Startseite Naturwissenschaften Crystal structure of catena-{[tri-aqua-di-sodium bis(2-{[n-butyl(methyl)carbamothioyl]sulfanyl}acetate)]}n, [C16H34N2Na2O7S4]n
Artikel Open Access

Crystal structure of catena-{[tri-aqua-di-sodium bis(2-{[n-butyl(methyl)carbamothioyl]sulfanyl}acetate)]}n, [C16H34N2Na2O7S4]n

  • Kong Mun Lo , See Mun Lee und Edward R.T. Tiekink ORCID logo EMAIL logo
Veröffentlicht/Copyright: 4. Oktober 2019

Abstract

[C16H34N2Na2O7S4]n, triclinic, P1̄ (no. 2), a = 5.3734(1) Å, b = 11.0473(2) Å, c = 22.2264(5) Å, α = 102.075(2)°, β = 96.202(2)°, γ = 97.383(2)°, V = 1267.06(5) Å3, Z = 2, Rgt(F) = 0.0335, wRref(F2) = 0.0941, T = 100(2) K.

CCDC no.: 1948407

The constituents of the asymmetric unit are shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal:Colourless plate
Size:0.17 × 0.04 × 0.02 mm
Wavelength:Cu Kα radiation (1.54178 Å)
μ:4.12 mm−1
Diffractometer, scan mode:XtaLAB Synergy, ω
θmax, completeness:67.1°, >99%
N(hkl)measured, N(hkl)unique, Rint:30669, 4523, 0.040
Criterion for Iobs, N(hkl)gt:Iobs > 2 σ(Iobs), 4210
N(param)refined:302
Programs:CrysAlisPRO [1], SHELX [2], [3], WinGX/ORTEP [4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyzUiso*/Ueq
S11.14745(10)0.13521(5)0.31092(3)0.01677(13)
S21.20238(10)−0.12848(5)0.24774(3)0.01810(14)
S3−0.09303(11)0.55782(5)0.30283(3)0.01951(14)
S40.07497(11)0.40808(5)0.18787(3)0.01860(14)
O10.8756(3)0.23449(14)0.40388(8)0.0185(3)
O20.6459(3)0.06077(15)0.41707(8)0.0195(3)
O30.4094(3)0.51778(14)0.42949(7)0.0163(3)
O40.0078(3)0.54681(14)0.43245(7)0.0158(3)
N11.4657(4)0.08311(18)0.23274(9)0.0171(4)
N2−0.2638(4)0.56527(18)0.19006(9)0.0175(4)
C10.8092(4)0.1187(2)0.39188(11)0.0158(4)
C20.9367(4)0.0355(2)0.34436(11)0.0173(5)
H2A0.8070−0.01890.31140.021*
H2B1.0333−0.01880.36490.021*
C31.2883(4)0.0276(2)0.26040(10)0.0156(4)
C41.5381(4)0.2203(2)0.24791(12)0.0197(5)
H4A1.39160.25920.23630.030*
H4B1.67580.24320.22490.030*
H4C1.59500.24970.29260.030*
C51.5901(4)0.0086(2)0.18504(11)0.0204(5)
H5A1.6369−0.06530.19950.024*
H5B1.74810.05990.17990.024*
C61.4227(5)−0.0357(2)0.12220(12)0.0250(5)
H6A1.2690−0.09040.12730.030*
H6B1.5155−0.08710.09300.030*
C71.3407(5)0.0692(3)0.09316(12)0.0287(6)
H7A1.21080.03200.05660.034*
H7B1.26160.12550.12370.034*
C81.5590(6)0.1466(3)0.07287(14)0.0369(7)
H8A1.68280.18870.10930.055*
H8B1.49350.20950.05300.055*
H8C1.64090.09140.04330.055*
C90.1897(4)0.51760(19)0.40392(10)0.0131(4)
C100.1442(4)0.4765(2)0.33315(11)0.0163(4)
H10A0.08650.38490.32040.020*
H10B0.30400.49560.31620.020*
C11−0.1018(4)0.5105(2)0.22109(11)0.0166(5)
C12−0.4020(4)0.6599(2)0.22157(11)0.0194(5)
H12A−0.52050.62130.24520.029*
H12B−0.49640.69460.19070.029*
H12C−0.28180.72730.24990.029*
C13−0.3042(4)0.5392(2)0.12204(11)0.0197(5)
H13A−0.48530.53840.10750.024*
H13B−0.26210.45520.10520.024*
C14−0.1418(5)0.6370(2)0.09735(11)0.0223(5)
H14A−0.16580.72180.11890.027*
H14B0.03910.62950.10700.027*
C15−0.2070(5)0.6224(2)0.02784(11)0.0229(5)
H15A−0.38400.63640.01860.028*
H15B−0.19590.53550.00650.028*
C16−0.0323(5)0.7133(3)0.00220(13)0.0309(6)
H16A−0.05510.79940.02000.046*
H16B−0.07370.6956−0.04310.046*
H16C0.14420.70320.01320.046*
Na10.70753(15)0.40096(8)0.46389(4)0.01489(19)
Na2−0.26699(16)0.69607(8)0.43202(4)0.0169(2)
O1W−0.5177(3)0.81183(15)0.38060(8)0.0201(3)
H1W−0.587(5)0.800(3)0.3438(6)0.030*
H2W−0.450(5)0.8867(13)0.3939(12)0.030*
O2W0.0821(3)0.85602(17)0.45241(8)0.0247(4)
H3W0.135(5)0.891(3)0.4898(6)0.037*
H4W0.206(4)0.839(3)0.4337(12)0.037*
O3W−0.3720(3)0.75892(15)0.53094(8)0.0184(3)
H5W−0.247(4)0.755(3)0.5561(10)0.028*
H6W−0.447(5)0.817(2)0.5469(12)0.028*

