Home Physical Sciences The crystal structure of bis(μ2-5,7-dichloroquinolin-8-olato-κ3N,O:O)-tetrakis(5,7-dichloroquinolin-8-olato-κ2N,O)bis(methanol-κ1O)dieuropium(III) — toluene (1/1), C63H39Cl12Eu2N6O8
Article Open Access

The crystal structure of bis(μ2-5,7-dichloroquinolin-8-olato-κ3N,O:O)-tetrakis(5,7-dichloroquinolin-8-olato-κ2N,O)bis(methanol-κ1O)dieuropium(III) — toluene (1/1), C63H39Cl12Eu2N6O8

  • Orbett T. Alexander ORCID logo EMAIL logo , Alice Brink and Hendrik G. Visser
Published/Copyright: October 25, 2019

Abstract

C63H39Cl12Eu2N6O8, triclinic, P1̄ (no. 2), a = 10.720(5) Å, b = 12.232(5) Å, c = 14.267(5) Å, α = 65.288(32)°, β = 71.325(5)°, γ = 88.067(5)°, V = 1599.1(11) Å3, Z = 1, Rgt(F) = 0.0358, wRref(F2) = 0.0785, T = 293(2) K.

CCDC no.: 1913793

The asymmetric unit of the dinuclear title crystal structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal:Yellow block
Size:0.22 × 0.19 × 0.12 mm
Wavelength:Mo Kα radiation (0.71073 Å)
μ:2.51 mm−1
Diffractometer, scan mode:Bruker APEX-II, φ and ω-scans
θmax, completeness:28°, >99%
N(hkl)measured, N(hkl)unique, Rint:34241, 7633, 0.077
Criterion for Iobs, N(hkl)gt:Iobs > 2 σ(Iobs), 6291
N(param)refined:48
Programs:Bruker programs [1], SIR97 [2], OLEX2 [3], SHELX [4], DIAMOND [5]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyzUiso*/Ueq
Eu10.54445(2)0.54657(2)0.34215(2)0.02670(6)
O10.3651(2)0.4942(2)0.51137(16)0.0282(5)
O20.5502(2)0.7324(2)0.35541(16)0.0329(6)
O30.6046(2)0.5072(2)0.19228(17)0.0368(6)
O40.5610(3)0.3291(2)0.42868(19)0.0416(7)
H40.524(4)0.304(4)0.491(3)0.062*
N10.3384(3)0.4253(2)0.3613(2)0.0307(7)
N20.4262(3)0.7128(3)0.2262(2)0.0318(7)
N30.7478(3)0.6933(3)0.1754(2)0.0338(7)
Cl1−0.15406(11)0.26395(11)0.58949(9)0.0602(3)
Cl20.13815(10)0.52058(10)0.68640(7)0.0450(2)
Cl30.36730(15)1.17002(11)0.07931(10)0.0748(4)
Cl40.64713(14)0.96320(10)0.34746(10)0.0686(4)
Cl51.09450(13)0.72247(13)−0.18544(9)0.0800(4)
Cl60.65696(14)0.40191(12)0.03112(9)0.0680(4)
C10.3285(4)0.3817(3)0.2935(3)0.0394(9)
H10.40220.39550.23190.047*
C20.2139(4)0.3156(3)0.3083(3)0.0431(10)
H20.21350.28380.25950.052*
C30.1024(4)0.2988(3)0.3961(3)0.0418(9)
H30.02420.25790.40600.050*
C40.1076(4)0.3439(3)0.4708(3)0.0346(8)
C5−0.0011(4)0.3351(3)0.5631(3)0.0384(9)
C60.0103(4)0.3869(4)0.6278(3)0.0425(10)
H6−0.06340.38330.68590.051*
C70.1316(4)0.4455(3)0.6079(3)0.0346(8)
C80.2464(3)0.4491(3)0.5259(2)0.0279(7)
C90.2289(3)0.4040(3)0.4528(2)0.0299(8)
C100.3607(4)0.7026(4)0.1661(3)0.0443(10)
H100.34950.62740.16640.053*
C110.3064(5)0.8003(4)0.1011(3)0.0531(11)
H110.25820.78790.06190.064*
C120.3248(5)0.9111(4)0.0960(3)0.0521(12)
H120.28970.97570.05300.063*
C140.4269(5)1.0404(4)0.1564(3)0.0498(12)
C150.5023(5)1.0501(4)0.2126(3)0.0494(11)
H150.52411.12540.20830.059*
C160.5484(4)0.9464(3)0.2780(3)0.0422(10)
C170.5171(4)0.8321(3)0.2890(3)0.0319(8)
C180.4457(4)0.8247(3)0.2225(2)0.0321(8)
C130.3973(4)0.9286(3)0.1561(3)0.0398(10)
C190.8195(4)0.7810(3)0.1714(3)0.0434(10)
H190.78940.80710.22660.052*
C200.9408(4)0.8372(4)0.0861(4)0.0570(12)
H200.98990.89840.08610.068*
C210.9855(4)0.8016(4)0.0040(3)0.0546(12)
H211.06520.8389−0.05240.066*
C220.9123(4)0.7089(4)0.0038(3)0.0404(9)
C230.9473(4)0.6618(4)−0.0747(3)0.0486(12)
C240.8709(4)0.5702(4)−0.0654(3)0.0509(12)
H240.89680.5410−0.11860.061*
C250.7539(4)0.5186(4)0.0227(3)0.0416(10)
C260.7110(4)0.5569(3)0.1060(2)0.0337(8)
C270.7909(4)0.6556(3)0.0940(2)0.0331(8)
C280.5864(6)0.2385(4)0.3909(4)0.0694(16)
H28A0.62230.27560.31230.104*
H28B0.50530.18830.41460.104*
H28C0.64900.18990.42010.104*
C29a−0.034(2)0.0017(17)0.7046(13)0.173(8)
H29Aa−0.1262−0.01850.75000.259*
H29Ba−0.00580.08340.68740.259*
H29Ca0.0177−0.05260.74300.259*
C30−0.0176(8)−0.0096(6)0.6003(6)0.1002(17)
C310.1062(8)−0.0082(6)0.5351(6)0.1118(17)
H310.1763−0.01360.56140.134*
C320.1315(8)0.0009(6)0.4321(6)0.1178(19)
H320.21630.00150.38670.141*
  1. aOccupancy: 0.5.

