Startseite Naturwissenschaften The crystal structure of pyridinium diaqua-{1,2-phenylenebis((carboxylatocarbonyl)amido-κ4 N,N′,O,O′)manganese(III), C15H14MnN3O8
Artikel Open Access

The crystal structure of pyridinium diaqua-{1,2-phenylenebis((carboxylatocarbonyl)amido-κ4 N,N′,O,O′)manganese(III), C15H14MnN3O8

  • Zhen Cao ORCID logo EMAIL logo und Wenhui Yan
Veröffentlicht/Copyright: 28. November 2024

Abstract

C15H14MnN3O8, monoclinic, P21/m (no. 11), a = 7.3212(3) Å, b = 11.9120(4) Å, c = 9.3666(3) Å, β = 94.345(3), V = 814.51(5) Å3, Z = 2, R gt (F) = 0.0242, wR ref (F 2) = 0.0685, T = 293 K.

CCDC no.: 2402101

Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Brown block
Size: 0.15 × 0.12 × 0.10 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 0.86 mm−1
Diffractometer, scan mode: Bruker APEX II, φ and ω
θ max, completeness: 25.0°, >99 %
N(hkl)measured, N(hkl)unique, R int: 7,031, 1,522, 0.021
Criterion for I obs, N(hkl)gt: I obs > 2σ(I obs), 1,421
N(param)refined: 132
Programs: Bruker, 1 SHELX 2 , 3
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
Mn1 0.26380 (4) 0.250000 0.46946 (3) 0.02215 (13)
O1 0.1708 (2) −0.06988 (10) 0.38543 (13) 0.0431 (3)
O2 0.30818 (18) −0.04675 (9) 0.66941 (13) 0.0380 (3)
O3 0.21269 (15) 0.11342 (9) 0.35656 (11) 0.0275 (3)
O4 0.5314 (2) 0.250000 0.3865 (2) 0.0392 (4)
H4 0.572798 0.185999 0.388825 0.047*
O5 −0.0527 (2) 0.250000 0.46708 (18) 0.0282 (4)
H5 −0.086772 0.192855 0.506037 0.034*
N1 0.30644 (18) 0.14421 (10) 0.62461 (13) 0.0248 (3)
N2 0.9139 (3) 0.250000 0.1591 (2) 0.0507 (7)
H2A 0.921109 0.250000 0.261353 0.061*
C1 0.2854 (2) 0.03577 (13) 0.59122 (17) 0.0253 (3)
C3 0.3463 (2) 0.19070 (13) 0.76276 (16) 0.0257 (3)
C2 0.2179 (2) 0.02225 (13) 0.43096 (17) 0.0266 (4)
C4 0.3769 (3) 0.13240 (15) 0.89073 (18) 0.0358 (4)
H9 0.379781 0.054347 0.891038 0.043*
C5 0.4033 (3) 0.19177 (17) 1.01826 (18) 0.0419 (5)
H10 0.421129 0.153087 1.104436 0.050*
C6 0.8746 (3) 0.1507 (2) −0.0546 (2) 0.0575 (6)
H13 0.865528 0.082831 −0.103657 0.069*
C7 0.9021 (3) 0.1523 (2) 0.0913 (2) 0.0554 (6)
H14 0.912569 0.085422 0.142493 0.067*
C8 0.8606 (5) 0.250000 −0.1276 (3) 0.0558 (8)
H15 0.841447 0.250000 −0.226920 0.067*

1 Source of materials

The opba ligand {opbaH4 = 2,2′-(1,2-phenylenebis(azanediyl))bis(2-oxoacetic acid)} and Me4N[Mn(opba)(H2O)2] was prepared by following the reported literature methods. 4 , 5 A solution of pyridine hydrochloride (11.6 mg, 0.1 mmol) in methanol (5 mL) was added dropwise under stirring to a methanolic solution (10 mL) of Me4N[Mn(opba)(H2O)2] (41.3 mg g, 0.1 mmol). The formed solution was stirred for about 30 min and then filtered off to evaporate in air at room temperature. X-ray quality block brown crystals appeared after a few days, which were collected and air-dried. Yield: 26.1 mg (62.3 %).