Source of material

All chemicals and solvents were used as purchased without purification. The melting point was determined using a Mel-temp II digital melting point apparatus and was uncorrected. The solid-state IR spectrum was obtained on a Bruker Vertex 70v FTIR Spectrometer from 4000 to 400 cm−1. The 1H and 13C{1H} NMR spectra were recorded at room temperature in CDCl3 solution on a Bruker Ascend 400 MHz NMR spectrometer with chemical shifts relative to tetramethylsilane.

The dithiocarbamate ligand was prepared in situ (acetone) from the reaction of CS2 (Merck, 0.25 mmol) with n-butylmethylamine (Merck, 0.25 mmol) and NaOH (0.02 mL; 50% w/v); CS2 was added dropwise into the methanol solution (10 mL). The resulting mixture solution was kept at 273 K for 1 h. Sodium chloroacetate (Merck, 0.03 g, 0.25 mmol) was added into the solution. The filtrate was evaporated slowly until a white precipitate was formed. The precipitate was washed with n-hexane and recrystallized from a methanol-acetone solution. Colourless crystals of the title salt were obtained from the slow evaporation of the solvent. Yield: 0.027 g (20.0%). M.pt: >623 K. IR (cm−1) 1570 (s) ν(C—O), 1486 (s) ν(C—N), 1382 (s) ν(C—N), 1117 (m) ν(C—O), 1012 (m) ν(C—S), 980 (m) ν(C—S). 1H NMR (CDCl3, p.p.m.): δ 0.93 (s, 3H, CH3), 1.20–1.44 (m, 4H, CH2CH2), 2.80–2.82 (m, 2H, CH2), 2.87–2.90 (m, 6H, water-OH), 3.44 (s, 3H, NCH3), 4.00–4.04 (m, 4H, NCH2). 13C{1H} NMR (CDCl3, p.p.m.): 13.9 (CH3), 20.0, 28.5 (CH2CH2), 40.0 (SCH2), 43.6 (NCH3), 57.0 (NCH2), 175.2 (CO), 197.2 (CS2).

Experimental details

The C-bound H atoms were geometrically placed (C—H = 0.98–0.99 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). The O-bound H-atoms were located in a difference Fourier map but were refined with a distance restraint O—H = 0.84 ± 0.01 Å, and with Uiso(H) set to 1.5Ueq(O). A number of reflections were omitted from the final cycles of refinement owing to poor agreement; details are given in the CIF.

Comment

The title sodium salt of a hybrid dithiocarbamate ester of a carboxylic acid, isolated as a trihydrate, was investigated as a part of on-going studies of the structural chemistry of these molecules [5] and their organotin derivatives [6]. The motivation for these studies is to ultimately investigate the biological potential of the organotin derivatives, as both organotin carboxylates [7] and organotin dithiocarbamates [8] are known to exhibit a range of pharmaceutical potential. Indeed, a very recent publication highlighted the potential anti-tumour activity of several organotin species containing these molecules [9]. The structure of the substituted tribenzyl tin complex comprising the same dithiocarbamate anion reported in this publication has also been reported in the literature [10].

