Home Physical Sciences Hydrothermal synthesis and crystal structure of catena-poly[(1,10-phenanthroline-κ 2 N,N′)-bis(μ 2-nitroisophthalato-κ 3 O,O′:O″)nickel(II)], C20H13NiN3O7
Article Open Access

Hydrothermal synthesis and crystal structure of catena-poly[(1,10-phenanthroline-κ 2 N,N′)-bis(μ 2-nitroisophthalato-κ 3 O,O′:O″)nickel(II)], C20H13NiN3O7

  • Bi Wen-Jie ORCID logo EMAIL logo , Xie Dong , Hu Xing-ming , Chen Hu and Bian He-dong EMAIL logo
Published/Copyright: November 28, 2024

Abstract

C20H13NiN3O7; triclinic, P1̄ (no. 2), a = 8.329(7) Å, b = 8.726(8) Å, c = 13.300(12) Å, α = 85.948(14)°, β = 75.509(14)°, γ = 72.258(13)°, V = 891.3(13) Å3, Z = 2, R gt (F) = 0.0373, wR ref (F 2) = 0.1007, T = 296(2) K.

CCDC no.: 2343469

Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Yellow block
Size: 0.26 × 0.21 × 0.17 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 1.14 mm−1
Diffractometer, scan mode: Bruker APEX-II, φ and ω
θ max, completeness: 25.0°, 98 %
N(hkl)measured , N(hkl)unique, R int: 4,471, 3,086, 0.024
Criterion for I obs, N(hkl)gt: I obs > 2 σ(I obs), 2,704
N(param)refined: 276
Programs: Olex2, 1 , 2 Bruker, 3 SHELX 4
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
Ni1 0.95599 (5) −0.04474 (4) 0.68080 (3) 0.02280 (14)
O1W 1.1042 (3) 0.0582 (3) 0.56520 (17) 0.0297 (5)
O1 0.7538 (3) 0.0856 (2) 0.62287 (15) 0.0292 (5)
O2 0.5819 (3) 0.1976 (3) 0.76952 (16) 0.0447 (6)
O3 0.2933 (3) 0.5092 (3) 0.81915 (16) 0.0391 (5)
O4 0.5335 (3) 0.5403 (3) 0.73304 (18) 0.0464 (6)
O5 0.0209 (3) 0.7437 (2) 0.59075 (15) 0.0280 (5)
O6 0.1887 (3) 0.7683 (2) 0.68602 (16) 0.0315 (5)
N1 0.9477 (3) 0.1088 (3) 0.79041 (18) 0.0263 (5)
N2 0.8221 (3) −0.1379 (3) 0.80752 (18) 0.0258 (5)
N3 0.4057 (3) 0.5000 (3) 0.74070 (19) 0.0278 (6)
C1 0.6184 (4) 0.1820 (3) 0.6768 (2) 0.0252 (6)
C3 0.4743 (2) 0.21391 (16) 0.53001 (14) 0.0281 (6)
H3 0.545099 0.111530 0.507299 0.034*
C4 0.3502 (2) 0.2995 (2) 0.47746 (12) 0.0313 (7)
H4 0.337929 0.254318 0.419582 0.038*
C5 0.2444 (2) 0.4525 (2) 0.51141 (14) 0.0301 (7)
H5 0.161368 0.509727 0.476245 0.036*
C6 0.2628 (2) 0.51997 (16) 0.59791 (13) 0.0230 (6)
C7 0.3869 (2) 0.43442 (19) 0.65047 (11) 0.0214 (6)
C2 0.4927 (2) 0.28139 (18) 0.61652 (13) 0.0223 (6)
C8 0.1521 (4) 0.6878 (3) 0.6272 (2) 0.0240 (6)
C9 1.0095 (4) 0.2319 (4) 0.7790 (3) 0.0347 (7)
H9 1.068355 0.254237 0.713191 0.042*
C10 0.9904 (5) 0.3295 (4) 0.8609 (3) 0.0410 (8)
H10 1.034616 0.416733 0.850140 0.049*
C11 0.9069 (4) 0.2967 (4) 0.9568 (3) 0.0388 (8)
H11 0.892751 0.362072 1.012564 0.047*
C12 0.8418 (4) 0.1655 (4) 0.9726 (2) 0.0317 (7)
C13 0.8648 (4) 0.0764 (3) 0.8855 (2) 0.0257 (6)
C14 0.7987 (4) −0.0576 (3) 0.8954 (2) 0.0259 (6)
C15 0.7144 (4) −0.0999 (4) 0.9917 (2) 0.0302 (7)
C16 0.6963 (4) −0.0083 (4) 1.0798 (2) 0.0369 (8)
H16 0.641573 −0.036882 1.145096 0.044*
C17 0.7567 (4) 0.1187 (4) 1.0705 (2) 0.0380 (8)
H17 0.742526 0.177407 1.129479 0.046*
C18 0.6521 (4) −0.2316 (4) 0.9960 (2) 0.0364 (7)
H18 0.595430 −0.264764 1.059241 0.044*
C19 0.6744 (4) −0.3109 (4) 0.9077 (3) 0.0373 (8)
H19 0.632163 −0.398426 0.909445 0.045*
C20 0.7602 (4) −0.2610 (3) 0.8150 (2) 0.0313 (7)
H20 0.775125 −0.317093 0.754791 0.038*
H1WA 1.050 (5) 0.131 (4) 0.540 (3) 0.036 (10)*
H1WB 1.165 (5) −0.006 (5) 0.517 (3) 0.046 (11)*

