Home Crystal structure of (3,6-di(2-pyridyl)-4-phenylaminopyridazine-κ2N,N′)-bis(2-(p-toluene)pyridinyl-κ2C,N)-iridium(III) hexafluorophosphate –dichloromethane (1/1), C45H37Cl2F6IrN7P
Article Open Access

Crystal structure of (3,6-di(2-pyridyl)-4-phenylaminopyridazine-κ2N,N′)-bis(2-(p-toluene)pyridinyl-κ2C,N)-iridium(III) hexafluorophosphate –dichloromethane (1/1), C45H37Cl2F6IrN7P

  • Jun Qian ORCID logo EMAIL logo , Liang Ma and Yida Wang
Published/Copyright: October 29, 2024

Abstract

C45H37Cl2F6IrN7P, monoclinic, P21/c (no. 14), a = 23.518(5) Å, b = 11.702(2) Å, c = 15.426(3) Å, β = 101.44(3)°, V = 4161.0(15) Å3, Z = 4, R gt (F) = 0.0474, wR ref (F 2) = 0.0924, T = 293 K.

CCDC no.: 1869608

Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Red needle
Size: 0.23 × 0.20 × 0.18 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 3.45 mm−1
Diffractometer, scan mode: Bruker APEX-II, φ and ω
θ max, completeness: 25.0°, >99 %
N(hkl)measured, N(hkl)unique, R int: 35810, 7324, 0.062
Criterion for I obs, N(hkl)gt: I obs > 2 σ(I obs), 6,899
N(param)refined: 559
Programs: Bruker, 1 Olex2, 2 SHELX, 3 , 4 PLATON 5
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
Ir1 0.26085 (2) 0.04989 (2) 0.36158 (2) 0.02633 (9)
N1 −0.0972 (2) 0.5869 (5) 0.3799 (3) 0.0390 (13)
H30A −0.1261 0.5609 0.4002 0.047*
H30B −0.0987 0.6543 0.3573 0.047*
N2 0.2644 (2) 0.0834 (4) 0.2329 (3) 0.0292 (11)
N3 0.2703 (2) 0.0166 (4) 0.4943 (3) 0.0317 (12)
N4 0.1835 (2) −0.0493 (4) 0.3234 (3) 0.0272 (11)
N5 0.19247 (19) 0.1650 (4) 0.3689 (3) 0.0270 (11)
N6 0.20207 (19) 0.2767 (4) 0.3847 (3) 0.0255 (10)
N7 0.1656 (2) 0.5134 (4) 0.4861 (3) 0.0356 (12)
C34 0.1803 (3) 0.4633 (5) 0.4163 (4) 0.0339 (15)
C30 0.1385 (2) 0.1216 (5) 0.3608 (4) 0.0259 (13)
C33 0.1587 (2) 0.3452 (5) 0.3928 (4) 0.0282 (13)
C25 0.1808 (3) −0.1577 (5) 0.2932 (4) 0.0326 (14)
H25A 0.2144 −0.1913 0.2820 0.039*
C29 0.1338 (2) −0.0005 (5) 0.3379 (4) 0.0267 (13)
C18 0.3519 (3) 0.1405 (5) 0.4999 (4) 0.0346 (14)
C26 0.1307 (3) −0.2206 (5) 0.2785 (4) 0.0390 (16)
H26A 0.1302 −0.2944 0.2561 0.047*
C43 −0.0018 (3) 0.5596 (5) 0.3478 (4) 0.0322 (14)
H43A −0.0036 0.6318 0.3223 0.039*
C39 0.0505 (2) 0.3829 (5) 0.3854 (4) 0.0301 (13)
C17 0.3191 (3) 0.0631 (6) 0.5463 (4) 0.0385 (16)
C32 0.1003 (2) 0.3079 (5) 0.3839 (4) 0.0279 (13)
C28 0.0825 (3) −0.0613 (5) 0.3279 (4) 0.0343 (14)
H28A 0.0494 −0.0277 0.3414 0.041*
C35 0.2217 (3) 0.5096 (5) 0.3724 (4) 0.0348 (15)
H35A 0.2311 0.4727 0.3238 0.042*
C11 0.3181 (2) −0.0719 (5) 0.3434 (4) 0.0317 (14)
C42 −0.0480 (2) 0.5203 (5) 0.3838 (4) 0.0316 (14)
C1 0.2382 (3) 0.1696 (5) 0.1853 (4) 0.0325 (14)
H1A 0.2120 0.2136 0.2088 0.039*
C23 0.3292 (2) 0.1513 (5) 0.4078 (4) 0.0272 (13)
C13 0.2356 (3) −0.0470 (5) 0.5334 (4) 0.0373 (15)