The constituents comprising the asymmetric unit of the title salt hydrate are shown in the upper view of the figure (70% displacement ellipsoids) and comprise two independent sodium cations, two n-Bu(Me)NC(=S)SCH2CO2 anions and three water molecules of crystallization. The pattern in C—S bond lengths, with C3—S3 [1.682(2) Å] being significantly shorter than C3—S1 [1.762(2) Å] and C2—S1 [1.804(2) Å] match those involving the S3 and S4 atoms [1.675(2), 1.776(2) and 1.802(2) Å, respectively. Further, they follow the pattern established in another dithiocarbamate ester, i.e. recently determined MeSC(=S)N(Me)Ph [11], with equivalent values being 1.6590(18), 1.7662(17) and 1.789(2) Å. Further, the pattern in the angles about the C3 atom, with the wider angles subtended by the S2 atom [S1—C3—S2 = 122.81(13) Å and S2—C3—N1 = 124.12(17) Å cf. S1—C3—N1 = 113.06(16) Å] is consistent with the presence of a C3=S2 and C11=S4 thione bonds, as the equivalent angles about the C11 atom follow the same trends [S3—C11—S4 = 122.93(14)°, S4—C11—N2 = 124.66(18)° and S3—C11—N2 = 112.41(17)°]. Further, in a recently authenticated dithiocarbamate anion, S2CN(CH2CH2)2NPh [12], the angles about the quaternary-carbon atom spanned a very narrow range 119.45(8) to 120.57(10)°, consistent with significant delocalization of π-electron density over the CS2 chromophore, clearly absent in the anions of the title compound. The above descriptors are consistent with the presence of carboxylate groups in the anions. However, the C—O bond lengths are not equivalent [C1—O1, O2 = 1.247(3) and 1.267(3) Å; C9—O3, O4 = 1.253(3) and 1.261(3) Å]. As discussed below, these variations are related to the different interactions the carboxylate-O atoms have with the sodium cations and in the supramolecular assembly. There is a significant difference in the conformations of the carboxylate ligands. While the CO2 and CS2 residues are close to co-planar in the O1-carboxylate anion, with the CO2/CS2 dihedral angle being 4.5(5)°, these are inclined in the O3-carboxylate anion with the CO2/CS2 dihedral angle being 32.55(16)°. This conformational difference arises from variable twists about the O1—C1—C2—S1 [−5.0(3)°] and O3—C9—C10—S3 torsion angles [−148.67(16)°]. The other conformational difference in the carboxylate anions relates to the n-butyl groups. Thus, in the O1-carboxylate anion, the N1—C5—C6—C7 [60.2(3)°] and C5—C6—C7—C8 [68.2(3)°] torsion angles are indicative of + syn-clinal conformation whereas the equivalent N2—C13—C14—C15 [−172.0(2)°] and C13—C14—C15—C16 [−175.6(2)°] torsion angles indicate an – anti-periplanar conformation.

The sodium cations have quite distinct donor sets and coordination geometries. The Na1 cation is coordinated by six oxygen atoms, five of which are carboxylate-O and the sixth being a water-O atom. The Na1—O bond lengths range from 2.3443(18) Å, for Na1—O3, to 2.5370(18) Å for Na1—O4i [symmetry operation (i) 1 – x, 1 – y, 1 – z]. The O6 donor set defines a distorted trigonal prismatic geometry. By contrast, the Na2 cation is coordinated within a O5S donor set defined by two carboxylate-O, three water-O and thioester-S atoms. The Na2—O bonds range from 2.3161(19) Å, for Na2—O3w, to 2.4410(18) Å, for Na2—O3ii [(ii) −1 + x, y, z] and define a square-pyramidal geometry. The S3 atom occupies the sixth site [Na2—S3 = 3.2502(11) Å] leading to a distorted octahedral geometry. As seen in the middle view of the figure, the aforementioned connections give rise to a one-dimensional chain along the a axis with edge-shared coordination polyhedra. The inner polyhedra encompass the Na1-cations and the outer polyhedra contain the Na2-cations. Additional stability to the one-dimensional coordination polymer arises from hydrogen bonding interactions of the type water-OH⋯O(carboxylate, water) [O2w—H3w⋯O2i: H3w⋯O2i = 2.192(16) Å, O2w⋯O2i = 3.003(2) Å with angle at H3w = 162(3)°; O2w—H4w⋯O1wiii: H4w⋯O1wiii = 2.01(2) Å, O2w⋯O1wiii =2.845(2) Å, with angle at H4w = 172(3)°; O3w—H5w⋯O1i: H5w⋯O1i = 2.07(2) Å, O3w⋯O1i = 2.879(2) Å with angle at H5w = 161(2)° and O3w—H6w⋯O2iv: H6w⋯O2iv = 1.93(3) Å, O3w⋯O2iv = 2.762(2) Å with angle at H6w = 175(3)° for (iii) 1 + x, y, z and (iv) −x, 1 − y, 1 − z]. The connections between the chains along the b axis to form a supramolecular layer are of the type water-OH⋯S(thione) and water-OH⋯O(carboxylate) O1w—H1w⋯S2v: H1w⋯S2v = 2.62(2) Å, O1w⋯S2v = 3.3952(18) Å with angle at H1w = 154(3)° and O1w—H2w⋯O2vi: H2w⋯O2vi = 1.872(17) Å, O1w⋯O2vi = 2.699(2) Å with angle at H2w = 170(3)° for (v) −2 + x, 1 + y, z and (vi) −1 + x, 1 + y, z]. The layers stack along the c axis direction without directional interactions between them.