1 Source of materials

An aqueous solution (20 mL) containing Ni(NO3)2·6H2O (116.4 mg, 0.4 mmol) was added to the ethanol/water (v:v = 2:1) solution (30 mL) of 1,10-phenanthroline (59.4 mg, 0.3 mmol) and 2-nitroisophthalic acid (nipaH2; 84.5 mg, 0.4 mmol) under stirring at room temperature, followed by adjusting pH to about 8.5 with NH3·H2O solution (1.0 mol/L). After continuing to stir for 0.5 h, the mixture was transferred into a Teflon-lined steel autoclave and reacted at 150 °C for 48 h, and then cooled to room temperature naturally. The yellow crystalline product of the title compound was collected by filtration, washed with water and ethanol, and dried in air (yield: 57 %, based on Ni).

2 Experimental details

The hydrogen atoms were located from the difference Fourier map and allowed to ride on their parent atoms with U iso(H) = 1.2 U eq(C).

3 Comment

2-nitroisophthalic acid (H2nipa) is a semi-rigid ligand with a curved structure, and its two carboxyl groups are located at an appropriate angle (approximately 120°), which can join metal ions to form one-dimensional helical chains, and its nitro and carboxyl groups can be excellent donors of coordination atoms and hydrogen bonds. 5 , 6 It can exhibit fine binding abilities as a bridge ligand in a variety of coordination modes. H2nipa and its derivatives can form interesting metal-organic frameworks (MOFs) with N-donor ligands. 6 , 7 , 8 , 9 , 10 , 11 The 1,10-phenanthrene (phen) is an important N-donor ligand and has a strong affinity for metals in various oxidation states. 12

The asymmetric unit of the molecular structure is shown in the upper part of the figure. The title compound crystallizes in the triclinic space group P1̄, and the asymmetric unit contains one Ni2+ ion, one nipa ligand, one phen ligand and one coordinated water molecule. The Ni2+ ion resides in a slightly distorted coordination octahedron, defined by two nitrogen atoms from one phen ligand (Ni–N 2.023–2.0691 Å), one oxygen atom from the coordinated water molecule (Ni–O1W, 2.056 Å), and three μ 2-oxygen atoms (Ni1–O1, 2.021 Å; Ni1–O5A, 2.124 Å and Ni1–O6A, 2.132 Å; symmetry codes: A = + 1, − 1, z) from the two carboxyl groups of two H2nipa ligands. The mentioned parameters of bond lengths are within normal range. 13 , 14 , 15 It must be pointed out that in each nipa ligand, one carboxylate group coordinates in a k2 O,O and the other in a k1 O mode monodentate coordination modes, respectively. Each Ni2+ ion is bonded by a chelating carboxyl group in one nipa ligand and a monodentate carboxyl group in another nipa ligand. Each H2nipa ligand connects two Ni2+ centers leading to form a one-dimensional zigzag chain (see lower part of the figure) where all phen ligands are oriented to the same side, respectively.