Source of materials

In this two-step synthesis, [tris-(5,7-dichloro-8-hydroxyquinoline)(H2O)2Eu(III)] was prepared first by dissolving 5,7-dichloro-8-hydroxyquinoline (0.707 g, 3.33 mmol) in 15 mL of absolute ethanol and then reacting with EuCl3 ⋅ 6H2O (0.308 g, 0.84 mmol) in 20 mL of distilled water. NaOH (0.266 g, 6.5 mmol) in 10 mL of distilled water was added after one hour. Yellow-orange cubic crystals were obtained from ethanol solvent after one week. Yield: 0.4747 g, 68%. UV-Vis (nm; L mol−1cm−1): λmax = 408, ϵ = 5 E-3.

In the second reaction step [(5,7-dichloro-8-hydroxyquinoline)(H2O)2Eu(III)] (1 mg, 1.21 mmol) in 20 mL of toluene was refluxed with 2,2′-bipyridine (1.9 mg) for six hours with vigorous stirring using a Dean Stark setup to remove excess water. The colour of the solution turned yellow-orange after a while. The reaction solution was filtered and layered with methanol and then left to crystallize. Yellowish crystals precipitated within a few hours.

Experimental details

The aromatic H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.95 and 0.98 Å and Uiso(H) = 1.5 Ueq(C) and 1.2 Ueq(C), respectively. The placement of the H atoms of the methyl group was that of an idealised methyl group according to the electron-density map (HFIX 137). The highest peak is 0.87 e. Å−3 and deepest hole is −0.69 e. Å−3.