2 Experimental details

Coordinates of hydrogen atoms were refined with constraints or restraints. Their U iso values were set to 1.2U eq of the parent atoms.

3 Comment

Since the discovery of the first molecular-based magnets exhibiting a spontaneous magnetization below a critical temperature T c and by the perspectives offered by this new class of compounds, molecular magnetic material have attracted intense attention from the beginning of this century. 6 , 7 Due to its large spin state (S = 2) as well as the usually negative magnetic anisotropy, the six-coordinated octahedral high-spin d 4 MnIII ion, which has an orbitally degenerate 5E g ground electronic term that is split by the Jahn–Teller effect into 5A1g and 5B1g orbital singlet low-lying states, have been widely used to prepare molecule magnetism complexes with interesting magnetic properties. 8 , 9 , 10 Here, we report the structure of a new 1,2-phenylenebis(oxamato) (opba) based Mn(III) complex.

As demonstrated in figure, the title manganese complex [Mn(opba)(H2O)2][C6H6N] contains two independent units in the asymmetric unit cell, is comprised by one [Mn(obpa)(H2O)2] anion and one pyridinium. The cation and the anion are located on a mirror plane (see the figure). The planar opba ligand adopts a tetradentate coordination mode forming three five-membered chelate rings around the manganese(III) ion. This pattern of 5-5-5 fused chelate rings imposes a severe distortion of the equatorial metal environment. The coordination sphere for the Mn atom in the title complex can be described as a distorted octahedral, in which four equatorial positions are occupied by two amidate nitrogen and two carboxylate oxygen atoms from the opba ligand, while the axial positions are occupied by two O atoms of the water molecules. The averaged Mn–N/Oequatorial bond lengths in the title complex are 1.9312(13) and 1.9615(11) Å, respectively, obviously shorter than the distance between Mn atom and the O axial atom with the values 2.1663(18) and 2.3193(17) Å, clearly indicating the elongation octahedron surrounding the Mn(III) ion, typically accounting for the well-known Jahn–Teller effect. The axial bond angle O4–Mn1–O5 158.55(8) departs significantly from linear configuration. The intermolecular N–H⋯O hydrogen bond interactions can be found between the pyridinium cation and the anion. Additionally, under the help of the intermoleular O–H⋯O hydrogen bond interactions between the coordinated water molecules, the ion-pair complex can be linked into 2D supramolecular network structure.


Corresponding author: Zhen Cao, College of Chemical Engineering and Environmental Chemistry, Weifang University, Weifang, Shandong 261061, P.R. China, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: Doctoral Research Foundation of Weifang University (2021BS07).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Bruker. APEX2, SAINT–Plus, XPREP; Bruker AXS Inc.: Madison, Wisconsin, USA, 2004.Suche in Google Scholar

2. Sheldrick, G. M. SHELXT – Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Suche in Google Scholar PubMed PubMed Central

3. Sheldrick, G. M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Suche in Google Scholar PubMed PubMed Central

4. Fettouhi, M.; Ouahab, L.; Boukhari, A.; Cador, O.; Mathonière, C.; Kahn, O. New Metal Oxamates as Precursors of Low-Dimensional Heterobimetallics. Inorg. Chem. 1996, 35, 4932–4937; https://doi.org/10.1021/ic960174a.Suche in Google Scholar PubMed