Corresponding authors: Bi Wen-Jie, College of Chemical and Pharmaceutical Engineering, Hefei Normal University, Hefei 230601, P.R. China; and Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, P.R. China, E-mail: ; and Bian He-dong, College of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, P.R. China, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This project was supported by the Guangxi Natural Science Foundation of China (No. 2019GXNSFAA185025), the Key Projects of Natural Science Research in Universities of Anhui Province (No. KJ2021A0921), Hefei Normal University 2022 Scientific Research Launch Fund for Introducing High level Talents (No. 2022rcjj26), The Science and Technology Major Project of Fuyang of Anhui Province of China (FK20208018).

  3. Conflict of interest: The authors declare no conflicts of interest regarding this article.

References

1. Bourhis, L. J.; Dolomanov, O. V.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. The Anatomy of a Comprehensive Constrained, Restrained Refinement Program for the Modern Computing Environment – Olex2 Dissected. Acta Cryst. 2015, A71, 59–75; https://doi.org/10.1107/s2053273314022207.Search in Google Scholar

2. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Cryst. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

3. Bruker SAINT, APEX2 and SADABS; Bruker AXS Inc.: Madison, WI, USA, 2012.Search in Google Scholar

4. Sheldrick, G. M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

5. Li, S. J.; Li, K.; Li, Y. W. The Crystal Structure of 2-nitroisophthalic acid, C8H5NO6. Z. Kristallogr. N. Cryst. Struct. 2020, 235, 399–400; https://doi.org/10.1515/ncrs-2019-0704.Search in Google Scholar

6. Liu, G. Z.; Ma, L. P.; Jia, R. Crystal Structure of the Coordination Polymer catena-poly[(1,2-Di(pyridin-4-Yl)ethane-kN)-(μ2-2-nitroisophthalato-Κ2O:O′) zinc(II)], C20H17N3O7Zn. Z. Kristallogr. N. Cryst. Struct. 2020, 235, 87–98; https://doi.org/10.1515/ncrs-2019-0510.Search in Google Scholar

7. Wu, R. X.; Bi, C. F.; Zhang, D. M.; Fan, C. B.; Wang, L. L.; Zhu, B.; Liu, W. B.; Li, N. N.; Zhang, X.; Fan, Y. H. Highly Selective, Sensitive and Stable Three-Dimensional Luminescent Metal-Organic Framework for Detecting and Removing of the Antibiotic in Aqueous Solution. Microchem. J. 2020, 159, 105349–105378; https://doi.org/10.1016/j.microc.2020.105349.Search in Google Scholar

8. Wu, R. X.; Bi, C. F.; Wang, L. L.; Wang, J. M.; Fan, C. B.; Li, N. N.; Wang, M.; Shao, F.; Chen, G. B.; Fan, Y. H. Five Functional Cd/Zn-Based MOFs Constructed from V-Shaped Tricarboxylate Ligand for Rapidly Selective Adsorption and Efficiently Photocatalytic Degradation of Hazardous Aromatic Dyes. Synthetic Met. 2021, 277, 116786–116800; https://doi.org/10.1016/j.synthmet.2021.116786.Search in Google Scholar

