Home Crystal structure of chlorido-diphenyl-(isopropyl(propyl)carbamodithioato-κ2S,S′)tin(IV), C19H24ClNS2Sn
Article Open Access

Crystal structure of chlorido-diphenyl-(isopropyl(propyl)carbamodithioato-κ2S,S′)tin(IV), C19H24ClNS2Sn

  • See Mun Lee , Kong Mun Lo and Edward R.T. Tiekink ORCID logo EMAIL logo
Published/Copyright: October 18, 2019

Abstract

C19H24ClNS2Sn, triclinic, P1̄ (no. 2), a = 10.1894(1) Å, b = 14.0236(2) Å, c = 14.5114(2) Å, α = 91.070(1)°, β = 96.997(1)°, γ = 98.222(1)°, V = 2035.59(5) Å3, Z = 4, Rgt(F) = 0.0211, wRref(F2) = 0.0556, T = 100(2) K.

CCDC no.: 1957378

The molecular structures are shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal:Colourless prism
Size:0.16 × 0.09 × 0.06 mm
Wavelength:Cu Kα radiation (1.54184 Å)
μ:13.1 mm−1
Diffractometer, scan mode:XtaLAB Synergy, ω
θmax, completeness:67.1°, >99%
N(hkl)measured, N(hkl)unique, Rint:48998, 7265, 0.034
Criterion for Iobs, N(hkl)gt:Iobs > 2 σ(Iobs), 7034
N(param)refined:439
Programs:CrysAlisPRO [1], SHELX [2], [3], WinGX/ORTEP [4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyzUiso*/Ueq
Sn10.29681(2)0.50913(2)0.20104(2)0.01305(5)
Cl10.20862(5)0.58071(4)0.05728(3)0.01851(11)
S10.51360(5)0.54532(4)0.14276(4)0.01681(11)
S20.48866(5)0.44108(4)0.31606(4)0.01597(11)
N10.72222(16)0.49820(12)0.25025(12)0.0135(3)
C10.59125(19)0.49484(14)0.24007(15)0.0137(4)
C20.80146(19)0.54385(15)0.17977(15)0.0158(4)
H2A0.7513690.5280510.1172460.019*
H2B0.8863770.5168300.1823530.019*
C30.8326(2)0.65321(16)0.19414(16)0.0186(4)
H3A0.7499040.6796850.2031960.022*
H3B0.8977300.6697570.2505250.022*
C40.8902(2)0.69760(17)0.11006(17)0.0232(5)
H4A0.9671370.6668690.0977540.035*
H4B0.9187100.7668560.1225250.035*
H4C0.8217350.6876430.0557850.035*
C50.7909(2)0.44837(15)0.32799(15)0.0164(4)
H50.7350140.4456900.3802320.020*
C60.7961(2)0.34522(17)0.29588(17)0.0227(5)
H6A0.7049790.3121520.2772370.034*
H6B0.8392710.3113200.3468440.034*
H6C0.8472420.3457350.2428880.034*
C70.9288(2)0.50159(19)0.36431(17)0.0257(5)
H7A0.9883220.4997510.3163270.039*
H7B0.9649510.4705380.4197930.039*
H7C0.9219000.5687700.3802120.039*
C80.16850(19)0.37313(15)0.18152(15)0.0146(4)
C90.0589(2)0.36164(16)0.11294(15)0.0173(4)
H90.0430240.4132870.0736300.021*
C10−0.0277(2)0.27468(17)0.10167(16)0.0209(5)
H10−0.1014430.2669330.0539800.025*
C11−0.0069(2)0.19963(16)0.15952(16)0.0203(5)
H11−0.0665880.1406540.1520020.024*
C120.1018(2)0.21081(16)0.22874(17)0.0212(5)
H120.1160480.1596000.2689700.025*
C130.1896(2)0.29704(16)0.23909(16)0.0191(4)
H130.2645440.3040410.2858180.023*
C140.25981(19)0.61706(15)0.29714(15)0.0157(4)
C150.1999(2)0.69557(16)0.26487(17)0.0213(5)
H150.1780600.7021680.1999910.026*
C160.1719(2)0.76427(17)0.32719(18)0.0252(5)
H160.1294830.8168240.3046470.030*
C170.2054(2)0.75657(17)0.42163(18)0.0249(5)
H170.1864540.8036220.4641000.030*
C180.2669(2)0.67945(18)0.45377(17)0.0265(5)
H180.2911970.6742720.5185890.032*
C190.2932(2)0.60985(16)0.39238(16)0.0211(5)
H190.3343010.5569010.4154270.025*
Sn20.29554(2)0.07307(2)0.68663(2)0.01405(5)
Cl20.09550(5)−0.04057(4)0.62779(4)0.02780(13)
S30.21280(5)0.05799(4)0.83896(4)0.01713(11)
S40.47280(5)0.17403(4)0.81987(3)0.01521(10)
N20.37993(17)0.13865(13)0.98338(12)0.0157(4)
C200.36089(19)0.12676(14)0.89191(15)0.0142(4)
C210.2754(2)0.10127(16)1.04139(15)0.0188(4)
H21A0.1870420.1101721.0088080.023*
H21B0.2897630.1399211.1004850.023*
C220.2729(2)−0.00537(18)1.06352(17)0.0261(5)
H22A0.262791−0.0443031.0047990.031*
H22B0.358837−0.0142451.0997300.031*
C230.1592(3)−0.0408(2)1.1184(2)0.0409(7)
H23A0.169768−0.0030121.1770810.061*
H23B0.160405−0.1089581.1315190.061*
H23C0.073857−0.0331891.0822260.061*
C240.5044(2)0.19648(17)1.03192(16)0.0204(5)
H240.5713500.2055410.9866600.025*
C250.5638(2)0.14378(19)1.11376(18)0.0295(5)
H25A0.5037580.1392101.1618930.044*
H25B0.6509690.1793051.1391680.044*
H25C0.5748440.0788381.0930020.044*
C260.4775(2)0.29593(17)1.06142(17)0.0255(5)
H26A0.4323650.3255421.0081950.038*
H26B0.5623250.3365041.0837510.038*
H26C0.4203900.2897371.1113100.038*
C270.2554(2)0.19319(15)0.60531(14)0.0146(4)
C280.1354(2)0.18840(16)0.54688(16)0.0193(4)
H280.0677780.1343970.5481310.023*
C290.1140(2)0.26208(18)0.48688(17)0.0248(5)
H290.0317100.2586430.4475540.030*
C300.2125(2)0.34059(16)0.48420(16)0.0223(5)
H300.1979250.3908700.4429030.027*
C310.3323(2)0.34577(16)0.54178(17)0.0223(5)
H310.3999770.3995310.5396710.027*
C320.3538(2)0.27265(16)0.60262(15)0.0179(4)
H320.4358190.2768510.6424490.021*
C330.4408(2)−0.01222(16)0.65181(15)0.0178(4)
C340.4109(3)−0.11193(17)0.64007(18)0.0269(5)
H340.323774−0.1434260.6467990.032*
C350.5085(3)−0.16546(18)0.61846(19)0.0325(6)
H350.488397−0.2337140.6121510.039*
C360.6336(3)−0.12066(19)0.60616(17)0.0283(5)
H360.699650−0.1578130.5912010.034*
C370.6635(3)−0.0215(2)0.6156(2)0.0407(7)
H370.7493320.0099610.6056660.049*
C380.5668(3)0.03219(19)0.6397(2)0.0360(7)
H380.5881750.1002490.6478690.043*

