Home The crystal structure of (3′-(2-bromophenyl)-2-phenyl-[2,2′-bioxiran]-3-yl)(phenyl)methanone, C92H68O12Br4
Article Open Access

The crystal structure of (3′-(2-bromophenyl)-2-phenyl-[2,2′-bioxiran]-3-yl)(phenyl)methanone, C92H68O12Br4

  • Chengjuan Li , Yingjie Li , Aoqi Wang , Shiqi Xi and Yalin Zhang ORCID logo EMAIL logo
Published/Copyright: December 23, 2024

Abstract

C92H68O12Br4, monoclinic, P21/c (no. 14), a = 12.3604(11) Å, b = 9.8658(9) Å, c = 15.2010(13) Å, β = 93.773(2), V = 1849.7(3) Å3, Z = 4, R gt (F) = 0.0697, wR ref (F 2) = 0.1790, T = 298.15 K.

CCDC no.: 2403283

Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: White bulk
Size: 0.21 × 0.20 × 0.18 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 2.24 mm−1
Diffractometer, scan mode: Bruker SMART APEX II, φ and ω
θ max, completeness: 24.7°, 91 %
N(hkl)measured , N(hkl)unique, R int: 5,527, 3,044, 0.067
Criterion for I obs, N(hkl)gt: I obs > 21 σ(I obs), 1,841
N(param)refined: 244
Programs: Bruker, 1 SHELX 2
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
Br1 0.53846 (5) 0.64349 (8) 0.07687 (6) 0.0564 (3)
C1 0.8868 (4) 0.4611 (6) 0.1432 (3) 0.0236 (13)
C2 0.9075 (5) 0.3681 (7) 0.2958 (4) 0.0374 (16)
H2 0.9810 0.3889 0.2975 0.045*
C3 0.8649 (6) 0.3131 (7) 0.3681 (4) 0.0443 (18)
H3 0.9096 0.2969 0.4187 0.053*
C4 0.7570 (6) 0.2816 (7) 0.3671 (5) 0.0477 (18)
H4 0.7275 0.2450 0.4166 0.057*
C5 0.6925 (6) 0.3054 (7) 0.2905 (5) 0.0502 (19)
H5 0.6192 0.2837 0.2880 0.060*
C6 0.7362 (5) 0.3598 (7) 0.2200 (4) 0.0385 (16)
H6 0.6919 0.3751 0.1691 0.046*
C7 0.8433 (4) 0.3931 (6) 0.2207 (4) 0.0253 (14)
C8 0.8663 (4) 0.6099 (6) 0.1384 (4) 0.0257 (14)
H8 0.8754 0.6596 0.1942 0.031*
C9 0.7895 (4) 0.6676 (6) 0.0712 (4) 0.0261 (14)
H9 0.7507 0.6020 0.0323 0.031*
C10 0.7337 (4) 0.7979 (6) 0.0826 (4) 0.0259 (14)
C11 0.6218 (4) 0.8039 (6) 0.0842 (4) 0.0308 (15)
C12 0.5681 (5) 0.9251 (8) 0.0893 (4) 0.0457 (18)
H12 0.4928 0.9272 0.0888 0.055*
C13 0.6265 (5) 1.0425 (8) 0.0949 (4) 0.0471 (18)
H13 0.5909 1.1248 0.1005 0.057*
C14 0.7376 (5) 1.0401 (7) 0.0924 (4) 0.0431 (17)
H14 0.7769 1.1206 0.0943 0.052*
C15 0.7895 (5) 0.9184 (7) 0.0871 (4) 0.0323 (15)
H15 0.8646 0.9171 0.0864 0.039*
C16 0.9812 (5) 0.4088 (7) 0.0979 (4) 0.0315 (15)
H16 1.0249 0.4772 0.0698 0.038*
C17 1.0385 (5) 0.2815 (7) 0.1244 (4) 0.0331 (15)
C18 1.1570 (4) 0.2941 (6) 0.1452 (4) 0.0266 (14)
C19 1.2050 (5) 0.4154 (7) 0.1677 (4) 0.0410 (17)
H19 1.1625 0.4925 0.1726 0.049*
C20 1.3157 (6) 0.4236 (9) 0.1828 (5) 0.058 (2)
H20 1.3481 0.5065 0.1972 0.070*
C21 1.3781 (6) 0.3099 (9) 0.1769 (5) 0.058 (2)
H21 1.4529 0.3157 0.1872 0.069*
C22 1.3310 (6) 0.1880 (8) 0.1559 (5) 0.049 (2)
H22 1.3737 0.1107 0.1526 0.059*
C23 1.2211 (5) 0.1795 (7) 0.1396 (4) 0.0391 (16)
H23 1.1893 0.0965 0.1247 0.047*
O1 0.9033 (3) 0.6769 (4) 0.0626 (3) 0.0345 (11)
O2 0.8720 (3) 0.3927 (4) 0.0607 (3) 0.0342 (11)
O3 0.9932 (4) 0.1748 (5) 0.1261 (4) 0.0568 (14)