5. Barroso, S.; Blay, G.; Fernandez, I.; Pedro, J. R.; Ruiz-Garcia, R.; Pardo, E.; Lloret, F.; Munoz, M. C. Chemistry and Reactivity of Mononuclear Manganese Oxamate Complexes: Oxidative Carbon-Carbon Bond Cleavage of Vic-Diols by Dioxygen Andaldehydes Catalyzed by a Trans- Dipyridine Manganese(III) Complex with a Tetradentate O-Phenylenedioxamate Ligand. J. Mol. Catal. A: Chem. 2006, 243, 214–220; https://doi.org/10.1016/j.molcata.2005.08.027.Suche in Google Scholar

6. Miyasaka, H.; Saitoh, A.; Abe, S. Magnetic Assemblies Based on Mn(III) Salen Analogues. Coord. Chem. Rev. 2007, 251, 2622–2664; https://doi.org/10.1016/j.ccr.2007.07.028.Suche in Google Scholar

7. Feng, M.; Ruan, Z. Y.; Chen, Y. C.; Tong, M. L. Physical Stimulus and Chemical Modulations of Bistable Molecular Magnetic Materials. Chem. Commun. 2020, 56, 13702–13718; https://doi.org/10.1039/d0cc04202a.Suche in Google Scholar PubMed

8. Zhang, D. P.; Lan, W. L.; Zhou, Z.; Yang, L.; Liu, Q. Y.; Bian, Y. Z.; Jiang, J. Z. Manganese(III) Porphyrin-Based Magnetic Materials. Topics Curr. Chem. 2019, 377, 18–60; https://doi.org/10.1007/s41061-019-0244-5.Suche in Google Scholar PubMed

9. Bernot, K.; Luzon, J.; Sessoli, R.; Vindigni, A.; Thion, J.; Richeter, S.; Leclercq, D.; Larionova, J.; van der Lee, A. The Canted Antiferromagnetic Approach to Single-Chain Magnets. J. Am. Chem. Soc. 2008, 130, 1619–1627; https://doi.org/10.1021/ja0751734.Suche in Google Scholar PubMed

10. Vallejo, J.; Pascual-Alvarez, A.; Cano, J.; Castro, I.; Julve, M.; Lloret, F.; Giovanni De Munno, J. K.; Armentano, D.; Wernsdorfer, W.; Ruiz-García, R.; Pardo, E. Field-Induced Hysteresis and Quantum Tunneling of the Magnetization in a Mononuclear Manganese(III) Complex. Angew. Chem. Int. Ed. 2013, 52, 14075–14079; https://doi.org/10.1002/anie.201308047.Suche in Google Scholar PubMed

Received: 2024-09-23
Accepted: 2024-11-13
Published Online: 2024-11-28
Published in Print: 2025-02-25

© 2024 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Artikel in diesem Heft