Further analysis of the molecular packing was performed using Crystal Explorer 17 [13] to calculate the Hirshfeld surfaces (including the full and delineated two-dimensional fingerprint plots) for the specified asymmetric unit (see figure), following standard procedures [14]. Reflecting, to a large extent, the hydrophobic contacts along the c axis, H⋯H contacts make the greatest contribution to the overall Hirshfeld surface, at 52.5%. The next most significant contribution to the surface contacts are S⋯H/H⋯S at 17.1% followed closely by O⋯H/H⋯H [14.6%], then Na⋯O/O⋯Na [7.7%] and C⋯H/H⋯C [3.9%] contacts. An accompanying structural report of a closely related sodium salt, Na[S2CN(Me)n-Bu]⋅H2O [15], also adopts a layer structure with the layers separated by hydrophobic interactions. The percentage contribution by H⋯H contacts to the Hirshfeld surface also computes to 52.5% in this crystal [15].

Acknowledgements

Sunway University Sdn Bhd is thanked for financial support of this work through Grant No. STR-RCTR-RCCM-001–2019.

References

1. Rigaku Oxford Diffraction. CrysAlisPRO. Rigaku Corporation, Oxford, UK (2018).Suche in Google Scholar

2. Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112–122.10.1107/S0108767307043930Suche in Google Scholar PubMed

3. Sheldrick, G. M.: Crystal structure refinement with SHELXL. Acta Crystallogr. C71 (2015) 3–8.10.1107/S2053229614024218Suche in Google Scholar PubMed PubMed Central

4. Farrugia, L. J.: WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr. 45 (2012) 849–854.10.1107/S0021889812029111Suche in Google Scholar

5. Lee, S. M.; Azizan, A. H. S.; Lo, K. M.; Tan, S. L.; Tiekink, E. R. T.: 2-{[bis(propan-2-yl)carbamothioyl]sulfanyl}acetic acid. Molbank 2019 (2019) M1082 (seven pages).10.3390/M1082Suche in Google Scholar

6. Lee, S. M.; Lo, K. M.; Tiekink, E. R. T.: Crystal structure of bis[(μ3-oxido)-(μ2-(N,N-diisopropylthiocarbamoylthio)acetato-κ2O,O′)-((N,N-diisopropylthiocarbamoylthio) acetato-κO)-bis(di-4-methylbenzyl-tin(IV))], C100H136N4O10S8Sn4. Z. Kristallogr. NCS 234 (2019) 943–946.10.1515/ncrs-2019-0161Suche in Google Scholar

7. Gielen, M.; Tiekink, E. R. T.: Metallotherapeutic drugs and metal-based diagnostic agents: the use of metals in medicine. (Eds. Gielen, M. and Tiekink, E. R. T.), p. 421–439. John Wiley & Sons Ltd., Chichester, England (2005).10.1002/0470864052Suche in Google Scholar

8. Tiekink, E. R. T.: Tin dithiocarbamates: applications and structures. Appl. Organomet. Chem. 22 (2008) 533–550.10.1002/aoc.1441Suche in Google Scholar

9. Anasamy, T.; Thy, C. K.; Lo, K. M.; Chee, C. F.; Yeap, S. K.; Kamalidehghan, B.; Chung, L. Y.: Tribenzyltin carboxylates as anticancer drug candidates: effect on the cytotoxicity, motility and invasiveness of breast cancer cell lines. Eur. J. Med. Chem. 125 (2017) 770–783.10.1016/j.ejmech.2016.09.061Suche in Google Scholar PubMed