H13A 0.2015 −0.0751 0.4988 0.045*
C40 0.0036 (2) 0.3424 (5) 0.4206 (4) 0.0319 (14)
H40A 0.0048 0.2692 0.4443 0.038*
C38 0.2483 (3) 0.6112 (5) 0.4029 (4) 0.0387 (16)
H38A 0.2759 0.6442 0.3751 0.046*
C6 0.3296 (2) −0.0753 (5) 0.2568 (4) 0.0311 (14)
C4 0.3130 (3) 0.0409 (6) 0.1154 (4) 0.0383 (16)
H4A 0.3388 −0.0040 0.0918 0.046*
C44 0.0466 (3) 0.4926 (5) 0.3497 (4) 0.0333 (14)
H44A 0.0774 0.5214 0.3267 0.040*
C31 0.0924 (2) 0.1913 (5) 0.3685 (4) 0.0294 (13)
H31A 0.0555 0.1599 0.3635 0.035*
C8 0.3910 (3) −0.2397 (6) 0.2938 (5) 0.0444 (17)
H8A 0.4148 −0.2956 0.2772 0.053*
C41 −0.0449 (2) 0.4119 (5) 0.4200 (4) 0.0317 (14)
H41A −0.0755 0.3848 0.4443 0.038*
C3 0.2861 (3) 0.1309 (6) 0.0675 (4) 0.0382 (15)
H3A 0.2935 0.1474 0.0118 0.046*
C10 0.3453 (2) −0.1537 (5) 0.4037 (4) 0.0365 (15)
H10A 0.3393 −0.1516 0.4615 0.044*
C21 0.4051 (3) 0.2935 (6) 0.4048 (5) 0.0475 (18)
C2 0.2478 (3) 0.1970 (6) 0.1032 (4) 0.0376 (15)
H2A 0.2289 0.2587 0.0720 0.045*
C19 0.3989 (3) 0.2054 (6) 0.5412 (5) 0.0498 (19)
H19A 0.4128 0.1974 0.6017 0.060*
C37 0.2332 (3) 0.6621 (5) 0.4744 (5) 0.0466 (18)
H37A 0.2509 0.7299 0.4967 0.056*
C5 0.3025 (2) 0.0156 (5) 0.1983 (4) 0.0316 (14)
C36 0.1915 (3) 0.6120 (6) 0.5133 (5) 0.0442 (17)
H36A 0.1809 0.6489 0.5611 0.053*
C7 0.3658 (3) −0.1594 (6) 0.2334 (5) 0.0430 (17)
H7A 0.3730 −0.1611 0.1763 0.052*
C9 0.3810 (3) −0.2382 (6) 0.3800 (5) 0.0422 (17)
C27 0.0810 (3) −0.1726 (5) 0.2976 (4) 0.0410 (16)
H27A 0.0468 −0.2147 0.2901 0.049*
C14 0.2472 (3) −0.0734 (6) 0.6216 (4) 0.0446 (17)
H14A 0.2217 −0.1182 0.6460 0.054*
C20 0.4248 (3) 0.2802 (7) 0.4943 (5) 0.0528 (19)
H20A 0.4563 0.3230 0.5230 0.063*
C12 0.4070 (3) −0.3275 (6) 0.4474 (5) 0.059 (2)
H12A 0.4304 −0.3793 0.4212 0.088*
H12B 0.4307 −0.2906 0.4975 0.088*
H12C 0.3764 −0.3691 0.4663 0.088*
C15 0.2973 (3) −0.0324 (7) 0.6734 (5) 0.055 (2)
H15A 0.3072 −0.0517 0.7330 0.065*
C22 0.3572 (3) 0.2292 (5) 0.3627 (5) 0.0401 (16)
H22A 0.3437 0.2390 0.3023 0.048*
C24 0.4360 (3) 0.3742 (6) 0.3518 (5) 0.060 (2)
H24A 0.4166 0.3731 0.2908 0.091*
H24B 0.4354 0.4504 0.3747 0.091*
H24C 0.4755 0.3499 0.3564 0.091*
C16 0.3331 (3) 0.0386 (7) 0.6354 (5) 0.052 (2)
H16A 0.3664 0.0694 0.6701 0.063*
P1 0.09037 (8) 0.44829 (15) 0.11387 (12) 0.0393 (4)
F1 0.11036 (18) 0.5460 (4) 0.0550 (3) 0.0609 (12)
F2 0.04478 (16) 0.5333 (3) 0.1426 (3) 0.0486 (10)
F3 0.13769 (17) 0.4897 (4) 0.1969 (3) 0.0582 (11)
F4 0.0703 (2) 0.3493 (4) 0.1727 (3) 0.0678 (13)
F5 0.04360 (18) 0.4074 (4) 0.0320 (3) 0.0694 (13)
F6 0.13717 (19) 0.3639 (4) 0.0862 (3) 0.0697 (13)
C45 0.4724 (3) 0.0342 (8) 0.3497 (7) 0.082 (3)
H45A 0.4401 0.0624 0.3741 0.099*
H45B 0.4711 −0.0487 0.3505 0.099*
Cl1 0.46439 (12) 0.0817 (2) 0.2385 (2) 0.0986 (9)
Cl2 0.53608 (10) 0.0795 (2) 0.4146 (2) 0.1160 (11)