Source of material

All chemicals and solvents were used as purchased without purification. The melting point was determined on a Mel-temp II digital melting point apparatus and was uncorrected. The IR spectrum was obtained on a Bruker Vertex 70v FTIR Spectrometer from 4000 to 400 cm−1.

The dithiocarbamate ligand was prepared in situ (methanol) from the reaction of CS2 (Merck 0.25 mmol) with isopropyl(n-propyl)amine (Alfa Aesar, 0.25 mmol) and KOH (0.03 mL; 50% w/v); CS2 was added drop-wise into the methanolic solution (15 mL). The resulting mixture was kept at 273 K for 0.5 h. Diphenyltin dichloride (0.25 mmol, 0.09 g) in methanol (10 mL) was added to the prepared potassium isopropyl-n-propyl dithiocarbamate. The resulting mixture was stirred and refluxed for 2 h. The filtrate was evaporated slowly until a colourless precipitate was formed. The precipitate was recrystallised from its acetone-methanol solution. The title compound was a side-product/incomplete reaction product obtained from the slow evaporation of the solvent. Yield: 0.02 g (17%). M.pt: 381–383 K. IR (cm−1) 550 (w) ν(Sn—S), 1477 (s) ν(C—N), 1187 (m) ν(C—S), 1048 (s) ν(C—N).