10. Keng, T. C.; Lo, K. M.; Ng, S. W.: {[(N-Butyl-N-methylcarbamothioyl)sulfanyl]acetato-κO}tris(2-chlorobenzyl) tin(IV). Acta Crystallogr. E66 (2010) m307.10.1107/S1600536810005830Suche in Google Scholar PubMed PubMed Central

11. Lo, K. M.; Lee, S. M.; Tiekink, E. R. T.: Crystal structure of N-methyl-N-phenyl(methylsulfanyl) carbothioamide, C9H11NS2. Z. Kristallogr. NCS 234 (2019) 1325–1327.10.1515/ncrs-2019-0511Suche in Google Scholar

12. Lo, K. M.; Lee, S. M.; Tiekink, E. R. T.: Crystal structure of 4-phenylpiperazin-1-ium (4-phenylpiperazin-1-yl)carbothioylsulfanide, [C10H15N2][C11H13N2S2]. Z. Kristallogr. NCS 234 (2019) 1329–1331.10.1515/ncrs-2019-0512Suche in Google Scholar

13. Turner, M. J.; McKinnon, J. J.; Wolff, S. K.; Grimwood, D. J.; Spackman, P. R.; Jayatilaka, D.; Spackman, M. A.: Crystal Explorer v17. The University of Western Australia, Australia (2017).Suche in Google Scholar

14. Tan, S. L.; Jotani, M. M.; Tiekink, E. R. T.: Utilizing Hirshfeld surface calculations, non-covalent interaction (NCI) plots and the calculation of interaction energies in the analysis of molecular packing. Acta Crystallogr. E75 (2019) 308–318.10.1107/S2056989019001129Suche in Google Scholar PubMed PubMed Central

15. Lo, K. M.; Lee, S. M.; Zaldi, N. B.; Hussen, R. S. D.; Tiekink, E. R. T.: Crystal structure of catena-{di-aqua-sodium [n-butyl(methyl)carbamothioyl]sulfanide}n, [C6H16NNaO2S2]n. Z. Kristallogr. NCS 234 (2019) 1333–1335.10.1515/ncrs-2019-0514Suche in Google Scholar

Received: 2019-07-19
Accepted: 2019-08-21
Published Online: 2019-10-04
Published in Print: 2019-12-18

©2019 Kong Mun Lo et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 Public License.