1 Source of materials

All commercially available reactants and solvents, unless otherwise noted, can be used immediately without pre-treatment. The cyclometalated chloro-bridged iridium(III) dimer, [(mppy)2Ir (μ2–Cl)]2 (mppy = 2-(p-toluene) pyridine), was synthesized following the reported literature procedures. 6 1 Equiv. of IrCl3·3H2O and 2.5 equiv. of 1-phenyl-pyrazole are heated in a mixed solution of water and ethylene glycol ether (v/v = 1/4) at 135 °C under the nitrogen atmosphere to obtain corresponding product. Tetrazine (1 equiv.) and 4-ethynylaniline (1 equiv.) were added into toluene with strong stirring at 140 °C to obtain 3,6-di(2-pyridyl)-4-phenylamino pyridazine (DpTz–PhA) after 120 h. The target cyclometalated Ir(III) complexes were finally synthesized by the obtained iridium(III) dimer [(mppy)2Ir (μ2–Cl)]2 (1 equiv.) and DpTz–PhA ligand (1 equiv.), as well as potassium hexafluorophosphate (1 equiv.) in a mixed solvent containing dichloromethane and methanol (v/v = 2/1) at 85 °C in a dark N2 atmosphere for 24 h. The above reddish solid product (164.70 mg, 0.15 mmol) was dissolved in dichloromethane (1 mL), after filtration, 1 mL of buffer layer (Vdichloromethane/Vn-hexane = 1/1) and 3 mL of n-hexane was added successively. Red needle crystals were obtained after 12 days at room temperature in dark with a yield of 79.0590 mg (48 % based Ir). Anal. Calcd. for C45H37Cl2F6IrN7P: C, 49.82 %; H, 3.41 %; N, 9.04 %. Found C, 49.71 %; H, 3.44 %; N, 9.07 %. IR (KBr, cm−1): 3324 (m), 3212 (s), 1579 (s), 1510 (m), 1386 (vs), 1039 (m) (pyridine: C=N), 776 (m).

2 Experimental details

The crystal structure determination was carried on a Bruker APEX-II diffractometer. The structure was solved by Direct Methods and refined using the SHELX software. 3 All of the hydrogen atoms were added by theoretical method and isotropic displacement parameters were given (U iso = 1.2 (1.5 for methyl hydrogen), U eq is the equivalent isotropic displacement parameter of the parent atom). 5