Experimental details

The C-bound H atoms were geometrically placed (C—H = 0.95–1.00 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C).

Comment

Molecules/complexes of the general formula R2Sn(S2CNR′R′′)Cl have been the subject of structure determinations by both X-ray crystallography and computational chemistry for nearly 20 years [5], [6]. These studies showed that tin-ligand parameters were sometimes influenced significantly by the crystalline/solid state environment, often leading to non-systematic variations that were not evident in their calculated gas-phase structures. Interest in this area continues [7], [8] and indeed, there are now over 70 mononuclear species of this type in the crystallographic literature [9]. Herein, a new derivative, Ph2Sn[S2CN(i-Pr)n-Pr]Cl, (I), is described, which was synthesised in the context of evaluating the biological potential of organotin dithiocarbamates [10].

The molecular structures of the two independent molecules comprising the asymmetric unit of (I) are shown in the figure (70% displacement ellipsoids). The tin atom in each molecule is penta-coordinated by two ipso-carbon atoms of the phenyl groups, a chloride and two sulphur atoms derived from an asymmetrically chelating dithiocarbamate ligand. The asymmetry in the Sn—S bonds [Sn1—S1, S2 = 2.4501(5), 2.7049(5) Å and Sn2—S3, S4 = 2.4622(5), 2.7058(5) Å] is reflected in the magnitude of Δ(Sn—S) = (Sn—Slong – Sn—Sshort) = 0.25 and 0.26 Å, respectively. There is a small disparity in the Sn1—Cl1 [2.4591(5) Å] and Sn2—Cl2 [2.4534(5) Å] bond lengths. The asymmetric mode of coordination of the dithiocarbamate ligand influences the C—S bond lengths with the C—S bonds associated with the more tightly bound sulphur atoms [C1—S1 = 1.745(2) Å and C20—S3 = 1.752(2) Å] being longer than the C—S bonds involving the less tightly bound sulphur atoms [C1—S2 = 1.722(2) Å and C20—S4 = 1.712(2) Å]. Typically for dithiocarbamate ligands [11], the relatively short C1—N1 [1.319(3)] and C20—N2 [1.322(3) Å] bond lengths are indicative of significant contributions of the dithiolate, S2C=N+(i-Pr)n-Pr, canonical form to the electronic structure of the ligand.

The resulting C2ClS2 donor set is highly distorted and this is seen in a quantitative measure of a five-coordinate geometry, i.e. τ [12]. For an ideal square-pyramidal geometry, τ = 0.0 whereas for an ideal trigonal-bipyramidal geometry, τ = 1.0. In the present study, the values of τ compute to 0.49 and 0.58 for the Sn1 and Sn2 atoms, respectively. The distortions arise partly to the acute chelate angles: S1—Sn1—S2 [69.663(16)°] and S3—Sn2—S4 [69.447(16)°] as reflected, for example, in the trans Cl1—Sn1—S2 [154.209(16)°] and Cl2—Sn2—S4 [154.996(18)°] angles. The molecular structures described herein conform to the motif always seen for mononuclear molecules/complexes of the general formula R2Sn(S2CNR′R′′)Cl [10].

The molecular packing is largely devoid of directional points of contact between atoms/residues [13], with the exception of methyl- and phenyl-C—H⋯π(phenyl) interactions [C6—H6c⋯Cg(C8—C13)i: H6c⋯Cg(C8—C13)i = 2.93 Å, C6⋯Cg(C8—C13)i = 3.784(2) Å with angle at H6c = 146° and C36—H36⋯Cg(C27—C32)ii: H36⋯Cg(C27—C32)ii = 2.68 Å, C36⋯Cg(C27—C32)ii = 3.489(3) Å with angle at H36 = 143° for symmetry operations (i) 1 + x, y, z and (ii) 1 − x, −y, 1 − z]. Each of these interactions occurs between like-molecules. In the case of the Sn1-molecule, the result of these contacts is the formation of a linear supramolecular chain along the a-axis direction. For the Sn2-molecule, the specified interaction leads to a centrosymmetric dimer. The dimers stack in columns parallel to the chains. Globally, the crystal comprises alternating layers of chains and dimers stacked along the b-axis.