Artikel in diesem Heft

  1. 10.1515/ncrs-2020-frontmatter1
  2. The crystal structure of 3,5-dicarboxybenzenaminium perchlorate monohydrate, C8H8ClNO9
  3. The crystal structure of poly[(m4-4-bromoisophthalato-κ4O: O′:O′′:O′′′)zinc(II)], C8H3BrO4Zn
  4. Crystal structure of (E)-2-(2-chloro-6-hydroxybenzylidene)hydrazine-1-carbothioamide, C8H8ClN3O4S
  5. Crystal structure of 1,1′-methylenebis(3-ethyl-1H-imidazol-3-ium) bis(hexafluorophosphate(V)), C11H18F12N4P2
  6. The crystal structure of hexakis(1-isopropyl-1H-imidazole-κ1N)copper(II) dichloride, C36H58Cl2CuN12
  7. Crystal structure of catena-poly[μ2-4,4′-bipyridine-κ2N:N′)-tetrakis(μ2-2-((3,5,6-trichloropyridin-2-yl)oxy)acetato-κ2O:O′)dicobalt(II)], C19H10Cl6CoN3O6
  8. Crystal structure of (E)-1-(4-(((E)-2-bromo-6-hydroxybenzylidene)amino)phenyl)ethan-1-one O-methyl oxime, C16H15BrN2O2
  9. Crystal structure of ethyl 2-methyl-4-(5-methylthiophen-2-yl)-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate, C18H21NO3S
  10. The crystal structure of 5-bromo-2-(1-methyl-1H-tetrazol-5-yl)pyridine, C7H6BrN5
  11. Crystal structure of Bis(acetato-κ2O,O′)-bis[4-(dimethylamino)pyridine-κN]nickel(II), C18H26N4NiO4
  12. Crystal structure of (E)-3-chloro-2-(((4-chlorophenyl)imino)methyl)phenol, C13H9Cl2NO
  13. The co-crystal structure of (17b)-estra-1,3,5(10)-triene-3,17diol – acetamide (1/1), a Z′ = 4 structure, C20H29NO3
  14. Crystal structure of 3-(3-(pyridin-3-yl)ureido)benzoic acid, C13H11N3O3
  15. The crystal structure of 1,1′-(9-ethyl-9H-carbazole-3,6-diyl)bis(3-ethyl-1H-imidazol-3-ium) bis(hexafluorophosphate(IV)), C24H27N5F12P2
  16. The crystal structure of 2-bromoisophthalic acid, C8H5BrO4
  17. The crystal structure of 13-ethoxycarbonyl-9-methyl-4-chlor-11-thioxo-8-oxa-10,12-diazatricyclo[7.3.1.02,7]trideca-2,4,6-triene, C14H15ClN2O3S
  18. The crystal structure of (E)-4-((4-(diethylamino)benzylidene)amino)-N,N-diphenylaniline, C29H29N3
  19. Crystal structure of 2-(3-(2-(4-phenylpiperazin-1-yl)ethyl)benzyl)isoindoline-1,3-dione, C27H27N3O2
  20. Crystal structure of 2-ethoxy-6-((E)-((3-(((E)-3-ethoxy-2-hydroxybenzylidene)amino)-2-hydroxypropyl)iminio)methyl)phenolate, C21H26N2O5
  21. The crystal structure of catena-poly2-4,4′-bipyridine-κ2N:N′)-tetrakis(μ2-2-((3,5,6-trichloropyridin-2-yl)oxy)acetato-κ2O:O′)dinickel(II)], C19H10Cl6N3NiO6
  22. Crystal structure of hexakis(μ2-azido-κ2N:N)-diazido-κ1N-tetrakis(phenanthroline-κ2N,N′)tetrazinc(II), C48H32N32Zn4
  23. Synthesis and crystal structure of bis{2-bromo-6-(((4-(1-(methoxyimino)ethyl)phenyl)imino)methyl)phenolato-κ2N,O}cobalt(II)–dichloromethane(1/1), C34H32Br2Cl4CoN4O4
  24. Crystal structure of (E)-3-chloro-2-(((4-nitrophenyl)imino)methyl)phenol, C13H9ClN2O3
  25. Crystal structure of aqua-bis(5-bromo-6-methyl-picolinato-κ2N,O)zinc(II) dihydrate, C14H16Br2N2O7Zn
  26. Crystal structure of biaqua(2,2′-bipyridine-4,4′-dicarboxylato-κ2N,N′)(pyridine-2,6-dicarboxylato-κ3O,N,O′)nickel(II) hydrate, C19H15N3NiO10
  27. Synthesis and crystal structure of bis(2-(((4-(1-(ethoxyimino)ethyl)phenyl)imino)methyl)-5-fluorophenolato-κ2N,O)zinc(II) - methanol (1/1), C33H32F2N4O4Zn
  28. Crystal structure of tetraaqua-bis(μ2-5-aminoisophthalato-κ3N:O,O′)-bis(4,4′-dipyridylsulfide-κ1N)dizinc(II), C36H34N6O12S2Ni2
  29. Crystal structure of (1,4,8,11-tetraazacyclotetradecane-κ4N,N′,N′′,N′′′)palladium(II) tetracyanonickelate(II), C14H24N8NiPd