1 Source of materials

2–Bromoacetophenone (0.8 mmol), 2-bromobenzaldehyde (0.4 mmol) and NaHCO3 (0.6 mmol) were successively added to 10 mL water in a 25 mL flask. The mixture was stirred at room temperature for 6 h and then concentrated in vacuo. The residue was purified through column chromatography on silica gel to give the title compound. The crystals were obtained (yield: 37 %) by dissolving the title compound (0.02 g) in ethyl acetate (2 mL) and evaporating slowly at room temperature for about 1 day.

2 Experimental details

All hydrogen atomic positions were taken from a difference Fourier map. They were refined with variable isotropic displacement parameters. Their U iso values were set to 1.2U eq (C, of benzene ring) of the parent atoms, respectively. All the H atoms were refined as riding on their parent atom.

3 Comment

Catalysis is one of the fastest-growing and most crucial areas in organic synthetic and industrial chemistry, where nearly 90 % of new chemicals are produced via the important catalytic reactions. 3 In recent years, alkali catalysis, photocatalysis and electrocatalysis have developed rapidly and lots of excellent results have been reported successively in these fields. 4 , 5 As a typical class of base-catalyzed reactions, Darzens reaction is an exceptionally efficient method for generating new stereogenic centers with high diastereoselectivity. 6 , 7 This reaction is of particular significance for the synthesis of epoxy carbonyls and analogous compounds, and is thus regarded as one of the most pivotal C–C bond forming transformations in synthetic organic chemistry. Epoxides are important functional groups in organic synthesis, acting as both as targets and as intermediates, which could produce bifunctional compounds through nucleophilic attack. Particularly, the field of epoxy carbonyl chemistry has seen substantial advancements over recent decades. 8 , 9 Nevertheless, there is limited works involving epoxy componds with two carbonyl groups. 10 , 11 Based on the above results, the compound of (3′-(2-bromophenyl)-2-phenyl-[2,2′-bioxiran]-3-yl)(phenyl)methanone was synthesized and its detailed crystal structural analysis was presented as follows. 12 , 13

The asymmetric unit contains one molecule of the title compound. The bond lengths of Br1–C11, O1–C8 and C7–C6 are 1.888(6) Å, 1.430(7) Å, 1.364(8) Å, respectively. The bond angle of C9–O1–C8 and C1–O2–C16 is 61.7(3), 62.5(3), respectively, and the bond lengths and bond angles of the title molecule are within a reasonable range. 14 , 15 , 16 In addition, the bond angles in the phenyl ring is in the range of 117.4(6)–121.7(6), and the bond angle at three membered ring (C8/O1/C9) substitutions site is the smallest case, indicating that the substitution on the benzene ring may reduce the bond angle. The dihedral angle between the C2\C3\C4\C5\C6\C7 plane and the C10\C11\C12\C13\C14\C15 plane is 74.5°, and the dihedral angle between the C10\C11\C12\C13\C14\C15 ring plane and the C18\C19\C20\C21\C22\C23 plane is 12.0°.