9. Shi, X. M.; Fu, Y. J.; Zhang, Z. C. Crystal Structure of poly[(N,N-dimethylacetamide-κO) (μ4-2-nitro-isophthalato-k4O:O′:O″:O‴) manganese(II)], C11H10N2O7Mn. Z. Kristallogr. N. Cryst. Struct. 2023, 238, 71–73; https://doi.org/10.1515/ncrs-2022-0478.Search in Google Scholar

10. Wu, R. X.; Zhang, X.; Wang, J. M.; Wang, L. L.; Zhu, B.; Xu, C. G.; Cui, G. N.; Zhang, D. M.; Fan, Y. H. Two Novel Zn (II)-based Metal-Organic Frameworks for Rapidly Selective Adsorption and Efficient Photocatalytic Degradation of Hazardous Aromatic Dyes in Aqueous Phase. Adv. Powder Technol. 2022, 33, 103665; https://doi.org/10.1016/j.apt.2022.103665.Search in Google Scholar

11. Wu, R. X.; Du, X. C.; Wang, J. M.; Wang, L. L.; Xu, C. G.; Luo, R.; Shao, F.; Fan, Y. H.; Zhang, X. The Hierarchical Co(II)-Based Metal-Organic Frameworks as Bifunctional Catalysts for Efficient Water Splitting and Pollutant Degradation. Cryst. Growth Des. 2023, 23, 5498–5508; https://doi.org/10.1021/acs.cgd.3c00134.Search in Google Scholar

12. Queffélec, C.; Pati, P. B.; Pellegrin, Y. Fifty Shades of Phenanthroline: Synthesis Strategies to Functionalize 1,10-Phenanthroline in All Positions. Chem. Rev. 2024, 124, 6700–6902; https://doi.org/10.1021/acs.chemrev.3c00543.Search in Google Scholar PubMed

13. Banerjee, A.; Mahata, P.; Natarajan, S. The Use of Liquid–Liquid Interface (Biphasic) for the Preparation of Benzenetricarboxylate Complexes of Cobalt and Nickel. Eur. J. Inorg. Chem. 2008, 3501–3514; https://doi.org/10.1002/ejic.200800152.Search in Google Scholar

14. Guo, C. Y.; Li, S. H. Synthesis and Crystal Structure of a Ni(II) Complex with 4-Bromoisophthalic Acid and 1,10-phenanthroline. Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 2012, 42, 902–904; https://doi.org/10.1080/15533174.2012.680135.Search in Google Scholar

15. Li, T.; Chen, L.; Shen, S. H.; Wen, C. L.; Liu, S. L. Synthesis, Crystal Structure and Magnetic Properties of a 1D Coordination Polymer [Ni(phth)(phen) (H2O)]n·nH2O. J. Coord. Chem. 2007, 60, 683–689.10.1080/00958970600899856Search in Google Scholar

Received: 2024-07-07
Accepted: 2024-11-13
Published Online: 2024-11-28
Published in Print: 2025-02-25