3 Comment

In recent years, cyclometalated iridium(III) complexes, have received many interests due to the potential applications, such as organic light-emitting diodes (OLEDs), light-emitting electro-chemical cells (LECs), biosensing, photocatalysis, and nonlinear optics. 6 , 7 , 8 The strong spin–orbit coupling induced by the heavy Ir(III) ion results in efficient intersystem crossing (ISC) and promotes triplet excited-state formation, which are intrinsically related to aforementioned applications. 9 , 10 Among the diverse classes of cyclometalated Ir(III) complexes, the heteroleptic systems containing a combination of diimine (N N ) ligands and cyclometalating ( c N) ligands have gained special attention due to their photophysical properties can be tuned by altering the ligands separately. 11 , 12 , 13 From the synthesis point of view, the judicious choice of auxiliary ligands, for example conjugacy and substituents, plays an important role in the construction of cyclometalated iridium(III) complexes. 14 , 15

The title compound crystallizes in the monoclinic space group P21/c. As displayed in the figure, the asymmetric unit of the title structure consists of one Ir3+ cation, one DpTz–PhA ligand, two mppy ligands, one PF6 anion and one dichloromethane solvent molecule. The average Ir–C bond length is 2.015(6) Å, while the distances of Ir–N range from 2.042(5) to 2.140(5) Å, which are within the normal range and are consistent with those previously reported in similar structures. 16 , 17 The main skeleton of the title structure can be further extended into a three-dimensional supramolecular structure by hydrogen bonding, where the hydrogen bonds are formed by the H atoms on the chelated ligand mppy and auxiliary ligand DpTz–PhA with the F atoms of the PF6 anion.


Corresponding author: Jun Qian, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, P.R. China, E-mail:

Acknowledgments

This work was funded by the funding for this research was provided by: National Natural Science Foundation of China (grant No. 51602130).

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: National Natural Science Foundation of China (grant No. 51602130).

  3. Conflict of interest: The authors declare no conflicts of interest regarding this article.

References

1. BRUKER. SAINT APEX2 and SADABS; Bruker AXS Inc.: Madison, Wisconsin, USA, 2009.Search in Google Scholar

2. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

3. Sheldrick, G. M. SHELXT – Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Search in Google Scholar

4. Sheldrick, G. M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

5. Spek, A. L. Single-Crystal Structure Validation with the Program PLATON. J. Appl. Crystallogr. 2003, 36, 7–13; https://doi.org/10.1107/s0021889802022112.Search in Google Scholar

6. Adamovich, V.; Boudreault, P. L. T.; Esteruelas, M. A.; Gómez–Bautista, D.; López, A. M.; Onñate, E.; Tsai, J. Y. Preparation via a NHC Dimer Complex, Photophysical Properties, and Device Performance of Heteroleptic Bis(tridentate) Iridium(III) Emitters. Organometallics 2019, 38, 2738–2747; https://doi.org/10.1021/acs.organomet.9b00265.Search in Google Scholar

7. Liu, J. L.; Liu, Y.; Liu, Q.; Li, C. Y.; Sun, L. N.; Li, F. Y. Iridium(III) Complex-Coated Nanosystem for Ratiometric Upconversion Luminescence Bioimaging of Cyanide Anions. J. Am. Chem. Soc. 2011, 133, 15276–15279; https://doi.org/10.1021/ja205907y.Search in Google Scholar PubMed

8. Liu, B. Q.; Lystrom, L.; Kilina, S.; Sun, W. F. Effects of Varying the Benzannulation Site and P Conjugation of the Cyclometalating Ligand on the Photophysics and Reverse Saturable Absorption of Monocationic Iridium(III) Complexes. Inorg. Chem. 2019, 58, 476–488; https://doi.org/10.1021/acs.inorgchem.8b02714.Search in Google Scholar PubMed

9. Lee, S.; Kim, S. O.; Shin, H.; Yun, H. J.; Yang, K.; Kwon, S. K.; Kim, J. J.; Kim, Y. H. Deep-Blue Phosphorescence from Perfluoro Carbonyl-Substituted Iridium Complexes. J. Am. Chem. Soc. 2013, 135, 14321–14328; https://doi.org/10.1021/ja4065188.Search in Google Scholar PubMed

10. Fan, C.; Zhu, L.; Jiang, B.; Li, Y.; Zhao, F.; Ma, D.; Qin, J.; Yang, C. J. High Power Efficiency Yellow Phosphorescent OLEDs by Using New Iridium Complexes with Halogen-Substituted 2-Phenylbenzo[d]thiazole Ligands. Phys. Chem. C 2013, 117, 19134–19141; https://doi.org/10.1021/jp406220c.Search in Google Scholar