A further analysis of the intermolecular connectivity was performed by evaluating the calculated Hirshfeld surfaces using Crystal Explorer 17 [14] following literature procedures [15]; the full and decomposed two-dimensional fingerprint plots were also calculated. There are four dominant contacts to the Hirshfeld surface for the entire asymmetric unit in (I), namely H⋯H [55.5%], H⋯C/C⋯H [23.9%], Cl⋯H/H⋯Cl [9.2%] and S⋯H/H⋯S [8.7%] but, generally beyond the sum of the respective van der Waals radii. A recent study [16] emphasised how different molecules/complexes comprising the asymmetric unit could present different percentage profiles depending on the intermolecular interactions they form. Accordingly, each of the Sn1- and Sn2-molecules/complexes in (I) were analysed separately. Not surprisingly, the same major contributions are evident but, in different percentages, i.e. H⋯H [59.1% for the Sn1-molecule and 52.8% for the Sn2-molecule/complex], H⋯C/C⋯H [23.5 and 24.6%], Cl⋯H/H⋯Cl [9.0 and 8.3%] and S⋯H/H⋯S [7.1 and 10.6%]. Thus, small differences between the independent molecules are seen in the percentage contributions for the H⋯H and S⋯H/H⋯S contacts. Further, for the Sn2-molecule, C⋯C contacts amounts to 2.3% of the Hirshfeld surface contacts compared with 0.2% for the Sn1-molecule complex.

Acknowledgements

Sunway University Sdn Bhd is thanked for financial support of this work through Grant No. STR-RCTR-RCCM-001–2019.

References

1. Rigaku Oxford Diffraction: CrysAlisPRO. Rigaku Corporation, Oxford, UK (2018).Search in Google Scholar

2. Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112–122.10.1107/S0108767307043930Search in Google Scholar PubMed

3. Sheldrick, G. M.: Crystal structure refinement with SHELXL. Acta Crystallogr. C71 (2015) 3–8.10.1107/S2053229614024218Search in Google Scholar PubMed PubMed Central

4. Farrugia, L. J.: WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr. 45 (2012) 849–854.10.1107/S0021889812029111Search in Google Scholar

5. Buntine, M. A.; Hall, V. J.; Kosovel, F. J.; Tiekink, E. R. T.: Influence of crystal packing on molecular geometry: a crystallographic and theoretical investigation of selected diorganotin systems. J. Phys. Chem. A 102 (1998) 2472–2482.10.1021/jp9728722Search in Google Scholar

6. Tiekink, E. R. T.; Hall, V. J.; Buntine, M. A.: An examination of the influence of crystal structure on molecular structure. The crystal and molecular structures of some diorganotinchloro-(N,N-dialkyldithiocarbamate)s, R2Sn(S2CNR′2)Cl, R = Me, tBu, Ph, Cy; R′2 = (Et)2, (Et, Cy) and (Cy)2: a comparison between solid state and theoretical structures. Z. Kristallogr. − Cryst. Mat. 214 (1999) 124–134.10.1524/zkri.1999.214.2.124Search in Google Scholar

7. Lo, K. M.; Lee, S. M.; Tiekink, E. R. T.: Crystal structure of chlorido-dimethyl-(phenylpiperazine-1-carbodithioato-S,S)tin(IV), C13H19ClN2S2Sn. Z. Kristallogr. NCS 234 (2019) 1309–1311.10.1515/ncrs-2019-0501Search in Google Scholar

8. Lee, S. M.; Lo, K. M.; Tiekink, E. R. T.: Crystal structure of (N-n-butyl, N-methyl-dithiocarbamato-S,S)-chlorido-dimethyl-tin(IV), C8H18ClNS2Sn. Z. Kristallogr. NCS 234 (2019) 1313–1315.10.1515/ncrs-2019-0502Search in Google Scholar

9. Groom, C. R.; Bruno, I. J.; Lightfoot, M. P.; Ward, S. C.: The Cambridge Structural Database. Acta Crystallogr. B72 (2016) 171–179.10.1016/B978-0-12-409547-2.02529-4Search in Google Scholar

10. Tiekink, E. R. T.: Tin dithiocarbamates: applications and structures. Appl. Organomet. Chem. 22 (2008) 533–550.10.1002/aoc.1441Search in Google Scholar

11. Lee, S. M.; Lo, K. M.; Tiekink, E. R. T.: Crystal structure of N-methyl-N-phenyl(methylsulfanyl)carbothioamide, C9H11NS2. Z. Kristallogr. NCS 234 (2019) 1325–1327.10.1515/ncrs-2019-0511Search in Google Scholar