© 2024 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of the co-crystal 2,4,6-triamino-1,3,5-triazine-1,3-dioxide — acetic acid (1/2) C7H14N6O6
  4. Crystal structure of the dinuclear mercury(II) complex bis(μ2-bromido)-dibromido-bis{1-[(benzotriazol-1-yl)methyl]-1-H-1,3-(2-ethyl-5-methyl-imidazol)-κ1 N} dimercury(II), C26H30N10Hg2Br4
  5. Crystal structure of poly[hexaqua-pentakis(μ4-2,2′-bipyridine-4,4′-dicarboxylato-κ4 O:O′:O″:O‴)-(μ2-2,2′-bipyridine-4,4′-dicarboxylato-κ2 O:O)tetraytterbium(III)] hydrate, C36H26N6O16Yb2
  6. Hydrothermal synthesis and crystal structure of catena-poly[(1,10-phenanthroline-κ 2 N,N′)-bis(μ 2-nitroisophthalato-κ 3 O,O′:O″)nickel(II)], C20H13NiN3O7
  7. Crystal structure of 72,73,75,76-tetrafluoro-25,44-dimethyl-31,33,36,38-tetraoxo-31,32,33,36,37,38-hexahydro-3(2,7)-benzo[lmn][3,8]phenanthrolina-1,5(4,1)-dipyridin-1-iuma-2,4(1,2),7(1,4)-tribenzenacyclooctaphane-11,51-diium hexafluoridophosphate, [C46H28F4N4O4][PF6]2, a dicationic cyclophane
  8. Crystal structure of (E)-2-(4-(1H-imidazol-1-yl)benzylidene)-7-fluoro-3,4-dihydronaphthalen-1(2H)-one, C20H15FN2O
  9. The salt crystal structure of etoricoxib hydrochloride, C18H16Cl2N2O2S
  10. The structure of t-butyl 7-[2-(4-fluorophenyl)-3-phenyl-4-(phenylcarbamoyl)-5-(propan-2-yl)-1H-pyrrol-1-yl]-3,5-dihydroxyheptanoate, C37H43FN2O5
  11. The crystal structure of (μ4-oxo)-tri(μ4-2,2′-bipyridine-6,6′-bis(olato)-κ5 O,O′:N:N′:O″)tetrazinc(II) – methylformamide (1/1), C33H25N7O8Zn4
  12. The co-crystal structure of 4-chlorobenzophenone–salicylhydrazide(1/1), C20H17ClN2O3
  13. Crystal structure of 9-fluoro-4-(6-methoxypyridin-2-yl)-5,6-dihydrobenzo[h]quinazolin-2-amine, C18H15FN4O
  14. The crystal structure of the co-crystal composed of benzhydrazide and 5-aminoisophthalic acid, C8H7NO4⋅C7H8N2O
  15. The cocrystal structure of praziquantel-hesperetin (1/1), C35H38N2O8
  16. Crystal structure of new barium manganese fluorides dihydrates, Ba10Mn2F25·2H2O
  17. The crystal structure of bis[μ2-(3-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)propanoate-κ2O:N)-bis(2,2′-bipyridine-κ2 N, N′)dicopper(II)]dinitrate, C42H36Cu2N12O10
  18. Crystal structure of (3,6-di(2-pyridyl)-4-phenylaminopyridazine-κ2N,N′)-bis(2-(p-toluene)pyridinyl-κ2C,N)-iridium(III) hexafluorophosphate –dichloromethane (1/1), C45H37Cl2F6IrN7P
  19. The crystal structure of 2-(2′-carboxybenzyl)benzoic acid, C15H12O5
  20. The crystal structure of dichlorido-[(E)-N′,N″-bis((2E,3E)-3-(hydroxyimino)butan-2-ylidene)-2-((E)-3-(hydroxyimino)butan-2-ylidene)hydrazine-1-carbohydrazonhydrazide-κ 4 N 4]cobalt(II), C13H22N9O3Cl2Co
  21. Crystal structure of (−)-flavesine H, C15H22N2O2
  22. Crystal structure of 3-methoxybenzyl 2-(6-methoxynaphthalen-2-yl)propanoate, C22H22O4
  23. Crystal structure of dicarbonyl(2-oxopyridin-1(2H)-olato-κ 2 O,O)iridium(I), C7H4IrNO4
  24. The crystal structure of 4-(3-(triphenylphosphonio)propyl)piperazin-1-ium dibromide trihydrate, C25H37Br2N2O3P
  25. The crystal structure of ethyl 5,6-dihydroxybenzofuran-3-carboxylate, C11H10O5
