Home Physical Sciences The salt crystal structure of etoricoxib hydrochloride, C18H16Cl2N2O2S
Article Open Access

The salt crystal structure of etoricoxib hydrochloride, C18H16Cl2N2O2S

  • Yu-Heng Ma , Wei-Pu Hong , Yan-Ling Qian , Zhen-Wei Tao , Shi-Qi Hou , Jia-Le Guo , Wen-Jing Ma ORCID logo and Yi-Hong Wang EMAIL logo
Published/Copyright: November 26, 2024

Abstract

C18H16Cl2N2O2S, monoclinic, P21/c (no. 14), a = 10.915(2) Å, b = 11.801(2) Å, c = 14.059(3) Å, β = 90.10(3)°, V = 1810.9(6) Å3, Z = 4, R gt(F) = 0.0585, wR ref(F 2) = 0.1532, T = 293(2) K.

CCDC no.: 2368273

Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Colourless block
Size: 0.20 × 0.20 × 0.10 mm
Wavelength: MoKα radiation (0.71073 Å)
μ: 0.49 mm−1
Diffractometer, scan mode: ω Nonius CAD4,
θ max, completeness: 25.4°, >99 %
N(hkl)measured, N(hkl)unique, R int: 3510, 3327, 0.033
Criterion for I obs, N(hkl)gt: I obs > 2σ(I obs), 2,220
N(param)refined: 228
Programs: Olex2 1 , 2 , SHELX 3 , 4
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
C1 0.2797 (3) 0.4196 (3) 0.5263 (3) 0.0412 (9)
C2 0.3957 (4) 0.3872 (4) 0.5548 (3) 0.0577 (11)
H2A 0.432971 0.422219 0.606539 0.069*
C3 0.4562 (4) 0.3023 (4) 0.5056 (3) 0.0564 (11)
H3 0.535068 0.281639 0.523770 0.068*
C4 0.4010 (3) 0.2483 (3) 0.4306 (2) 0.0353 (8)
C5 0.2858 (3) 0.2823 (3) 0.4023 (2) 0.0379 (8)
H5 0.248467 0.247017 0.350696 0.045*
C6 0.2251 (3) 0.3679 (3) 0.4494 (3) 0.0402 (8)
H6 0.147675 0.390555 0.429345 0.048*
C7 0.0893 (4) 0.4580 (4) 0.6547 (3) 0.0700 (14)
H7A 0.044050 0.512065 0.691562 0.105*
H7B 0.127611 0.404170 0.696456 0.105*
H7C 0.034656 0.419075 0.612252 0.105*
C8 0.4649 (3) 0.1545 (3) 0.3784 (2) 0.0358 (8)
C9 0.5669 (3) 0.1809 (3) 0.3237 (3) 0.0438 (9)
H9 0.597259 0.254547 0.322226 0.053*
C10 0.6221 (3) 0.0967 (3) 0.2718 (3) 0.0430 (9)
C11 0.5792 (3) −0.0126 (3) 0.2768 (3) 0.0468 (10)
H11 0.618598 −0.068697 0.241834 0.056*
C12 0.4261 (3) 0.0411 (3) 0.3799 (2) 0.0363 (8)
C13 0.3186 (3) −0.0022 (3) 0.4339 (2) 0.0360 (8)
C14 0.2762 (3) 0.0436 (3) 0.5180 (2) 0.0383 (8)
H14 0.314408 0.107376 0.543205 0.046*
C15 0.1215 (3) −0.0962 (3) 0.5344 (3) 0.0414 (9)
C16 0.1598 (4) −0.1437 (3) 0.4502 (3) 0.0468 (9)
H16 0.120262 −0.207787 0.426789 0.056*
C17 0.2558 (3) −0.0976 (3) 0.4002 (3) 0.0460 (9)
H17 0.279525 −0.130426 0.342979 0.055*
C18 0.0198 (4) −0.1403 (3) 0.5945 (3) 0.0580 (11)
H18A 0.052597 −0.189730 0.642447 0.087*
H18B −0.036943 −0.181525 0.555413 0.087*
H18C −0.021674 −0.078065 0.624364 0.087*
Cl1 0.74754 (11) 0.12534 (10) 0.19970 (9) 0.0747 (4)
Cl2 0.09593 (10) 0.16098 (9) 0.70782 (7) 0.0562 (3)
N1 0.4834 (3) −0.0407 (2) 0.3299 (2) 0.0444 (8)
N2 0.1807 (3) −0.0026 (2) 0.5640 (2) 0.0415 (7)
H2 0.155975 0.029646 0.615321 0.050*
O1 0.1395 (4) 0.5983 (3) 0.5223 (2) 0.0870 (12)
O2 0.2851 (3) 0.5788 (3) 0.6535 (3) 0.1014 (14)
S1 0.20075 (10) 0.52766 (8) 0.58930 (7) 0.0506 (3)