12. Addison, A. W.; Rao, T. N.; Reedijk, J.; van Rijn, J.; Verschoor, G. C.: Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen–sulphur donor ligands; the crystal and molecular structure of aqua[1,7-bis(N-methylbenzimidazol-2′-yl)-2,6-dithiaheptane]-copper(II) perchlorate. J. Chem. Soc. Dalton Trans. (1984) 1349–1356.10.1039/DT9840001349Search in Google Scholar

13. Spek, A. L.: Structure validation in chemical crystallography. Acta Crystallogr. D65 (2009) 148–155.10.1107/S090744490804362XSearch in Google Scholar PubMed PubMed Central

14. Turner, M. J.; Mckinnon, J. J.; Wolff, S. K.; Grimwood, D. J.; Spackman, P. R.; Jayatilaka, D.; Spackman, M. A.: Crystal Explorer v17. The University of Western Australia, Australia (2017).Search in Google Scholar

15. Tan, S. L.; Jotani, M. M.; Tiekink, E. R. T.: Utilizing Hirshfeld surface calculations, non-covalent interaction (NCI) plots and the calculation of interaction energies in the analysis of molecular packing. Acta Crystallogr. E75 (2019) 308–318.10.1107/S2056989019001129Search in Google Scholar PubMed PubMed Central

16. Jotani, M. M.; Wardell, J. L.; Tiekink, E. R. T.: Supramolecular association in the triclinic (Z′ = 1) and monoclinic (Z′ = 4) polymorphs of 4-(4-acetylphenyl)piperazin-1-ium 2-amino-4-nitrobenzoate. Z. Kristallogr. – CM 234 (2019) 43–57.10.1515/zkri-2018-2101Search in Google Scholar

Received: 2019-08-11
Accepted: 2019-10-03
Published Online: 2019-10-18
Published in Print: 2019-12-18

©2019 See Mun Lee et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 Public License.