  30. The crystal structure of 3-benzyl-1-((8-(benzyloxy)quinolin-2-yl)methyl)-1H-imidazol-3-ium hexafluorophosphate, C27H24N3OF6P
  31. Crystal structure of 1-(4-chloro-2-hydroxy-5-iodophenyl)ethan-1-one, C8H6ClIO2
  32. Crystal structure of hexaaquamagnesium(II) bis((E)-4-((4-(dimethylamino)phenyl)diazenyl)benzenesulfonate), C28H40MgN6O12S2
  33. Crystal structure of the coordination polymer catena-poly[(1,2-di(pyridin-4-yl)ethane-κN)-(μ2-2-nitroisophthalato-κ2O:O′)zinc(II)], C20H17N3O7Zn
  34. Crystal structure of catena-{[tri-aqua-di-sodium bis(2-{[n-butyl(methyl)carbamothioyl]sulfanyl}acetate)]}n, [C16H34N2Na2O7S4]n
  35. The crystal structure of diaqua-bis(μ2-3-((3-acetyl-5-carboxyphenyl)oxidophosphoryl)-5-carboxybenzoato-κ2O:O′)bis(5,5′-dimethyl-2,2′-bipyridine-k2N,N′)zinc(II), C56H46N4O22P2Zn2
  36. Crystal structure of N′,2-bis((E)-2-chloro-6-hydroxybenzylidene)hydrazine-1-carbothiohydrazide, C15H12Cl2N4O2S
  37. Crystal structure of 2-[(1E)-{[1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl]iminiumyl}methyl]-5-(dodecyloxy)benzen-1-olate, C23H39NO5
  38. Crystal structure of 12-(2-hydroxybenzoyl)benzo[f]pyrido[1,2-a]indole-6,11-dione, C23H13NO4
  39. Crystal structure of chlorido-(4-chloro-6-(p-tolyl)pyrimidine-κ2C,N)-(triphenylphosphane-κP)palladium(II), C29H23Cl2N2PPd
  40. Crystal structure of catena-poly[diaqua-bis(3,4,5,6-tetrabromo-carboxybenzoato-κ1O)-(μ2-4,4′-bipyridine-κ2N:N′)cobalt(II)], C26H14Br8CoN2O10
  41. Crystal structure of catena-poly[dibenzyl-dichlorido-(μ2-[4,4′-bipyridine]1,1′-dioxide-κ2O:O′)tin(IV)], C24H22Cl2N2O2Sn
  42. Crystal structure of benzyl-chlorido-(4-chloro-N-[(2-oxidophenyl)methylidene]benzenecarbohydrazonato)-methanol-tin(IV), C22H20Cl2N2O3Sn
  43. Crystal structure of catena-poly[triaqua-(1,3-di(1H-imidazol-1-yl)benzene-κ2N:N′)-(3-nitrophthalato-κ1O)cobalt(II)] — water (2/3), C20H22N5O10.5Co
  44. Crystal structure of (3R,5R,8R,9R,10R,12R,13R,14R)-4,4,8,10,14-pentamethyl-17-((R)-2,6,6-trimethyltetrahydro-2H-pyran-2-yl)hexadecahydro-1H-cyclopenta[a]phenanthrene-3,12-diol, C30H52O3
  45. Crystal structure of 3-(3-(4-carboxyphenyl)ureido)pyridin-1-ium perchlorate, C26H24Cl2N6O14
  46. Crystal structure of 8-hydroxy-2-methylquinolin-1-ium chloride dihydrate, C10H14ClNO3
  47. Crystal structure of (dibenzyl sulphoxide-κO)dibromido-bis(4-bromobenzyl-κC)tin(IV), C28H26Br4OSSn
  48. Crystal structure of bromido-tri(4-chlorophenyl-κ1C)-(ethanol-κ1O)tin(IV) — 4,4′-dimethyl-2,2′-bipyridine (2/1), C52H48Br2Cl6N2O2Sn2
  49. Crystal structure of 2-butyl-6-(ethylamino)-1H-benzo[de]isoquinoline-1,3(2H)-dione, C18H20N2O2
  50. Crystal structure of (4-chloro-N-[(2-oxido-5-chlorophenyl)methylidene] benzene-carbohydrazonato-κ3N,O,O′)bis(2-fluorobenzyl)tin(IV), C28H20Cl2F2N2O2Sn
  51. Crystal structure of aqua-chlorido-(4-fluorobenzyl-κC)-(N′-(4-methoxy-2-oxidobenzylidene)-3-hydroxy-2-naphthohydrazidato-κ3N,O,O′)tin(IV), C26H22ClFN2O5Sn
  52. Crystal structure of catena-poly[tri(4-chlorophenyl)-(μ2-hydroxido)tin(IV)] – 2-propanol (1/1), C21H21Cl3O2Sn
  53. Crystal structure of bromido-dimethyl-4-tolyl-(triphenylphosphine oxide)tin(IV), C27H28BrOPSn
  54. Crystal structure of 2-(bis(2-hydroxyethyl)ammonio)ethane-1-sulfonate, C6H15NO5S
  55. Crystal structure of bis[triaqua-(μ2-1,2-di(4-pyridyl)ethylene-κ2N:N′)-(4-sulfonatobenzoato-κ2O,O′)zinc(II)], C13H15NO8SZn