Comment

There are various uses of lanthanides for an array of applications across many scientific spheres. The broader spectrum of applications for this series encapsulates magnetic studies [6], [7], nuclear chemistry [8], catalysis [9], [10], radio-therapy [11], [12], ceramic’s [13], [14] and many others. Europium ions are extensively utilised in photoluminescence research, particularly as a potential photo-emissive layer in the edifice of optoelectronic devices [15], [16], [17]. Owing to its luminescent nature [18], the europium ion conjugated to bulky multi-dentate organic matrices, which are also used as bio-imaging agents in biomedical sciences [19], [20]. The use of organic matrices coordinated to the europium ion is primarily to induce photo-sensitization since the metal ion itself exhibits slow emission rates and low absorption coefficients [21]. The whole phenomenon of using organic chromophores to sensitize the europium ion is affectionately known as the antenna effect [22], [23]. This has certainly become a trend of coordinating ligands on the immediate outer shell of the metal ion to access its metallic effect and/or characteristics with respect to various scientific researches undertaken [24], [25].

The dinuclear crystal structure was solved in the centrosymmetric space group, P1̄, with only half a complex in the asymmetric unit. It has an inversion centre which propagates right between the two europium metal centres justifying the dimeric nature of the two joint isostructural monomeric halves. This dimeric behaviour was also observed by Y.-C. Liu et al. with zinc [26]. The crystal structure is stabilized by inter- and intra-molecular interactions. The intra-molecular hydrogen interactions occur between the para-substituted chlor substituents (Cl1, Cl3 and Cl5) with the nearby hydrogen atoms riding on C3, C12 and C21 respectively. There are three sets of bifurcation networks observed in this crystal structure. The first bifurcation occurs on oxygen O2 with hydrogen atoms riding on oxygen O4 of the coordinated methanol solvent and carbon C19 of the pyridyl ring of the ligand respectively making an angle of 128.88°. Furthermore, Cl1 and Cl5 undergo 90° bifurcation with hydrogen atoms riding on C3, C29 (H29B) and C21, C29 (H29C) respectively. There is half a molecule of the toluene solvent trapped in the asymmetric unit cell, also affected by the inversion centre. Subsequently, the para-substituted carbon of this solvent is disordered (50:50%) equally over two positions.

Acknowledgements

This work is based on the research supported in part by the National Research Foundation of South Africa (Gran UID: 99139) The authors would also like to thank the University of the Free State for financial support.

References

1. Bruker, SAINT-Plus (Version 7.12), Bruker AXS Inc., Madison, WI, USA (2004).Search in Google Scholar

2. Altomare, A.; Burla, M. C.; Camalli, M.; Cascarano, G. L.; Giacovazzo, C.; Guagliardi, A.; Moliterni, A. G. G.; Polidori, G.; Spagna, R.: A new tool for crystal structure determination and refinement. J. Appl. Cryst. 32 (1999) 115–119.10.1107/S0021889898007717Search in Google Scholar

3. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H.: OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Cryst., 42 (2009) 339–341.10.1107/S0021889808042726Search in Google Scholar

4. Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. Sect. A. A64 (2008) 112–122.10.1107/S0108767307043930Search in Google Scholar

5. Brandenbug, K.; Putz, H.; DIAMOND. Visual crystal structure information system; Version 3.0c Crystal Impact GbR, Bonn, Germany (2005).Search in Google Scholar

6. Akkus, T.; Uğurlu, M.; Demir, L.: Variation of coherent to Compton scattering differential cross-section ratios of some lanthanides with the external magneticfield at 59.54 keV. Result Phys. 13 (2019) 1–4.10.1016/j.rinp.2019.102265Search in Google Scholar

7. Soek, R. N.; Ferreira, C. M.; Santana, F. S.; Hughes, D. L.; Poneti, G.; Ribeiro, R. R.; Nunes, F. S.: Structure and magnetic properties of two new lanthanide complexes with the 1-((E)-2-pyridinylmethylidene)semicarbazone ligand. J. Mol. Struct. 1184 (2019) 254–261.10.1016/j.molstruc.2019.02.036Search in Google Scholar

8. Bunzli, J. C. G.: Lanthanide probes in life, Chemical and earth sciences. Elsevier, Netherlands (1989).Search in Google Scholar

9. Shibasaki, M.; Yoshikawa, N.: Lanthanide complexes in multifunctional asymmetric catalysis. Chem. Rev. 102 (6) (2002) 2187–2210.10.1021/cr010297zSearch in Google Scholar