Corresponding author: Yalin Zhang, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, Shandong, China, E-mail:

Funding source: Natural Science Foundation of Shandong Province, China

Award Identifier / Grant number: (No, ZR2021QB127)

Funding source: the Key Projects of Dongying City School Cooperation Funds

Award Identifier / Grant number: (No. SXHZ-2023-02-15)

Funding source: the Entrepreneurship Training Program for College Students of Liaocheng University

Award Identifier / Grant number: (CXCY089)

  1. Conflict of interest: The authors declare no conflicts of interest regarding this article.

  2. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  3. Research funding: Natural Science Foundation of Shandong Province, China (No. ZR2021QB127),the Key Projects of Dongying City School Cooperation Funds (No. SXHZ-2023-02-15) and the Entrepreneurship Training Program for College Students of Liaocheng University (CXCY089).

References

1. Bruker Apex2, Saint and Sadabs; Bruker AXS Inc.: Madison, Wisconsin, USA, 2004.Search in Google Scholar

2. Sheldrick, G. M. Crystal Structure Refinement with Shelxl. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

3. Lim, J.; Lee, J.; Wang, Y.; Gauriot, N.; Sebastian, E.; Chhowalla, M.; Schnedermann, C.; Rao, A. Photoredox Phase Engineering of Transition Metal Dichalcogenides. Nature 2024, 633, 83–89; https://doi.org/10.1038/s41586-024-07872-5.Search in Google Scholar PubMed PubMed Central

4. Huang, X.; Liu, S.; Liu, G.; Tao, Y.; Wang, C.; Zhang, Y.; Li, Z.; Wang, H.; Zhou, Z.; Shen, G.; Xue, Z.; Sun, D. An Unprecedented 2-fold Interpenetrated Lvt Open Framework Built from Zn6 Ring Seamed Trivacant Polyoxotungstates Used for Photocatalytic Synthesis of Pyridine Derivatives. Appl. Catal., B 2023, 323, 122134; https://doi.org/10.1016/j.apcatb.2022.122134.Search in Google Scholar

5. Liu, G.; Chen, Y.; Chen, Y.; Shi, Y.; Zhang, M.; Shen, G.; Qi, P.; Li, J.; Ma, D.; Yu, F.; Huang, X. Indirect Electrocatalysis S–N/s–S Bond Construction by Robust Polyoxometalate Based Foams. Adv. Mater. 2023, 35, 2304716; https://doi.org/10.1002/adma.202304716.Search in Google Scholar PubMed

6. Zhang, M.; Zhang, S.; Qi, Z.; Xie, M.; Qu, Y. Recent Advancements in CeO2 Enabled Liquid Acid/base Catalysis. Catal. Sci. Technol. 2024, 14, 225–240; https://doi.org/10.1039/d3cy01294h.Search in Google Scholar

7. Kamata, K.; Sugahara, K. Base Catalysis by Mono and Polyoxometalates. Catalysts 2017, 7, 345; https://doi.org/10.3390/catal7110345.Search in Google Scholar

8. Ebrahimi, A.; Rezazadeh, M.; Khosrav, H.; Rostami, A.; Al–Harrasi, A. An Aminopyridinium Ionic Liquid: A Simple and Effective Bifunctional Organocatalyst for Carbonate Synthesis from Carbon Dioxide and Epoxides. ChemPlusChem 2020, 85, 1587–1595; https://doi.org/10.1002/cplu.202000367.Search in Google Scholar PubMed

9. Tao, Y.; Wang, X.; Zhao, X.; Li, J.; Wang, F. Double Propagation Based on Diepoxide, a Facile Route to High Molecular Weight Poly(propylene Carbonate). Polymer 2006, 47, 7368–7373; https://doi.org/10.1016/j.polymer.2006.08.035.Search in Google Scholar