1 Source of material

1.1 Experimental details

Single-crystal diffraction data were collected on a Nonius CAD4 with a MoKα X-ray source (λ = 0.71073 Å). The crystal structures were solved by using Olex2. 1 , 2 The model was solved with the ShelXT 3 structure solution program and further refinement with the ShelXL 4 refinement package. Hydrogen atoms on carbon atoms were placed in their geometrically idealized positions. All carbon bound hydrogen atoms were positioned geometrically. The H atoms were placed in idealized positions and treated as riding on their parent atoms, with the d(C–H) = 0.96 Å (methyl) and d(C–H) = 0.93 Å (aromatic). And U iso(H) = 1.2 times U iso(C) and U iso(H) = 1.5 times U iso(O), respectively.

2 Comment

Etoricoxib is a specific inhibitor of cyclooxygenase-2, employed for the management of osteoarthritis, rheumatoid arthritis, and acute gout attacks. 1 In accordance with the Biopharmaceutics Classification System (BCS), ETR falls under Class II drugs, characterized by low bioavailability. 5 Its poor aqueous solubility, coupled with a pronounced pH-dependency, poses constraints on its clinical utilization. Etoricoxib is an intriguing molecule, devoid of traditional hydrogen bond donors, yet featuring potent electronegativity from its pyridine nitrogen and sulfonyl oxygen atoms. To date, several solid forms, including polymorphs, solvates, cocrystals and salts, have been reported. 6 , 7 , 8 , 9 , 10 , 11 To explore more solid forms of ETR into a drug candidate, in this paper, a new hydrochloride salt has been explored.

ETR–Bz crystallized in monoclinic, P21/c space group, with four asymmetric units in a unit cell (Z = 4). Each asymmetric unit contains one ETR+ cation and one Cl anion (Z′ = 1). As expected, intermolecular proton transfer occurs from the chloride, forming charge-assisted hydrogen bond, N2–H2⋯Cl2 (2.127 Å, 158.8°). The intermolecular hydrogen bonding interactions reinforce the robustness and stability of the solid state. The torsion angle [C4–C8–C12–C13] of the pyridine ring of ETR is −0.905°. In general, all bond lengths and angles are in the expected ranges in both molecules.


Corresponding author: Yi-Hong Wang, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, P.R. China, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: New engineering research and reform practice project (2021xgk10); Chuzhou University college students innovation and entrepreneurship training program (No. 2024CXXL021); Anhui University Natural Science Foundation (No. KJ2021B16).