11. Neve, F.; Deda, M. L.; Crispini, A.; Bellusci, A.; Puntoriero, F.; Campagna, S. Cationic Cyclometalated Iridium Luminophores: Photophysical, Redox, and Structural Characterization. Organometallics 2004, 23, 5856–5863; https://doi.org/10.1021/om049493x.Search in Google Scholar

12. Zhao, Q.; Liu, S.; Shi, M.; Wang, C.; Yu, M.; Li, L.; Li, F.; Yi, T.; Huang, C. Highly Phosphorescent Cyclometalated Iridium(III) Complexes for Optoelectronic Applications: Fine Tuning of the Emission Wavelength through Ancillary Ligands. Inorg. Chem. 2006, 45, 6152–6160; https://doi.org/10.1021/ic052034j.Search in Google Scholar PubMed

13. Sun, W. F.; Pei, C.; Lu, T.; Cui, P.; Li, Z.; McCleese, C.; Fang, Y.; Kilina, S.; Song, Y.; Burda, C. Reverse Saturable Absorbing Cationic Iridium(III) Complexes Bearing the 2-(2-Quinolinyl)quinoxaline Ligand: Effects of Different Cyclometalating Ligands on Linear and Nonlinear Absorption. J. Mater. Chem. C 2016, 4, 5059–5072; https://doi.org/10.1039/c6tc00710d.Search in Google Scholar

14. Takizawa, S. Y.; Ikuta, N.; Zeng, F.; Komaru, S.; Sebata, S.; Murata, S. Impact of Substituents on Excited-State and Photosensitizing Properties in Cationic Iridium(III) Complexes with Ligands of Coumarin 6. Inorg. Chem. 2016, 55, 8723–8735; https://doi.org/10.1021/acs.inorgchem.6b01279.Search in Google Scholar PubMed

15. Zaarour, M.; Singh, A.; Latouche, C.; Williams, J. A. G.; Ledoux-Rak, I.; Zyss, J.; Boucekkine, A.; Bozec, H. L.; Guerchais, V.; Dragonetti, C.; Colombo, A.; Roberto, D.; Valore, A. Linear and Nonlinear Optical Properties of Tris-cyclometalated Phenylpyridine Ir(III) Complexes Incorporating P-Conjugated Substituents. Inorg. Chem. 2013, 52, 7987–7994; https://doi.org/10.1021/ic400541e.Search in Google Scholar PubMed

16. Qian, J.; Chen, C. J.; Ma, L.; Wang, Y. D. Crystal Structure of (2-Phenylimino Methylquinoline-k2N,N′)-Bis(1-Phenylpyrazole-k2C,N′)-Iridium(III) Hexafluorophosphate, C34H26F6IrN6P. Z. Kristallogr. N. Cryst. Struct. 2023, 238, 1165–1167; https://doi.org/10.1515/ncrs-2023-0375.Search in Google Scholar

17. Qian, J.; Chen, C. J.; Ma, L.; Wang, Y. D. Crystal Structure of (2-(2-Pyridine)-benzimidazole-Κ2N,N′)-bis(1-phenylpyrazole-κ2C,N′)Iridium(III) Hexafluorophosphate, C30H22F6IrN7P. Z. Kristallogr. N. Cryst. Struct. 2023, 238, 1229–1231; https://doi.org/10.1515/ncrs-2023-0421.Search in Google Scholar

Received: 2024-09-04
Accepted: 2024-10-18
Published Online: 2024-10-29
Published in Print: 2025-02-25