Articles in the same Issue

  1. 10.1515/ncrs-2020-frontmatter1
  2. The crystal structure of 3,5-dicarboxybenzenaminium perchlorate monohydrate, C8H8ClNO9
  3. The crystal structure of poly[(m4-4-bromoisophthalato-κ4O: O′:O′′:O′′′)zinc(II)], C8H3BrO4Zn
  4. Crystal structure of (E)-2-(2-chloro-6-hydroxybenzylidene)hydrazine-1-carbothioamide, C8H8ClN3O4S
  5. Crystal structure of 1,1′-methylenebis(3-ethyl-1H-imidazol-3-ium) bis(hexafluorophosphate(V)), C11H18F12N4P2
  6. The crystal structure of hexakis(1-isopropyl-1H-imidazole-κ1N)copper(II) dichloride, C36H58Cl2CuN12
  7. Crystal structure of catena-poly[μ2-4,4′-bipyridine-κ2N:N′)-tetrakis(μ2-2-((3,5,6-trichloropyridin-2-yl)oxy)acetato-κ2O:O′)dicobalt(II)], C19H10Cl6CoN3O6
  8. Crystal structure of (E)-1-(4-(((E)-2-bromo-6-hydroxybenzylidene)amino)phenyl)ethan-1-one O-methyl oxime, C16H15BrN2O2
  9. Crystal structure of ethyl 2-methyl-4-(5-methylthiophen-2-yl)-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate, C18H21NO3S
  10. The crystal structure of 5-bromo-2-(1-methyl-1H-tetrazol-5-yl)pyridine, C7H6BrN5
  11. Crystal structure of Bis(acetato-κ2O,O′)-bis[4-(dimethylamino)pyridine-κN]nickel(II), C18H26N4NiO4
  12. Crystal structure of (E)-3-chloro-2-(((4-chlorophenyl)imino)methyl)phenol, C13H9Cl2NO
  13. The co-crystal structure of (17b)-estra-1,3,5(10)-triene-3,17diol – acetamide (1/1), a Z′ = 4 structure, C20H29NO3
  14. Crystal structure of 3-(3-(pyridin-3-yl)ureido)benzoic acid, C13H11N3O3
  15. The crystal structure of 1,1′-(9-ethyl-9H-carbazole-3,6-diyl)bis(3-ethyl-1H-imidazol-3-ium) bis(hexafluorophosphate(IV)), C24H27N5F12P2
  16. The crystal structure of 2-bromoisophthalic acid, C8H5BrO4
  17. The crystal structure of 13-ethoxycarbonyl-9-methyl-4-chlor-11-thioxo-8-oxa-10,12-diazatricyclo[7.3.1.02,7]trideca-2,4,6-triene, C14H15ClN2O3S
  18. The crystal structure of (E)-4-((4-(diethylamino)benzylidene)amino)-N,N-diphenylaniline, C29H29N3
  19. Crystal structure of 2-(3-(2-(4-phenylpiperazin-1-yl)ethyl)benzyl)isoindoline-1,3-dione, C27H27N3O2
  20. Crystal structure of 2-ethoxy-6-((E)-((3-(((E)-3-ethoxy-2-hydroxybenzylidene)amino)-2-hydroxypropyl)iminio)methyl)phenolate, C21H26N2O5
  21. The crystal structure of catena-poly2-4,4′-bipyridine-κ2N:N′)-tetrakis(μ2-2-((3,5,6-trichloropyridin-2-yl)oxy)acetato-κ2O:O′)dinickel(II)], C19H10Cl6N3NiO6
  22. Crystal structure of hexakis(μ2-azido-κ2N:N)-diazido-κ1N-tetrakis(phenanthroline-κ2N,N′)tetrazinc(II), C48H32N32Zn4
  23. Synthesis and crystal structure of bis{2-bromo-6-(((4-(1-(methoxyimino)ethyl)phenyl)imino)methyl)phenolato-κ2N,O}cobalt(II)–dichloromethane(1/1), C34H32Br2Cl4CoN4O4
  24. Crystal structure of (E)-3-chloro-2-(((4-nitrophenyl)imino)methyl)phenol, C13H9ClN2O3
  25. Crystal structure of aqua-bis(5-bromo-6-methyl-picolinato-κ2N,O)zinc(II) dihydrate, C14H16Br2N2O7Zn
  26. Crystal structure of biaqua(2,2′-bipyridine-4,4′-dicarboxylato-κ2N,N′)(pyridine-2,6-dicarboxylato-κ3O,N,O′)nickel(II) hydrate, C19H15N3NiO10
  27. Synthesis and crystal structure of bis(2-(((4-(1-(ethoxyimino)ethyl)phenyl)imino)methyl)-5-fluorophenolato-κ2N,O)zinc(II) - methanol (1/1), C33H32F2N4O4Zn
  28. Crystal structure of tetraaqua-bis(μ2-5-aminoisophthalato-κ3N:O,O′)-bis(4,4′-dipyridylsulfide-κ1N)dizinc(II), C36H34N6O12S2Ni2
  29. Crystal structure of (1,4,8,11-tetraazacyclotetradecane-κ4N,N′,N′′,N′′′)palladium(II) tetracyanonickelate(II), C14H24N8NiPd
  30. The crystal structure of 3-benzyl-1-((8-(benzyloxy)quinolin-2-yl)methyl)-1H-imidazol-3-ium hexafluorophosphate, C27H24N3OF6P
  31. Crystal structure of 1-(4-chloro-2-hydroxy-5-iodophenyl)ethan-1-one, C8H6ClIO2