10. Mikami, K.; Terada, M.; Matsuzawa, H.: Asymmetric catalysis by lanthanide complexes. Angew. Chem., Int. Ed. 41 (2002) 3554–3571.10.1002/1521-3773(20021004)41:19<3554::AID-ANIE3554>3.0.CO;2-PSearch in Google Scholar

11. Fricker, S. P.: The therapeutic application of lanthanides. Chem. Soc. Rev. 35 (2006) 524–533.10.1039/b509608cSearch in Google Scholar

12. Kostova, I.: Lanthanides as anticancer agents. Curr. Med. Chem. – Anti-Cancer Agents. 5 (2005) 591–602.10.2174/156801105774574694Search in Google Scholar

13. Bardez-Giboire, I.; Kidari, A.; Magnin, M.; Dussossoy, J.; Peuget, S.; Caraballo, R.; Tribet, M.; Doreau, F.; Jegou, C.: Americium and trivalent Lanthanides incorporation in high-level waste glass-ceramics. J. Nucl. Mater. 492 (2017) 231–238.10.1016/j.jnucmat.2017.05.045Search in Google Scholar

14. Crum, J. V.; Turo, L.; Riley, B.; Tang, M.; Kossoy, A.: Multi–phase glass–ceramics as a waste form for combined fission products: Alkalis, alkaline earths, lanthanides, and transition metals. J. Am. Ceram. Soc. 95 (4) (2012) 1297–1303.10.1111/j.1551-2916.2012.05089.xSearch in Google Scholar

15. Eliseeva, S. V.; Bunzli, J. C.: Lanthanide luminescence for functional materials and bio-sciences. Chem. Soc. Rev. 39 (1) (2010) 189–227.10.1039/B905604CSearch in Google Scholar

16. Gallardo, H.; Braga, H. C.; Tuzimoto, P.; Bortoluzzi, A.; Salla, C. A. M.; Bechtold, I. H.; Martins, J. S.; Legnani, C.; Quirino, W. G.: Synthesis, structure and OLED application of a new europium(III)complex:{tris (thenoyltrifluoroacetonate)[1,2,5]selenadiazolo[3,4f][1,10]phenanthroline} europium(III). Inorgica Chim. Acta. 473 (2018) 75–82.10.1016/j.ica.2017.12.034Search in Google Scholar

17. Biju, S.; Raj, D. B. A.; Reddy, M. L. P.; Kariuki, B. M.: Synthesis, crystal structure, and luminescent properties of novel Eu3+ heterocyclic β-diketonate complexes with bidentate nitrogen donors. Inorg. Chem. 45 (2006) 10651–10660.10.1021/ic061425aSearch in Google Scholar PubMed

18. Werts, M. H. V.: Making sense of lanthanide luminescence. Sci. Progress. 88 (2) (2005) 101–131.10.3184/003685005783238435Search in Google Scholar PubMed

19. Amoroso, A. J.; Pope, S. J.: Using lanthanide ions in molecular bio-imaging. Chem. Soc. Rev. 44 (14) (2015) 4723–4742.10.1039/C4CS00293HSearch in Google Scholar PubMed

20. Bunzli, J. C.; Piguet, C.: Taking advantage of luminescent lanthanide ions. Chem. Soc. rev. 34 (12) (2005) 1048–1077.10.1039/b406082mSearch in Google Scholar PubMed

21. Im, S. Y.; Go, D. H.; Ryu, J. G.; Kim, Y. S.: New Narrow-Band Luminescence Using Lanthanide Coordination Compounds for Light-Emitting Diodes. IEICE Trans. Electronics. E100.C (11) (2017) 1021–1025.10.1587/transele.E100.C.1021Search in Google Scholar

22. Bünzli, J. C. G.: On the design of highly luminescent lanthanide complexes. Coord. Chem. Rev. 293–294 (2015) 19–47.10.1016/j.ccr.2014.10.013Search in Google Scholar

23. Alpha, B.; Ballardini, R.; Balzani, V.; Lehn, J. M.; Perathoner, S.; Sabbatini, N.: Antenna effect in luminescent lanthanide cryptates: a photophysical study. Photochem. Photobiol. 52 (2) (1990) 299–306.10.1111/j.1751-1097.1990.tb04185.xSearch in Google Scholar