© 2024 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of the co-crystal 2,4,6-triamino-1,3,5-triazine-1,3-dioxide — acetic acid (1/2) C7H14N6O6
  4. Crystal structure of the dinuclear mercury(II) complex bis(μ2-bromido)-dibromido-bis{1-[(benzotriazol-1-yl)methyl]-1-H-1,3-(2-ethyl-5-methyl-imidazol)-κ1 N} dimercury(II), C26H30N10Hg2Br4
  5. Crystal structure of poly[hexaqua-pentakis(μ4-2,2′-bipyridine-4,4′-dicarboxylato-κ4 O:O′:O″:O‴)-(μ2-2,2′-bipyridine-4,4′-dicarboxylato-κ2 O:O)tetraytterbium(III)] hydrate, C36H26N6O16Yb2
  6. Hydrothermal synthesis and crystal structure of catena-poly[(1,10-phenanthroline-κ 2 N,N′)-bis(μ 2-nitroisophthalato-κ 3 O,O′:O″)nickel(II)], C20H13NiN3O7
  7. Crystal structure of 72,73,75,76-tetrafluoro-25,44-dimethyl-31,33,36,38-tetraoxo-31,32,33,36,37,38-hexahydro-3(2,7)-benzo[lmn][3,8]phenanthrolina-1,5(4,1)-dipyridin-1-iuma-2,4(1,2),7(1,4)-tribenzenacyclooctaphane-11,51-diium hexafluoridophosphate, [C46H28F4N4O4][PF6]2, a dicationic cyclophane
  8. Crystal structure of (E)-2-(4-(1H-imidazol-1-yl)benzylidene)-7-fluoro-3,4-dihydronaphthalen-1(2H)-one, C20H15FN2O
  9. The salt crystal structure of etoricoxib hydrochloride, C18H16Cl2N2O2S
  10. The structure of t-butyl 7-[2-(4-fluorophenyl)-3-phenyl-4-(phenylcarbamoyl)-5-(propan-2-yl)-1H-pyrrol-1-yl]-3,5-dihydroxyheptanoate, C37H43FN2O5
  11. The crystal structure of (μ4-oxo)-tri(μ4-2,2′-bipyridine-6,6′-bis(olato)-κ5 O,O′:N:N′:O″)tetrazinc(II) – methylformamide (1/1), C33H25N7O8Zn4
  12. The co-crystal structure of 4-chlorobenzophenone–salicylhydrazide(1/1), C20H17ClN2O3
  13. Crystal structure of 9-fluoro-4-(6-methoxypyridin-2-yl)-5,6-dihydrobenzo[h]quinazolin-2-amine, C18H15FN4O
  14. The crystal structure of the co-crystal composed of benzhydrazide and 5-aminoisophthalic acid, C8H7NO4⋅C7H8N2O
  15. The cocrystal structure of praziquantel-hesperetin (1/1), C35H38N2O8
  16. Crystal structure of new barium manganese fluorides dihydrates, Ba10Mn2F25·2H2O
  17. The crystal structure of bis[μ2-(3-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)propanoate-κ2O:N)-bis(2,2′-bipyridine-κ2 N, N′)dicopper(II)]dinitrate, C42H36Cu2N12O10
  18. Crystal structure of (3,6-di(2-pyridyl)-4-phenylaminopyridazine-κ2N,N′)-bis(2-(p-toluene)pyridinyl-κ2C,N)-iridium(III) hexafluorophosphate –dichloromethane (1/1), C45H37Cl2F6IrN7P
  19. The crystal structure of 2-(2′-carboxybenzyl)benzoic acid, C15H12O5
  20. The crystal structure of dichlorido-[(E)-N′,N″-bis((2E,3E)-3-(hydroxyimino)butan-2-ylidene)-2-((E)-3-(hydroxyimino)butan-2-ylidene)hydrazine-1-carbohydrazonhydrazide-κ 4 N 4]cobalt(II), C13H22N9O3Cl2Co
  21. Crystal structure of (−)-flavesine H, C15H22N2O2
  22. Crystal structure of 3-methoxybenzyl 2-(6-methoxynaphthalen-2-yl)propanoate, C22H22O4
  23. Crystal structure of dicarbonyl(2-oxopyridin-1(2H)-olato-κ 2 O,O)iridium(I), C7H4IrNO4
  24. The crystal structure of 4-(3-(triphenylphosphonio)propyl)piperazin-1-ium dibromide trihydrate, C25H37Br2N2O3P
  25. The crystal structure of ethyl 5,6-dihydroxybenzofuran-3-carboxylate, C11H10O5