  3. Conflict of interest: The authors declare no conflicts of interest regarding this article.

References

1. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341. https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

2. Bourhis, L. J.; Dolomanov, O. V.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. The Anatomy of a Comprehensive Constrained, Restrained Refinement Program for the Modern Computing Environment – Olex2 Dissected. Acta Crystallogr. 2015, A71, 59–75. https://doi.org/10.1107/s2053273314022207.Search in Google Scholar

3. Sheldrick, G. M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8. https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

4. Sheldrick, G. M. A Short History of SHELX. Acta Crystallogr. 2008, A64, 112–122. https://doi.org/10.1107/s0108767307043930.Search in Google Scholar PubMed

5. FDA. Waiver of In Vivo Bioavailability and Bioequivalence Studies for Immediate–Release Solid Oral Dosage Forms Based on a Biopharmaceutics Classification System; Food and Drug Administration: Silver Spring, MD, USA, 2002.Search in Google Scholar

6. Dalton, C. R.; Clas, S. D.; Singh, J.; Khougaz, K.; Bilbeisi, R. Investigating the Hydrate Conversion Propensity of Different Etoricoxib Lots. J. Pharm. Sci. 2006, 95, 56–69. https://doi.org/10.1002/jps.20499.Search in Google Scholar PubMed

7. Grobelny, P.; Mukherjee, A.; Desiraju, G. R. Polymorphs and Hydrates of Etoricoxib, A Selective COX-2 Inhibitor. CrystEngComm 2012, 14, 5785–5794. https://doi.org/10.1039/c2ce06604a.Search in Google Scholar

8. Sudhir, M.; Geetha, B.; Sravankumar, P.; Ashwini, N. Can We Exchange Water in a Hydrate Structure: A Case Study of Etoricoxib. CrystEngComm 2016, 18, 2825–2829. https://doi.org/10.1039/c6ce00003g.Search in Google Scholar

9. Wang, Y.; Wang, L.; Zhang, F.; Wang, N.; Gao, Y.; Xiao, Y.; Wang, Z.; Bao, Y. Structure Analysis and Insight into Hydrogen Bond and van der Waals Interactions of Etoricoxib Cocrystals and Cocrystal Solvate. J. Mol. Struct. 2022, 1258, 132665. https://doi.org/10.1016/j.molstruc.2022.132665.Search in Google Scholar

10. Ma, Y. H.; Zhu, M. M.; Zhang, C. N.; Tang, X. S.; Zhang, W. G.; Ma, W. J. The Co-Crystal Structure of Etoricoxib-Phthalic Acid (1/1), C18H15ClN2O2S⋅C8H6O4. Z. Kristallogr. N. Cryst. Struct. 2023, 238, 641–643. https://doi.org/10.1515/ncrs-2023-0129.Search in Google Scholar

11. Zhang, F.; Wang, L.; Fang, W.; Liu, Y.; Shi, P.; Liang, P.; Gao, Z.; Bao, Y. Understanding the Role of Solvent Polarity in the Molecular Self-Assembly Process of Etoricoxib Solvates. Cryst. Growth Des. 2020, 20, 3650–3662. https://doi.org/10.1021/acs.cgd.9b01399.Search in Google Scholar

Received: 2024-07-17
Accepted: 2024-10-23
Published Online: 2024-11-26
Published in Print: 2025-02-25