24. Suli, L. M.; Ibrahim, W. H. W.; Aziz, B. A.; Deraman, M. R.; Ismail, N. A.: A review of rare earth mineral processing technology, Chem. Eng. Res. Bull. 19 (2013) 20–35.10.3329/cerb.v19i0.33773Search in Google Scholar

25. Bünzli, J. C. G.; Eliseeva, S. V.: Photophysics of lanthanoid coordination compounds. Elsevier (2013) 339–398.10.1016/B978-0-08-097774-4.00803-2Search in Google Scholar

26. Liu, Y.-C.; Wei, J.-H.; Chen, Z.-F.; Liu, M.; Gu, Y.-Q.; Huang, K.-B.; Li, Z.-Q.; Liang, H.: The antitumor activity of zinc(II) and copper(II) complexes with 5,7-dihalo-substituted-8-quinolinoline. Eur. J. Med. Chem. 69 (2013) 554–563.10.1016/j.ejmech.2013.08.033Search in Google Scholar PubMed

Received: 2019-08-21
Accepted: 2019-10-02
Published Online: 2019-10-25
Published in Print: 2019-12-18

© 2019 Orbett T. Alexander et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 Public License.

Articles in the same Issue

  1. 10.1515/ncrs-2020-frontmatter1
  2. The crystal structure of 3,5-dicarboxybenzenaminium perchlorate monohydrate, C8H8ClNO9
  3. The crystal structure of poly[(m4-4-bromoisophthalato-κ4O: O′:O′′:O′′′)zinc(II)], C8H3BrO4Zn
  4. Crystal structure of (E)-2-(2-chloro-6-hydroxybenzylidene)hydrazine-1-carbothioamide, C8H8ClN3O4S
  5. Crystal structure of 1,1′-methylenebis(3-ethyl-1H-imidazol-3-ium) bis(hexafluorophosphate(V)), C11H18F12N4P2
  6. The crystal structure of hexakis(1-isopropyl-1H-imidazole-κ1N)copper(II) dichloride, C36H58Cl2CuN12
  7. Crystal structure of catena-poly[μ2-4,4′-bipyridine-κ2N:N′)-tetrakis(μ2-2-((3,5,6-trichloropyridin-2-yl)oxy)acetato-κ2O:O′)dicobalt(II)], C19H10Cl6CoN3O6
  8. Crystal structure of (E)-1-(4-(((E)-2-bromo-6-hydroxybenzylidene)amino)phenyl)ethan-1-one O-methyl oxime, C16H15BrN2O2
  9. Crystal structure of ethyl 2-methyl-4-(5-methylthiophen-2-yl)-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate, C18H21NO3S
  10. The crystal structure of 5-bromo-2-(1-methyl-1H-tetrazol-5-yl)pyridine, C7H6BrN5
  11. Crystal structure of Bis(acetato-κ2O,O′)-bis[4-(dimethylamino)pyridine-κN]nickel(II), C18H26N4NiO4
  12. Crystal structure of (E)-3-chloro-2-(((4-chlorophenyl)imino)methyl)phenol, C13H9Cl2NO
  13. The co-crystal structure of (17b)-estra-1,3,5(10)-triene-3,17diol – acetamide (1/1), a Z′ = 4 structure, C20H29NO3
  14. Crystal structure of 3-(3-(pyridin-3-yl)ureido)benzoic acid, C13H11N3O3
  15. The crystal structure of 1,1′-(9-ethyl-9H-carbazole-3,6-diyl)bis(3-ethyl-1H-imidazol-3-ium) bis(hexafluorophosphate(IV)), C24H27N5F12P2
  16. The crystal structure of 2-bromoisophthalic acid, C8H5BrO4
  17. The crystal structure of 13-ethoxycarbonyl-9-methyl-4-chlor-11-thioxo-8-oxa-10,12-diazatricyclo[7.3.1.02,7]trideca-2,4,6-triene, C14H15ClN2O3S