10. Yuan, W.; Ma, S.; Wang, S.; Li, Q.; Wang, B.; Xu, X.; Huang, K.; Chen, J.; You, S.; Zhu, J. Synthesis of Fully Bio-Based Diepoxy Monomer with Dicyclo Diacetal for High-Performance, Readily Degradable Thermosets. Eur. Polym. J. 2019, 117, 200–207; https://doi.org/10.1016/j.eurpolymj.2019.05.028.Search in Google Scholar

11. Gu, L.; Li, C.; Niu, X. Double Propagation Based on Diepoxide, a Facile Route to High Molecular Weight Poly(propylene Carbonate). Polymer 2019, 47, 220–207.Search in Google Scholar

12. Jiang, L.; Hu, X.; Cai, L. A Drug-Drug Multicomponent Crystal of Metformin and Dobesilate: Crystal Structure Analysis and Hygroscopicity Property. Molecules 2022, 27, 3472; https://doi.org/10.3390/molecules27113472.Search in Google Scholar PubMed PubMed Central

13. Okuno, R.; Yamaguchi, M.; Fujiwara, H. A Novel Symmetric TTF-Pyridyl Thiolato Zinc Complex: Synthesis, Characterization and Crystal Structure Analysis. Dalton Trans. 2017, 46, 4912–4916; https://doi.org/10.1039/c7dt00468k.Search in Google Scholar PubMed

14. Liu, X.; Yang, X.; Wang, H.; Hisaki, I.; Wang, K.; Jiang, J. A Robust Redox-Active Hydrogen-Bonded Organic Framework for Rechargeable Batteries. J. Mater. Chem. A 2022, 10, 1808–1814; https://doi.org/10.1039/d1ta09194h.Search in Google Scholar

15. Ma, Y.; Chen, S. –C.; Wang, Z.; Ma, W.; Wang, J.; Yin, Z.; Tang, C.; Cai, D.; Zheng, Q. Indacenodithiophene-based Wide Bandgap Copolymers for High Performance Single-Junction and Tandem Polymer Solar Cells. Nano Energy 2017, 33, 313–324; https://doi.org/10.1016/j.nanoen.2017.01.050.Search in Google Scholar

16. Armbruster, J.; Stelzer, F.; Landenberger, P.; Wieber, C.; Hunkler, D.; Keller, M.; Prinzbach, H. From Cyclooctatetraene to Chiral Polyfunctionalized C8 Building Blocks-Meso-Persubstituted Oxepanes and Azepanes. Tetrahedron Lett. 2000, 41, 5483–5487; https://doi.org/10.1016/s0040-4039(00)00905-9.Search in Google Scholar

Received: 2024-10-12
Accepted: 2024-11-16
Published Online: 2024-12-23
Published in Print: 2025-02-25

