26H18N2O8
  38. Crystal structure of diaqua-tetra((E)-(RS)-1-(2,4-dichlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)pent-1-en-3-ol-κ 1 N)zinc(II) dinitrate dihydrate, C60H76Cl8N14O14Zn
  39. The crystal structure of diphenyl bis(2-((diphenoxyphosphoryl)amino)ethyl)phosphoramidate monohydrate C40H42N3O10P3
  40. Crystal structure of 4,4′-bis(dibromomethyl)-1,1′-biphenyl, C14H10Br4
  41. Crystal structure of CaPtZn
  42. Crystal structure of 3-chloro-5-(trifluoromethyl)pyridine-2-carboxylic acid, C7H3ClF3NO2
  43. The crystal structure of (3′-(2-bromophenyl)-2-phenyl-[2,2′-bioxiran]-3-yl)(phenyl)methanone, C92H68O12Br4
  44. Crystal structure of ethyl 4-(4-benzylpiperazin-1-yl)benzoate, C20H24N2O2
  45. The crystal structure of bis(selenocyanato-κ1 N)-bis(methanol)-bis((1E,2E)-1,2-bis (1-(pyridin-4-yl)ethylidene)-hydrazine)iron(II) methanol solvate, C34H44FeN10O4Se2
  46. Crystal structure of (E)-1-(5-bromo-2-hydroxyphenyl)-3-(5-(4-methoxyphenoxy)-3-methyl-1-phenyl-1H-pyrazol-4-yl)prop-2-en-1-one, C26H21BrN2O4
  47. The crystal structure of methyl 4-(4-(methylsulfonyl)phenyl)-2-methyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate, C19H21NO5S
  48. Crystal structure of 1′,3′-dihydro-2,2′-spirobi[indene]-1,3-dione, C17H12O2
  49. Crystal structure of (E)-2,2′,3,3′-tetrahydro-[1,1′-biindenylidene]-4,4′-diol, C18H16O2
  50. Crystal structure of di-glycylglycinium squarate dihydrate, C12H22N4O12, at 105 K
  51. Crystal structure of {[(4-fluorophenyl)methyl]triphenylphosphonium}dibromocopper(I), [C25H21FP]+[CuBr2]
  52. Crystal structure of poly[diaqua-bis(μ2-5-((pyridin-4-yl-methyl)amino)benzene-1,3-dicarboxylato-κ 2 N:O)cadmium(II)], C28H26CdN4O10
Downloaded on 15.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2024-0255/html
Scroll to top button