© 2024 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of the co-crystal 2,4,6-triamino-1,3,5-triazine-1,3-dioxide — acetic acid (1/2) C7H14N6O6
  4. Crystal structure of the dinuclear mercury(II) complex bis(μ2-bromido)-dibromido-bis{1-[(benzotriazol-1-yl)methyl]-1-H-1,3-(2-ethyl-5-methyl-imidazol)-κ1 N} dimercury(II), C26H30N10Hg2Br4
  5. Crystal structure of poly[hexaqua-pentakis(μ4-2,2′-bipyridine-4,4′-dicarboxylato-κ4 O:O′:O″:O‴)-(μ2-2,2′-bipyridine-4,4′-dicarboxylato-κ2 O:O)tetraytterbium(III)] hydrate, C36H26N6O16Yb2
  6. Hydrothermal synthesis and crystal structure of catena-poly[(1,10-phenanthroline-κ 2 N,N′)-bis(μ 2-nitroisophthalato-κ 3 O,O′:O″)nickel(II)], C20H13NiN3O7
  7. Crystal structure of 72,73,75,76-tetrafluoro-25,44-dimethyl-31,33,36,38-tetraoxo-31,32,33,36,37,38-hexahydro-3(2,7)-benzo[lmn][3,8]phenanthrolina-1,5(4,1)-dipyridin-1-iuma-2,4(1,2),7(1,4)-tribenzenacyclooctaphane-11,51-diium hexafluoridophosphate, [C46H28F4N4O4][PF6]2, a dicationic cyclophane
  8. Crystal structure of (E)-2-(4-(1H-imidazol-1-yl)benzylidene)-7-fluoro-3,4-dihydronaphthalen-1(2H)-one, C20H15FN2O
  9. The salt crystal structure of etoricoxib hydrochloride, C18H16Cl2N2O2S
  10. The structure of t-butyl 7-[2-(4-fluorophenyl)-3-phenyl-4-(phenylcarbamoyl)-5-(propan-2-yl)-1H-pyrrol-1-yl]-3,5-dihydroxyheptanoate, C37H43FN2O5
  11. The crystal structure of (μ4-oxo)-tri(μ4-2,2′-bipyridine-6,6′-bis(olato)-κ5 O,O′:N:N′:O″)tetrazinc(II) – methylformamide (1/1), C33H25N7O8Zn4
  12. The co-crystal structure of 4-chlorobenzophenone–salicylhydrazide(1/1), C20H17ClN2O3
  13. Crystal structure of 9-fluoro-4-(6-methoxypyridin-2-yl)-5,6-dihydrobenzo[h]quinazolin-2-amine, C18H15FN4O
  14. The crystal structure of the co-crystal composed of benzhydrazide and 5-aminoisophthalic acid, C8H7NO4⋅C7H8N2O
  15. The cocrystal structure of praziquantel-hesperetin (1/1), C35H38N2O8
  16. Crystal structure of new barium manganese fluorides dihydrates, Ba10Mn2F25·2H2O
  17. The crystal structure of bis[μ2-(3-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)propanoate-κ2O:N)-bis(2,2′-bipyridine-κ2 N, N′)dicopper(II)]dinitrate, C42H36Cu2N12O10
  18. Crystal structure of (3,6-di(2-pyridyl)-4-phenylaminopyridazine-κ2N,N′)-bis(2-(p-toluene)pyridinyl-κ2C,N)-iridium(III) hexafluorophosphate –dichloromethane (1/1), C45H37Cl2F6IrN7P
  19. The crystal structure of 2-(2′-carboxybenzyl)benzoic acid, C15H12O5
  20. The crystal structure of dichlorido-[(E)-N′,N″-bis((2E,3E)-3-(hydroxyimino)butan-2-ylidene)-2-((E)-3-(hydroxyimino)butan-2-ylidene)hydrazine-1-carbohydrazonhydrazide-κ 4 N 4]cobalt(II), C13H22N9O3Cl2Co
  21. Crystal structure of (−)-flavesine H, C15H22N2O2
  22. Crystal structure of 3-methoxybenzyl 2-(6-methoxynaphthalen-2-yl)propanoate, C22H22O4
  23. Crystal structure of dicarbonyl(2-oxopyridin-1(2H)-olato-κ 2 O,O)iridium(I), C7H4IrNO4
  24. The crystal structure of 4-(3-(triphenylphosphonio)propyl)piperazin-1-ium dibromide trihydrate, C25H37Br2N2O3P
  25. The crystal structure of ethyl 5,6-dihydroxybenzofuran-3-carboxylate, C11H10O5