© 2024 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of the co-crystal 2,4,6-triamino-1,3,5-triazine-1,3-dioxide — acetic acid (1/2) C7H14N6O6
  4. Crystal structure of the dinuclear mercury(II) complex bis(μ2-bromido)-dibromido-bis{1-[(benzotriazol-1-yl)methyl]-1-H-1,3-(2-ethyl-5-methyl-imidazol)-κ1 N} dimercury(II), C26H30N10Hg2Br4
  5. Crystal structure of poly[hexaqua-pentakis(μ4-2,2′-bipyridine-4,4′-dicarboxylato-κ4 O:O′:O″:O‴)-(μ2-2,2′-bipyridine-4,4′-dicarboxylato-κ2 O:O)tetraytterbium(III)] hydrate, C36H26N6O16Yb2
  6. Hydrothermal synthesis and crystal structure of catena-poly[(1,10-phenanthroline-κ 2 N,N′)-bis(μ 2-nitroisophthalato-κ 3 O,O′:O″)nickel(II)], C20H13NiN3O7
  7. Crystal structure of 72,73,75,76-tetrafluoro-25,44-dimethyl-31,33,36,38-tetraoxo-31,32,33,36,37,38-hexahydro-3(2,7)-benzo[lmn][3,8]phenanthrolina-1,5(4,1)-dipyridin-1-iuma-2,4(1,2),7(1,4)-tribenzenacyclooctaphane-11,51-diium hexafluoridophosphate, [C46H28F4N4O4][PF6]2, a dicationic cyclophane
  8. Crystal structure of (E)-2-(4-(1H-imidazol-1-yl)benzylidene)-7-fluoro-3,4-dihydronaphthalen-1(2H)-one, C20H15FN2O
  9. The salt crystal structure of etoricoxib hydrochloride, C18H16Cl2N2O2S
  10. The structure of t-butyl 7-[2-(4-fluorophenyl)-3-phenyl-4-(phenylcarbamoyl)-5-(propan-2-yl)-1H-pyrrol-1-yl]-3,5-dihydroxyheptanoate, C37H43FN2O5
  11. The crystal structure of (μ4-oxo)-tri(μ4-2,2′-bipyridine-6,6′-bis(olato)-κ5 O,O′:N:N′:O″)tetrazinc(II) – methylformamide (1/1), C33H25N7O8Zn4
  12. The co-crystal structure of 4-chlorobenzophenone–salicylhydrazide(1/1), C20H17ClN2O3
  13. Crystal structure of 9-fluoro-4-(6-methoxypyridin-2-yl)-5,6-dihydrobenzo[h]quinazolin-2-amine, C18H15FN4O
  14. The crystal structure of the co-crystal composed of benzhydrazide and 5-aminoisophthalic acid, C8H7NO4⋅C7H8N2O
  15. The cocrystal structure of praziquantel-hesperetin (1/1), C35H38N2O8
  16. Crystal structure of new barium manganese fluorides dihydrates, Ba10Mn2F25·2H2O
  17. The crystal structure of bis[μ2-(3-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)propanoate-κ2O:N)-bis(2,2′-bipyridine-κ2 N, N′)dicopper(II)]dinitrate, C42H36Cu2N12O10
  18. Crystal structure of (3,6-di(2-pyridyl)-4-phenylaminopyridazine-κ2N,N′)-bis(2-(p-toluene)pyridinyl-κ2C,N)-iridium(III) hexafluorophosphate –dichloromethane (1/1), C45H37Cl2F6IrN7P
  19. The crystal structure of 2-(2′-carboxybenzyl)benzoic acid, C15H12O5
  20. The crystal structure of dichlorido-[(E)-N′,N″-bis((2E,3E)-3-(hydroxyimino)butan-2-ylidene)-2-((E)-3-(hydroxyimino)butan-2-ylidene)hydrazine-1-carbohydrazonhydrazide-κ 4 N 4]cobalt(II), C13H22N9O3Cl2Co
  21. Crystal structure of (−)-flavesine H, C15H22N2O2
  22. Crystal structure of 3-methoxybenzyl 2-(6-methoxynaphthalen-2-yl)propanoate, C22H22O4
  23. Crystal structure of dicarbonyl(2-oxopyridin-1(2H)-olato-κ 2 O,O)iridium(I), C7H4IrNO4
  24. The crystal structure of 4-(3-(triphenylphosphonio)propyl)piperazin-1-ium dibromide trihydrate, C25H37Br2N2O3P
  25. The crystal structure of ethyl 5,6-dihydroxybenzofuran-3-carboxylate, C11H10O5