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of the co-crystal 2,4,6-triamino-1,3,5-triazine-1,3-dioxide — acetic acid (1/2) C7H14N6O6
  4. Crystal structure of the dinuclear mercury(II) complex bis(μ2-bromido)-dibromido-bis{1-[(benzotriazol-1-yl)methyl]-1-H-1,3-(2-ethyl-5-methyl-imidazol)-κ1 N} dimercury(II), C26H30N10Hg2Br4
  5. Crystal structure of poly[hexaqua-pentakis(μ4-2,2′-bipyridine-4,4′-dicarboxylato-κ4 O:O′:O″:O‴)-(μ2-2,2′-bipyridine-4,4′-dicarboxylato-κ2 O:O)tetraytterbium(III)] hydrate, C36H26N6O16Yb2
  6. Hydrothermal synthesis and crystal structure of catena-poly[(1,10-phenanthroline-κ 2 N,N′)-bis(μ 2-nitroisophthalato-κ 3 O,O′:O″)nickel(II)], C20H13NiN3O7
  7. Crystal structure of 72,73,75,76-tetrafluoro-25,44-dimethyl-31,33,36,38-tetraoxo-31,32,33,36,37,38-hexahydro-3(2,7)-benzo[lmn][3,8]phenanthrolina-1,5(4,1)-dipyridin-1-iuma-2,4(1,2),7(1,4)-tribenzenacyclooctaphane-11,51-diium hexafluoridophosphate, [C46H28F4N4O4][PF6]2, a dicationic cyclophane
  8. Crystal structure of (E)-2-(4-(1H-imidazol-1-yl)benzylidene)-7-fluoro-3,4-dihydronaphthalen-1(2H)-one, C20H15FN2O
  9. The salt crystal structure of etoricoxib hydrochloride, C18H16Cl2N2O2S
  10. The structure of t-butyl 7-[2-(4-fluorophenyl)-3-phenyl-4-(phenylcarbamoyl)-5-(propan-2-yl)-1H-pyrrol-1-yl]-3,5-dihydroxyheptanoate, C37H43FN2O5
  11. The crystal structure of (μ4-oxo)-tri(μ4-2,2′-bipyridine-6,6′-bis(olato)-κ5 O,O′:N:N′:O″)tetrazinc(II) – methylformamide (1/1), C33H25N7O8Zn4
  12. The co-crystal structure of 4-chlorobenzophenone–salicylhydrazide(1/1), C20H17ClN2O3
  13. Crystal structure of 9-fluoro-4-(6-methoxypyridin-2-yl)-5,6-dihydrobenzo[h]quinazolin-2-amine, C18H15FN4O
  14. The crystal structure of the co-crystal composed of benzhydrazide and 5-aminoisophthalic acid, C8H7NO4⋅C7H8N2O
  15. The cocrystal structure of praziquantel-hesperetin (1/1), C35H38N2O8
  16. Crystal structure of new barium manganese fluorides dihydrates, Ba10Mn2F25·2H2O
  17. The crystal structure of bis[μ2-(3-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)propanoate-κ2O:N)-bis(2,2′-bipyridine-κ2 N, N′)dicopper(II)]dinitrate, C42H36Cu2N12O10
  18. Crystal structure of (3,6-di(2-pyridyl)-4-phenylaminopyridazine-κ2N,N′)-bis(2-(p-toluene)pyridinyl-κ2C,N)-iridium(III) hexafluorophosphate –dichloromethane (1/1), C45H37Cl2F6IrN7P
  19. The crystal structure of 2-(2′-carboxybenzyl)benzoic acid, C15H12O5
  20. The crystal structure of dichlorido-[(E)-N′,N″-bis((2E,3E)-3-(hydroxyimino)butan-2-ylidene)-2-((E)-3-(hydroxyimino)butan-2-ylidene)hydrazine-1-carbohydrazonhydrazide-κ 4 N 4]cobalt(II), C13H22N9O3Cl2Co
  21. Crystal structure of (−)-flavesine H, C15H22N2O2
  22. Crystal structure of 3-methoxybenzyl 2-(6-methoxynaphthalen-2-yl)propanoate, C22H22O4
  23. Crystal structure of dicarbonyl(2-oxopyridin-1(2H)-olato-κ 2 O,O)iridium(I), C7H4IrNO4
  24. The crystal structure of 4-(3-(triphenylphosphonio)propyl)piperazin-1-ium dibromide trihydrate, C25H37Br2N2O3P
  25. The crystal structure of ethyl 5,6-dihydroxybenzofuran-3-carboxylate, C11H10O5