  56. Crystal structure of 2-((2-(3-hydroxy-7-methylene-2,3-dihydro-7H-furo[3,2-g]chromen-2-yl)propan-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol – a marmesin derivative, C20H24O10
  57. Crystal structure of octa(4-chlorobenzyl)-dichlorido-bis(μ2-methanolato)-bis(μ3-oxo)-tetratin(IV), C58H54Cl10O4Sn4
  58. Crystal structure of iodido-triphenyl-(triphenylphosphine oxide)tin(IV), C36H30IOPSn
  59. Crystal structure of dichlorido-bis(4-methylphenyl-κC)-bis(triphenylarsine oxide-κO)tin(IV), C50H44As2Cl2O2Sn
  60. Crystal structure of 4-benzyl-1-oxo-N-phenethyl-1H-[1,4]oxazino [4,3-b]indazole-3-carboxamide, C26H21N3O3
  61. Crystal structure of bis{(N-[(5-chloro-2-oxidophenyl)methylidene]-2-hydroxybenzenecarbohydrazonato)-dioxo-molybdenum(VI)}(μ2-4,4′-bipyridine), C38H26Cl2Mo2N6O10
  62. Crystal structure of dichlorido-octamethyl-bis(μ3-oxido)-bis(μ2-2-(phenylamino)ethanolato-κ2O:O)tetratin(IV), C24H44Cl2N2O4Sn4
  63. The crystal structure of 1-(2-(2-(imidazo[1,5-a]pyridine-4-ium)ethoxy)ethyl)-imidazo[1,5-a]pyridine-4-ium bis(hexafluorophosphate) — acetonitrile (1/1), C18H20ON4F12P2
  64. Crystal structure of cyclo[tetra(μ2-cyanido)-tetracyanido-bis(1,4,7,10-tetraazacyclododecane-κ4N,N′,N′′,N′′′)dinickel(II)dipalladium(II)] hexahydrate, C24H52N16Ni2O6Pd2
  65. Crystal structure of (dimethyl sulfoxide)-dioxido-[2-hydroxy-N′-(4-oxo-4-phenylbutan-2-ylidene)benzohydrazidato κ3N,O,O′]molybdenum(VI), C19H20MoN2O6S
  66. Crystal structure of bis(acetylacetonato-κ2O,O′)-(ethanolamine-κ2N,O)copper(II), C14H25CuNO5
  67. Crystal structure of chlorido-diphenyl-(isopropyl(propyl)carbamodithioato-κ2S,S′)tin(IV), C19H24ClNS2Sn
  68. The crystal structure of bis(imidazole-1-yl)methane monohydrate, C7H10N4O
  69. The crystal structure of bis(4-nitroimidazole-1-1yl)methane, C7H6N6O4
  70. Crystal structure of di(naphthalen-2-yl)sulfane, C20H14S
  71. Crystal structure of 3-acetyl-6-bromo-4-hydroxy-2H-chromen-2-one, C11H7BrO4
  72. Crystal structure of N′2,N′6-bis((E)-1-(pyrazin-2-yl)ethylidene)pyridine-2,6-dicarbohydrazide — methanol (1/2), C21H25N9O4
  73. The crystal structure of 3-nitro-4-(p-tolylamino)-2H-chromen-2-one, C16H12N2O4
  74. The crystal structure of 1,2-bis((4-methoxyphenyl)ethynyl)benzene, C24H18O2
  75. Crystal structure of a low-temperature (100 K) polymorph of catena-poly[(μ2-4,4′-bipyridine-κ2N,N′)-bis(O,O′-diethyldithiophosphato-κ1S)zinc(II)], C18H28N2O4P2S4Zn
  76. The pseudosymmetric low temperature polymorph of catena-poly[(μ2-4,4′-bipyridyl-κN,N′)-bis(O,O′-diethyldithiophosphato-κS)-cadmium(II)], {C18H28CdN2O4P2S4}n
  77. Crystal structure of 3-iodophthalic acid, C8H5IO4
  78. The crystal structure of tert-butyl (tert-butoxy(oxo)methyl)(5-bromo-2-fluorophenyl)carbamate, C16H21BrFNO4
  79. The crystal structure of bis(μ2-5,7-dichloroquinolin-8-olato-κ3N,O:O)-tetrakis(5,7-dichloroquinolin-8-olato-κ2N,O)bis(methanol-κ1O)dieuropium(III) — toluene (1/1), C63H39Cl12Eu2N6O8
  80. Crystal structure of dichlorido-(N′-(1-(3-ethylpyrazin-2-yl)ethylidene)-4-methoxybenzohydrazide-κ3N,N′,O)cadmium(II), C16H18N4O2Cl2Cd
  81. A redetermination of the crystal structure of catena-poly[(bis(O,O′-isopropyl dithiophosphato-κ2S,S′)-(μ2-1,2-bis(3-pyridylmethylene)hydrazine-κ2N,N′)cadmium(II)], {C24H38CdN4O4P2S4}n
Heruntergeladen am 16.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2019-0513/html
Button zum nach oben scrollen