  26. Crystal structure of 14-(R)-(2′-cyano-phenoxy)-3,19-diacetyl andrographolide, C31H37NO7
  27. The twinned crystal structure of 10-(4-methyl benzoate)-2,8-diethyl-5,5-difluoro-1,3,7,9-tetramethyl-5H-di-pyrrolo[1,2-c:2′,1′-f] [1,3,2]diazaborinin-4-ium-5-uide, C25H29BF2N2O2
  28. The crystal structure of (9H-thioxanthen-9- ylidene)hydrazine monohydrate, C13H11N2SO0.5
  29. The crystal structure of pyridinium diaqua-{1,2-phenylenebis((carboxylatocarbonyl)amido-κ4 N,N′,O,O′)manganese(III), C15H14MnN3O8
  30. Crystal structure of the hydrogen storage active high entropy phase Tb0.82Sm0.18Ni0.83Co0.17Mg
  31. Crystal structure of diaqua-bis[5-methyl-1-(1H-pyrazol-3-yl)-1H-1,2,3-triazole-4-carboxylato-κ 2 N,O)]manganese(II), C14H16MnN10O6
  32. Crystal structures of diiodido-3-((pyridin-2-ylmethylene)amino)-2-(pyridin-3-yl)-2,3-dihydroquinazolin-4(1H)-one-cadmium(II)
  33. Synthesis and crystal structure of methyl 4-(2-ethoxy-2-oxoethoxy)-3,5-dimethoxybenzoate, C14H18O7
  34. Crystal structure of isoxazolo[4,5-b]pyridin-3-amine, C6H5N3O
  35. Crystal structure of 4-chloro-1-isobutyl-1H-imidazo, C14H14ClN3
  36. The crystal structure of 1,1,1,2,2,2-hexakis(2-methyl-2-phenylpropyl)distannane,C60H78Sn2
  37. The crystal structure of (2,7-dimethoxynaphthalene-1,8-diyl)bis((3-nitrophenyl)methanone), C26H18N2O8
  38. Crystal structure of diaqua-tetra((E)-(RS)-1-(2,4-dichlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)pent-1-en-3-ol-κ 1 N)zinc(II) dinitrate dihydrate, C60H76Cl8N14O14Zn
  39. The crystal structure of diphenyl bis(2-((diphenoxyphosphoryl)amino)ethyl)phosphoramidate monohydrate C40H42N3O10P3
  40. Crystal structure of 4,4′-bis(dibromomethyl)-1,1′-biphenyl, C14H10Br4
  41. Crystal structure of CaPtZn
  42. Crystal structure of 3-chloro-5-(trifluoromethyl)pyridine-2-carboxylic acid, C7H3ClF3NO2
  43. The crystal structure of (3′-(2-bromophenyl)-2-phenyl-[2,2′-bioxiran]-3-yl)(phenyl)methanone, C92H68O12Br4
  44. Crystal structure of ethyl 4-(4-benzylpiperazin-1-yl)benzoate, C20H24N2O2
  45. The crystal structure of bis(selenocyanato-κ1 N)-bis(methanol)-bis((1E,2E)-1,2-bis (1-(pyridin-4-yl)ethylidene)-hydrazine)iron(II) methanol solvate, C34H44FeN10O4Se2
  46. Crystal structure of (E)-1-(5-bromo-2-hydroxyphenyl)-3-(5-(4-methoxyphenoxy)-3-methyl-1-phenyl-1H-pyrazol-4-yl)prop-2-en-1-one, C26H21BrN2O4
  47. The crystal structure of methyl 4-(4-(methylsulfonyl)phenyl)-2-methyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate, C19H21NO5S
  48. Crystal structure of 1′,3′-dihydro-2,2′-spirobi[indene]-1,3-dione, C17H12O2
  49. Crystal structure of (E)-2,2′,3,3′-tetrahydro-[1,1′-biindenylidene]-4,4′-diol, C18H16O2
  50. Crystal structure of di-glycylglycinium squarate dihydrate, C12H22N4O12, at 105 K
  51. Crystal structure of {[(4-fluorophenyl)methyl]triphenylphosphonium}dibromocopper(I), [C25H21FP]+[CuBr2]
  52. Crystal structure of poly[diaqua-bis(μ2-5-((pyridin-4-yl-methyl)amino)benzene-1,3-dicarboxylato-κ 2 N:O)cadmium(II)], C28H26CdN4O10
Downloaded on 22.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2024-0286/html
Scroll to top button