  18. The crystal structure of (E)-4-((4-(diethylamino)benzylidene)amino)-N,N-diphenylaniline, C29H29N3
  19. Crystal structure of 2-(3-(2-(4-phenylpiperazin-1-yl)ethyl)benzyl)isoindoline-1,3-dione, C27H27N3O2
  20. Crystal structure of 2-ethoxy-6-((E)-((3-(((E)-3-ethoxy-2-hydroxybenzylidene)amino)-2-hydroxypropyl)iminio)methyl)phenolate, C21H26N2O5
  21. The crystal structure of catena-poly2-4,4′-bipyridine-κ2N:N′)-tetrakis(μ2-2-((3,5,6-trichloropyridin-2-yl)oxy)acetato-κ2O:O′)dinickel(II)], C19H10Cl6N3NiO6
  22. Crystal structure of hexakis(μ2-azido-κ2N:N)-diazido-κ1N-tetrakis(phenanthroline-κ2N,N′)tetrazinc(II), C48H32N32Zn4
  23. Synthesis and crystal structure of bis{2-bromo-6-(((4-(1-(methoxyimino)ethyl)phenyl)imino)methyl)phenolato-κ2N,O}cobalt(II)–dichloromethane(1/1), C34H32Br2Cl4CoN4O4
  24. Crystal structure of (E)-3-chloro-2-(((4-nitrophenyl)imino)methyl)phenol, C13H9ClN2O3
  25. Crystal structure of aqua-bis(5-bromo-6-methyl-picolinato-κ2N,O)zinc(II) dihydrate, C14H16Br2N2O7Zn
  26. Crystal structure of biaqua(2,2′-bipyridine-4,4′-dicarboxylato-κ2N,N′)(pyridine-2,6-dicarboxylato-κ3O,N,O′)nickel(II) hydrate, C19H15N3NiO10
  27. Synthesis and crystal structure of bis(2-(((4-(1-(ethoxyimino)ethyl)phenyl)imino)methyl)-5-fluorophenolato-κ2N,O)zinc(II) - methanol (1/1), C33H32F2N4O4Zn
  28. Crystal structure of tetraaqua-bis(μ2-5-aminoisophthalato-κ3N:O,O′)-bis(4,4′-dipyridylsulfide-κ1N)dizinc(II), C36H34N6O12S2Ni2
  29. Crystal structure of (1,4,8,11-tetraazacyclotetradecane-κ4N,N′,N′′,N′′′)palladium(II) tetracyanonickelate(II), C14H24N8NiPd
  30. The crystal structure of 3-benzyl-1-((8-(benzyloxy)quinolin-2-yl)methyl)-1H-imidazol-3-ium hexafluorophosphate, C27H24N3OF6P
  31. Crystal structure of 1-(4-chloro-2-hydroxy-5-iodophenyl)ethan-1-one, C8H6ClIO2
  32. Crystal structure of hexaaquamagnesium(II) bis((E)-4-((4-(dimethylamino)phenyl)diazenyl)benzenesulfonate), C28H40MgN6O12S2
  33. Crystal structure of the coordination polymer catena-poly[(1,2-di(pyridin-4-yl)ethane-κN)-(μ2-2-nitroisophthalato-κ2O:O′)zinc(II)], C20H17N3O7Zn
  34. Crystal structure of catena-{[tri-aqua-di-sodium bis(2-{[n-butyl(methyl)carbamothioyl]sulfanyl}acetate)]}n, [C16H34N2Na2O7S4]n
  35. The crystal structure of diaqua-bis(μ2-3-((3-acetyl-5-carboxyphenyl)oxidophosphoryl)-5-carboxybenzoato-κ2O:O′)bis(5,5′-dimethyl-2,2′-bipyridine-k2N,N′)zinc(II), C56H46N4O22P2Zn2
  36. Crystal structure of N′,2-bis((E)-2-chloro-6-hydroxybenzylidene)hydrazine-1-carbothiohydrazide, C15H12Cl2N4O2S
  37. Crystal structure of 2-[(1E)-{[1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl]iminiumyl}methyl]-5-(dodecyloxy)benzen-1-olate, C23H39NO5
  38. Crystal structure of 12-(2-hydroxybenzoyl)benzo[f]pyrido[1,2-a]indole-6,11-dione, C23H13NO4