  26. Crystal structure of 14-(R)-(2′-cyano-phenoxy)-3,19-diacetyl andrographolide, C31H37NO7
  27. The twinned crystal structure of 10-(4-methyl benzoate)-2,8-diethyl-5,5-difluoro-1,3,7,9-tetramethyl-5H-di-pyrrolo[1,2-c:2′,1′-f] [1,3,2]diazaborinin-4-ium-5-uide, C25H29BF2N2O2
  28. The crystal structure of (9H-thioxanthen-9- ylidene)hydrazine monohydrate, C13H11N2SO0.5
  29. The crystal structure of pyridinium diaqua-{1,2-phenylenebis((carboxylatocarbonyl)amido-κ4 N,N′,O,O′)manganese(III), C15H14MnN3O8
  30. Crystal structure of the hydrogen storage active high entropy phase Tb0.82Sm0.18Ni0.83Co0.17Mg
  31. Crystal structure of diaqua-bis[5-methyl-1-(1H-pyrazol-3-yl)-1H-1,2,3-triazole-4-carboxylato-κ 2 N,O)]manganese(II), C14H16MnN10O6
  32. Crystal structures of diiodido-3-((pyridin-2-ylmethylene)amino)-2-(pyridin-3-yl)-2,3-dihydroquinazolin-4(1H)-one-cadmium(II)
  33. Synthesis and crystal structure of methyl 4-(2-ethoxy-2-oxoethoxy)-3,5-dimethoxybenzoate, C14H18O7
  34. Crystal structure of isoxazolo[4,5-b]pyridin-3-amine, C6H5N3O
  35. Crystal structure of 4-chloro-1-isobutyl-1H-imidazo, C14H14ClN3
  36. The crystal structure of 1,1,1,2,2,2-hexakis(2-methyl-2-phenylpropyl)distannane,C60H78Sn2
  37. The crystal structure of (2,7-dimethoxynaphthalene-1,8-diyl)bis((3-nitrophenyl)methanone), C26H18N2O8
  38. Crystal structure of diaqua-tetra((E)-(RS)-1-(2,4-dichlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)pent-1-en-3-ol-κ 1 N)zinc(II) dinitrate dihydrate, C60H76Cl8N14O14Zn
  39. The crystal structure of diphenyl bis(2-((diphenoxyphosphoryl)amino)ethyl)phosphoramidate monohydrate C40H42N3O10P3
  40. Crystal structure of 4,4′-bis(dibromomethyl)-1,1′-biphenyl, C14H10Br4
  41. Crystal structure of CaPtZn
  42. Crystal structure of 3-chloro-5-(trifluoromethyl)pyridine-2-carboxylic acid, C7H3ClF3NO2
  43. The crystal structure of (3′-(2-bromophenyl)-2-phenyl-[2,2′-bioxiran]-3-yl)(phenyl)methanone, C92H68O12Br4
  44. Crystal structure of ethyl 4-(4-benzylpiperazin-1-yl)benzoate, C20H24N2O2
  45. The crystal structure of bis(selenocyanato-κ1 N)-bis(methanol)-bis((1E,2E)-1,2-bis (1-(pyridin-4-yl)ethylidene)-hydrazine)iron(II) methanol solvate, C34H44FeN10O4Se2
  46. Crystal structure of (E)-1-(5-bromo-2-hydroxyphenyl)-3-(5-(4-methoxyphenoxy)-3-methyl-1-phenyl-1H-pyrazol-4-yl)prop-2-en-1-one, C26H21BrN2O4
  47. The crystal structure of methyl 4-(4-(methylsulfonyl)phenyl)-2-methyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate, C19H21NO5S
  48. Crystal structure of 1′,3′-dihydro-2,2′-spirobi[indene]-1,3-dione, C17H12O2
  49. Crystal structure of (E)-2,2′,3,3′-tetrahydro-[1,1′-biindenylidene]-4,4′-diol, C18H16O2
  50. Crystal structure of di-glycylglycinium squarate dihydrate, C12H22N4O12, at 105 K
  51. Crystal structure of {[(4-fluorophenyl)methyl]triphenylphosphonium}dibromocopper(I), [C25H21FP]+[CuBr2]
  52. Crystal structure of poly[diaqua-bis(μ2-5-((pyridin-4-yl-methyl)amino)benzene-1,3-dicarboxylato-κ 2 N:O)cadmium(II)], C28H26CdN4O10
Heruntergeladen am 22.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2024-0379/html
Button zum nach oben scrollen