  26. Crystal structure of 14-(R)-(2′-cyano-phenoxy)-3,19-diacetyl andrographolide, C31H37NO7
  27. The twinned crystal structure of 10-(4-methyl benzoate)-2,8-diethyl-5,5-difluoro-1,3,7,9-tetramethyl-5H-di-pyrrolo[1,2-c:2′,1′-f] [1,3,2]diazaborinin-4-ium-5-uide, C25H29BF2N2O2
  28. The crystal structure of (9H-thioxanthen-9- ylidene)hydrazine monohydrate, C13H11N2SO0.5
  29. The crystal structure of pyridinium diaqua-{1,2-phenylenebis((carboxylatocarbonyl)amido-κ4 N,N′,O,O′)manganese(III), C15H14MnN3O8
  30. Crystal structure of the hydrogen storage active high entropy phase Tb0.82Sm0.18Ni0.83Co0.17Mg
  31. Crystal structure of diaqua-bis[5-methyl-1-(1H-pyrazol-3-yl)-1H-1,2,3-triazole-4-carboxylato-κ 2 N,O)]manganese(II), C14H16MnN10O6
  32. Crystal structures of diiodido-3-((pyridin-2-ylmethylene)amino)-2-(pyridin-3-yl)-2,3-dihydroquinazolin-4(1H)-one-cadmium(II)
  33. Synthesis and crystal structure of methyl 4-(2-ethoxy-2-oxoethoxy)-3,5-dimethoxybenzoate, C14H18O7
  34. Crystal structure of isoxazolo[4,5-b]pyridin-3-amine, C6H5N3O
  35. Crystal structure of 4-chloro-1-isobutyl-1H-imidazo, C14H14ClN3
  36. The crystal structure of 1,1,1,2,2,2-hexakis(2-methyl-2-phenylpropyl)distannane,C60H78Sn2
  37. The crystal structure of (2,7-dimethoxynaphthalene-1,8-diyl)bis((3-nitrophenyl)methanone), C26H18N2O8
  38. Crystal structure of diaqua-tetra((E)-(RS)-1-(2,4-dichlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)pent-1-en-3-ol-κ 1 N)zinc(II) dinitrate dihydrate, C60H76Cl8N14O14Zn
  39. The crystal structure of diphenyl bis(2-((diphenoxyphosphoryl)amino)ethyl)phosphoramidate monohydrate C40H42N3O10P3
  40. Crystal structure of 4,4′-bis(dibromomethyl)-1,1′-biphenyl, C14H10Br4
  41. Crystal structure of CaPtZn
  42. Crystal structure of 3-chloro-5-(trifluoromethyl)pyridine-2-carboxylic acid, C7H3ClF3NO2
  43. The crystal structure of (3′-(2-bromophenyl)-2-phenyl-[2,2′-bioxiran]-3-yl)(phenyl)methanone, C92H68O12Br4
  44. Crystal structure of ethyl 4-(4-benzylpiperazin-1-yl)benzoate, C20H24N2O2
  45. The crystal structure of bis(selenocyanato-κ1 N)-bis(methanol)-bis((1E,2E)-1,2-bis (1-(pyridin-4-yl)ethylidene)-hydrazine)iron(II) methanol solvate, C34H44FeN10O4Se2
  46. Crystal structure of (E)-1-(5-bromo-2-hydroxyphenyl)-3-(5-(4-methoxyphenoxy)-3-methyl-1-phenyl-1H-pyrazol-4-yl)prop-2-en-1-one, C26H21BrN2O4
  47. The crystal structure of methyl 4-(4-(methylsulfonyl)phenyl)-2-methyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate, C19H21NO5S
  48. Crystal structure of 1′,3′-dihydro-2,2′-spirobi[indene]-1,3-dione, C17H12O2
  49. Crystal structure of (E)-2,2′,3,3′-tetrahydro-[1,1′-biindenylidene]-4,4′-diol, C18H16O2
  50. Crystal structure of di-glycylglycinium squarate dihydrate, C12H22N4O12, at 105 K
  51. Crystal structure of {[(4-fluorophenyl)methyl]triphenylphosphonium}dibromocopper(I), [C25H21FP]+[CuBr2]
  52. Crystal structure of poly[diaqua-bis(μ2-5-((pyridin-4-yl-methyl)amino)benzene-1,3-dicarboxylato-κ 2 N:O)cadmium(II)], C28H26CdN4O10
Downloaded on 22.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2024-0307/html
Scroll to top button