  39. Crystal structure of chlorido-(4-chloro-6-(p-tolyl)pyrimidine-κ2C,N)-(triphenylphosphane-κP)palladium(II), C29H23Cl2N2PPd
  40. Crystal structure of catena-poly[diaqua-bis(3,4,5,6-tetrabromo-carboxybenzoato-κ1O)-(μ2-4,4′-bipyridine-κ2N:N′)cobalt(II)], C26H14Br8CoN2O10
  41. Crystal structure of catena-poly[dibenzyl-dichlorido-(μ2-[4,4′-bipyridine]1,1′-dioxide-κ2O:O′)tin(IV)], C24H22Cl2N2O2Sn
  42. Crystal structure of benzyl-chlorido-(4-chloro-N-[(2-oxidophenyl)methylidene]benzenecarbohydrazonato)-methanol-tin(IV), C22H20Cl2N2O3Sn
  43. Crystal structure of catena-poly[triaqua-(1,3-di(1H-imidazol-1-yl)benzene-κ2N:N′)-(3-nitrophthalato-κ1O)cobalt(II)] — water (2/3), C20H22N5O10.5Co
  44. Crystal structure of (3R,5R,8R,9R,10R,12R,13R,14R)-4,4,8,10,14-pentamethyl-17-((R)-2,6,6-trimethyltetrahydro-2H-pyran-2-yl)hexadecahydro-1H-cyclopenta[a]phenanthrene-3,12-diol, C30H52O3
  45. Crystal structure of 3-(3-(4-carboxyphenyl)ureido)pyridin-1-ium perchlorate, C26H24Cl2N6O14
  46. Crystal structure of 8-hydroxy-2-methylquinolin-1-ium chloride dihydrate, C10H14ClNO3
  47. Crystal structure of (dibenzyl sulphoxide-κO)dibromido-bis(4-bromobenzyl-κC)tin(IV), C28H26Br4OSSn
  48. Crystal structure of bromido-tri(4-chlorophenyl-κ1C)-(ethanol-κ1O)tin(IV) — 4,4′-dimethyl-2,2′-bipyridine (2/1), C52H48Br2Cl6N2O2Sn2
  49. Crystal structure of 2-butyl-6-(ethylamino)-1H-benzo[de]isoquinoline-1,3(2H)-dione, C18H20N2O2
  50. Crystal structure of (4-chloro-N-[(2-oxido-5-chlorophenyl)methylidene] benzene-carbohydrazonato-κ3N,O,O′)bis(2-fluorobenzyl)tin(IV), C28H20Cl2F2N2O2Sn
  51. Crystal structure of aqua-chlorido-(4-fluorobenzyl-κC)-(N′-(4-methoxy-2-oxidobenzylidene)-3-hydroxy-2-naphthohydrazidato-κ3N,O,O′)tin(IV), C26H22ClFN2O5Sn
  52. Crystal structure of catena-poly[tri(4-chlorophenyl)-(μ2-hydroxido)tin(IV)] – 2-propanol (1/1), C21H21Cl3O2Sn
  53. Crystal structure of bromido-dimethyl-4-tolyl-(triphenylphosphine oxide)tin(IV), C27H28BrOPSn
  54. Crystal structure of 2-(bis(2-hydroxyethyl)ammonio)ethane-1-sulfonate, C6H15NO5S
  55. Crystal structure of bis[triaqua-(μ2-1,2-di(4-pyridyl)ethylene-κ2N:N′)-(4-sulfonatobenzoato-κ2O,O′)zinc(II)], C13H15NO8SZn
  56. Crystal structure of 2-((2-(3-hydroxy-7-methylene-2,3-dihydro-7H-furo[3,2-g]chromen-2-yl)propan-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol – a marmesin derivative, C20H24O10
  57. Crystal structure of octa(4-chlorobenzyl)-dichlorido-bis(μ2-methanolato)-bis(μ3-oxo)-tetratin(IV), C58H54Cl10O4Sn4
  58. Crystal structure of iodido-triphenyl-(triphenylphosphine oxide)tin(IV), C36H30IOPSn
  59. Crystal structure of dichlorido-bis(4-methylphenyl-κC)-bis(triphenylarsine oxide-κO)tin(IV), C50H44As2Cl2O2Sn
  60. Crystal structure of 4-benzyl-1-oxo-N-phenethyl-1H-[1,4]oxazino [4,3-b]indazole-3-carboxamide, C26H21N3O3