  26. Crystal structure of 14-(R)-(2′-cyano-phenoxy)-3,19-diacetyl andrographolide, C31H37NO7
  27. The twinned crystal structure of 10-(4-methyl benzoate)-2,8-diethyl-5,5-difluoro-1,3,7,9-tetramethyl-5H-di-pyrrolo[1,2-c:2′,1′-f] [1,3,2]diazaborinin-4-ium-5-uide, C25H29BF2N2O2
  28. The crystal structure of (9H-thioxanthen-9- ylidene)hydrazine monohydrate, C13H11N2SO0.5
  29. The crystal structure of pyridinium diaqua-{1,2-phenylenebis((carboxylatocarbonyl)amido-κ4 N,N′,O,O′)manganese(III), C15H14MnN3O8
  30. Crystal structure of the hydrogen storage active high entropy phase Tb0.82Sm0.18Ni0.83Co0.17Mg
  31. Crystal structure of diaqua-bis[5-methyl-1-(1H-pyrazol-3-yl)-1H-1,2,3-triazole-4-carboxylato-κ 2 N,O)]manganese(II), C14H16MnN10O6
  32. Crystal structures of diiodido-3-((pyridin-2-ylmethylene)amino)-2-(pyridin-3-yl)-2,3-dihydroquinazolin-4(1H)-one-cadmium(II)
  33. Synthesis and crystal structure of methyl 4-(2-ethoxy-2-oxoethoxy)-3,5-dimethoxybenzoate, C14H18O7
  34. Crystal structure of isoxazolo[4,5-b]pyridin-3-amine, C6H5N3O
  35. Crystal structure of 4-chloro-1-isobutyl-1H-imidazo, C14H14ClN3
  36. The crystal structure of 1,1,1,2,2,2-hexakis(2-methyl-2-phenylpropyl)distannane,C60H78Sn2
  37. The crystal structure of (2,7-dimethoxynaphthalene-1,8-diyl)bis((3-nitrophenyl)methanone), C26H18N2O8
  38. Crystal structure of diaqua-tetra((E)-(RS)-1-(2,4-dichlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)pent-1-en-3-ol-κ 1 N)zinc(II) dinitrate dihydrate, C60H76Cl8N14O14Zn
  39. The crystal structure of diphenyl bis(2-((diphenoxyphosphoryl)amino)ethyl)phosphoramidate monohydrate C40H42N3O10P3
  40. Crystal structure of 4,4′-bis(dibromomethyl)-1,1′-biphenyl, C14H10Br4
  41. Crystal structure of CaPtZn
  42. Crystal structure of 3-chloro-5-(trifluoromethyl)pyridine-2-carboxylic acid, C7H3ClF3NO2
  43. The crystal structure of (3′-(2-bromophenyl)-2-phenyl-[2,2′-bioxiran]-3-yl)(phenyl)methanone, C92H68O12Br4
  44. Crystal structure of ethyl 4-(4-benzylpiperazin-1-yl)benzoate, C20H24N2O2
  45. The crystal structure of bis(selenocyanato-κ1 N)-bis(methanol)-bis((1E,2E)-1,2-bis (1-(pyridin-4-yl)ethylidene)-hydrazine)iron(II) methanol solvate, C34H44FeN10O4Se2
  46. Crystal structure of (E)-1-(5-bromo-2-hydroxyphenyl)-3-(5-(4-methoxyphenoxy)-3-methyl-1-phenyl-1H-pyrazol-4-yl)prop-2-en-1-one, C26H21BrN2O4
  47. The crystal structure of methyl 4-(4-(methylsulfonyl)phenyl)-2-methyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate, C19H21NO5S
  48. Crystal structure of 1′,3′-dihydro-2,2′-spirobi[indene]-1,3-dione, C17H12O2
  49. Crystal structure of (E)-2,2′,3,3′-tetrahydro-[1,1′-biindenylidene]-4,4′-diol, C18H16O2
  50. Crystal structure of di-glycylglycinium squarate dihydrate, C12H22N4O12, at 105 K
  51. Crystal structure of {[(4-fluorophenyl)methyl]triphenylphosphonium}dibromocopper(I), [C25H21FP]+[CuBr2]
  52. Crystal structure of poly[diaqua-bis(μ2-5-((pyridin-4-yl-methyl)amino)benzene-1,3-dicarboxylato-κ 2 N:O)cadmium(II)], C28H26CdN4O10
Downloaded on 8.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2024-0356/html
Scroll to top button