  26. Crystal structure of 14-(R)-(2′-cyano-phenoxy)-3,19-diacetyl andrographolide, C31H37NO7
  27. The twinned crystal structure of 10-(4-methyl benzoate)-2,8-diethyl-5,5-difluoro-1,3,7,9-tetramethyl-5H-di-pyrrolo[1,2-c:2′,1′-f] [1,3,2]diazaborinin-4-ium-5-uide, C25H29BF2N2O2
  28. The crystal structure of (9H-thioxanthen-9- ylidene)hydrazine monohydrate, C13H11N2SO0.5
  29. The crystal structure of pyridinium diaqua-{1,2-phenylenebis((carboxylatocarbonyl)amido-κ4 N,N′,O,O′)manganese(III), C15H14MnN3O8
  30. Crystal structure of the hydrogen storage active high entropy phase Tb0.82Sm0.18Ni0.83Co0.17Mg
  31. Crystal structure of diaqua-bis[5-methyl-1-(1H-pyrazol-3-yl)-1H-1,2,3-triazole-4-carboxylato-κ 2 N,O)]manganese(II), C14H16MnN10O6
  32. Crystal structures of diiodido-3-((pyridin-2-ylmethylene)amino)-2-(pyridin-3-yl)-2,3-dihydroquinazolin-4(1H)-one-cadmium(II)
  33. Synthesis and crystal structure of methyl 4-(2-ethoxy-2-oxoethoxy)-3,5-dimethoxybenzoate, C14H18O7
  34. Crystal structure of isoxazolo[4,5-b]pyridin-3-amine, C6H5N3O
  35. Crystal structure of 4-chloro-1-isobutyl-1H-imidazo, C14H14ClN3
  36. The crystal structure of 1,1,1,2,2,2-hexakis(2-methyl-2-phenylpropyl)distannane,C60H78Sn2
  37. The crystal structure of (2,7-dimethoxynaphthalene-1,8-diyl)bis((3-nitrophenyl)methanone), C26H18N2O8
  38. Crystal structure of diaqua-tetra((E)-(RS)-1-(2,4-dichlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)pent-1-en-3-ol-κ 1 N)zinc(II) dinitrate dihydrate, C60H76Cl8N14O14Zn
  39. The crystal structure of diphenyl bis(2-((diphenoxyphosphoryl)amino)ethyl)phosphoramidate monohydrate C40H42N3O10P3
  40. Crystal structure of 4,4′-bis(dibromomethyl)-1,1′-biphenyl, C14H10Br4
  41. Crystal structure of CaPtZn
  42. Crystal structure of 3-chloro-5-(trifluoromethyl)pyridine-2-carboxylic acid, C7H3ClF3NO2
  43. The crystal structure of (3′-(2-bromophenyl)-2-phenyl-[2,2′-bioxiran]-3-yl)(phenyl)methanone, C92H68O12Br4
  44. Crystal structure of ethyl 4-(4-benzylpiperazin-1-yl)benzoate, C20H24N2O2
  45. The crystal structure of bis(selenocyanato-κ1 N)-bis(methanol)-bis((1E,2E)-1,2-bis (1-(pyridin-4-yl)ethylidene)-hydrazine)iron(II) methanol solvate, C34H44FeN10O4Se2
  46. Crystal structure of (E)-1-(5-bromo-2-hydroxyphenyl)-3-(5-(4-methoxyphenoxy)-3-methyl-1-phenyl-1H-pyrazol-4-yl)prop-2-en-1-one, C26H21BrN2O4
  47. The crystal structure of methyl 4-(4-(methylsulfonyl)phenyl)-2-methyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate, C19H21NO5S
  48. Crystal structure of 1′,3′-dihydro-2,2′-spirobi[indene]-1,3-dione, C17H12O2
  49. Crystal structure of (E)-2,2′,3,3′-tetrahydro-[1,1′-biindenylidene]-4,4′-diol, C18H16O2
  50. Crystal structure of di-glycylglycinium squarate dihydrate, C12H22N4O12, at 105 K
  51. Crystal structure of {[(4-fluorophenyl)methyl]triphenylphosphonium}dibromocopper(I), [C25H21FP]+[CuBr2]
  52. Crystal structure of poly[diaqua-bis(μ2-5-((pyridin-4-yl-methyl)amino)benzene-1,3-dicarboxylato-κ 2 N:O)cadmium(II)], C28H26CdN4O10
Downloaded on 8.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2024-0404/html
Scroll to top button