  61. Crystal structure of bis{(N-[(5-chloro-2-oxidophenyl)methylidene]-2-hydroxybenzenecarbohydrazonato)-dioxo-molybdenum(VI)}(μ2-4,4′-bipyridine), C38H26Cl2Mo2N6O10
  62. Crystal structure of dichlorido-octamethyl-bis(μ3-oxido)-bis(μ2-2-(phenylamino)ethanolato-κ2O:O)tetratin(IV), C24H44Cl2N2O4Sn4
  63. The crystal structure of 1-(2-(2-(imidazo[1,5-a]pyridine-4-ium)ethoxy)ethyl)-imidazo[1,5-a]pyridine-4-ium bis(hexafluorophosphate) — acetonitrile (1/1), C18H20ON4F12P2
  64. Crystal structure of cyclo[tetra(μ2-cyanido)-tetracyanido-bis(1,4,7,10-tetraazacyclododecane-κ4N,N′,N′′,N′′′)dinickel(II)dipalladium(II)] hexahydrate, C24H52N16Ni2O6Pd2
  65. Crystal structure of (dimethyl sulfoxide)-dioxido-[2-hydroxy-N′-(4-oxo-4-phenylbutan-2-ylidene)benzohydrazidato κ3N,O,O′]molybdenum(VI), C19H20MoN2O6S
  66. Crystal structure of bis(acetylacetonato-κ2O,O′)-(ethanolamine-κ2N,O)copper(II), C14H25CuNO5
  67. Crystal structure of chlorido-diphenyl-(isopropyl(propyl)carbamodithioato-κ2S,S′)tin(IV), C19H24ClNS2Sn
  68. The crystal structure of bis(imidazole-1-yl)methane monohydrate, C7H10N4O
  69. The crystal structure of bis(4-nitroimidazole-1-1yl)methane, C7H6N6O4
  70. Crystal structure of di(naphthalen-2-yl)sulfane, C20H14S
  71. Crystal structure of 3-acetyl-6-bromo-4-hydroxy-2H-chromen-2-one, C11H7BrO4
  72. Crystal structure of N′2,N′6-bis((E)-1-(pyrazin-2-yl)ethylidene)pyridine-2,6-dicarbohydrazide — methanol (1/2), C21H25N9O4
  73. The crystal structure of 3-nitro-4-(p-tolylamino)-2H-chromen-2-one, C16H12N2O4
  74. The crystal structure of 1,2-bis((4-methoxyphenyl)ethynyl)benzene, C24H18O2
  75. Crystal structure of a low-temperature (100 K) polymorph of catena-poly[(μ2-4,4′-bipyridine-κ2N,N′)-bis(O,O′-diethyldithiophosphato-κ1S)zinc(II)], C18H28N2O4P2S4Zn
  76. The pseudosymmetric low temperature polymorph of catena-poly[(μ2-4,4′-bipyridyl-κN,N′)-bis(O,O′-diethyldithiophosphato-κS)-cadmium(II)], {C18H28CdN2O4P2S4}n
  77. Crystal structure of 3-iodophthalic acid, C8H5IO4
  78. The crystal structure of tert-butyl (tert-butoxy(oxo)methyl)(5-bromo-2-fluorophenyl)carbamate, C16H21BrFNO4
  79. The crystal structure of bis(μ2-5,7-dichloroquinolin-8-olato-κ3N,O:O)-tetrakis(5,7-dichloroquinolin-8-olato-κ2N,O)bis(methanol-κ1O)dieuropium(III) — toluene (1/1), C63H39Cl12Eu2N6O8
  80. Crystal structure of dichlorido-(N′-(1-(3-ethylpyrazin-2-yl)ethylidene)-4-methoxybenzohydrazide-κ3N,N′,O)cadmium(II), C16H18N4O2Cl2Cd
  81. A redetermination of the crystal structure of catena-poly[(bis(O,O′-isopropyl dithiophosphato-κ2S,S′)-(μ2-1,2-bis(3-pyridylmethylene)hydrazine-κ2N,N′)cadmium(II)], {C24H38CdN4O4P2S4}n
Downloaded on 9.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2019-0606/html
Scroll to top button