  32. Crystal structure of hexaaquamagnesium(II) bis((E)-4-((4-(dimethylamino)phenyl)diazenyl)benzenesulfonate), C28H40MgN6O12S2
  33. Crystal structure of the coordination polymer catena-poly[(1,2-di(pyridin-4-yl)ethane-κN)-(μ2-2-nitroisophthalato-κ2O:O′)zinc(II)], C20H17N3O7Zn
  34. Crystal structure of catena-{[tri-aqua-di-sodium bis(2-{[n-butyl(methyl)carbamothioyl]sulfanyl}acetate)]}n, [C16H34N2Na2O7S4]n
  35. The crystal structure of diaqua-bis(μ2-3-((3-acetyl-5-carboxyphenyl)oxidophosphoryl)-5-carboxybenzoato-κ2O:O′)bis(5,5′-dimethyl-2,2′-bipyridine-k2N,N′)zinc(II), C56H46N4O22P2Zn2
  36. Crystal structure of N′,2-bis((E)-2-chloro-6-hydroxybenzylidene)hydrazine-1-carbothiohydrazide, C15H12Cl2N4O2S
  37. Crystal structure of 2-[(1E)-{[1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl]iminiumyl}methyl]-5-(dodecyloxy)benzen-1-olate, C23H39NO5
  38. Crystal structure of 12-(2-hydroxybenzoyl)benzo[f]pyrido[1,2-a]indole-6,11-dione, C23H13NO4
  39. Crystal structure of chlorido-(4-chloro-6-(p-tolyl)pyrimidine-κ2C,N)-(triphenylphosphane-κP)palladium(II), C29H23Cl2N2PPd
  40. Crystal structure of catena-poly[diaqua-bis(3,4,5,6-tetrabromo-carboxybenzoato-κ1O)-(μ2-4,4′-bipyridine-κ2N:N′)cobalt(II)], C26H14Br8CoN2O10
  41. Crystal structure of catena-poly[dibenzyl-dichlorido-(μ2-[4,4′-bipyridine]1,1′-dioxide-κ2O:O′)tin(IV)], C24H22Cl2N2O2Sn
  42. Crystal structure of benzyl-chlorido-(4-chloro-N-[(2-oxidophenyl)methylidene]benzenecarbohydrazonato)-methanol-tin(IV), C22H20Cl2N2O3Sn
  43. Crystal structure of catena-poly[triaqua-(1,3-di(1H-imidazol-1-yl)benzene-κ2N:N′)-(3-nitrophthalato-κ1O)cobalt(II)] — water (2/3), C20H22N5O10.5Co
  44. Crystal structure of (3R,5R,8R,9R,10R,12R,13R,14R)-4,4,8,10,14-pentamethyl-17-((R)-2,6,6-trimethyltetrahydro-2H-pyran-2-yl)hexadecahydro-1H-cyclopenta[a]phenanthrene-3,12-diol, C30H52O3
  45. Crystal structure of 3-(3-(4-carboxyphenyl)ureido)pyridin-1-ium perchlorate, C26H24Cl2N6O14
  46. Crystal structure of 8-hydroxy-2-methylquinolin-1-ium chloride dihydrate, C10H14ClNO3
  47. Crystal structure of (dibenzyl sulphoxide-κO)dibromido-bis(4-bromobenzyl-κC)tin(IV), C28H26Br4OSSn
  48. Crystal structure of bromido-tri(4-chlorophenyl-κ1C)-(ethanol-κ1O)tin(IV) — 4,4′-dimethyl-2,2′-bipyridine (2/1), C52H48Br2Cl6N2O2Sn2
  49. Crystal structure of 2-butyl-6-(ethylamino)-1H-benzo[de]isoquinoline-1,3(2H)-dione, C18H20N2O2
  50. Crystal structure of (4-chloro-N-[(2-oxido-5-chlorophenyl)methylidene] benzene-carbohydrazonato-κ3N,O,O′)bis(2-fluorobenzyl)tin(IV), C28H20Cl2F2N2O2Sn
  51. Crystal structure of aqua-chlorido-(4-fluorobenzyl-κC)-(N′-(4-methoxy-2-oxidobenzylidene)-3-hydroxy-2-naphthohydrazidato-κ3N,O,O′)tin(IV), C26H22ClFN2O5Sn
  52. Crystal structure of catena-poly[tri(4-chlorophenyl)-(μ2-hydroxido)tin(IV)] – 2-propanol (1/1), C21H21Cl3O2Sn
  53. Crystal structure of bromido-dimethyl-4-tolyl-(triphenylphosphine oxide)tin(IV), C27H28BrOPSn
  54. Crystal structure of 2-(bis(2-hydroxyethyl)ammonio)ethane-1-sulfonate, C6H15NO5S
  55. Crystal structure of bis[triaqua-(μ2-1,2-di(4-pyridyl)ethylene-κ2N:N′)-(4-sulfonatobenzoato-κ2O,O′)zinc(II)], C13H15NO8SZn
  56. Crystal structure of 2-((2-(3-hydroxy-7-methylene-2,3-dihydro-7H-furo[3,2-g]chromen-2-yl)propan-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol – a marmesin derivative, C20H24O10
  57. Crystal structure of octa(4-chlorobenzyl)-dichlorido-bis(μ2-methanolato)-bis(μ3-oxo)-tetratin(IV), C58H54Cl10O4Sn4
  58. Crystal structure of iodido-triphenyl-(triphenylphosphine oxide)tin(IV), C36H30IOPSn
  59. Crystal structure of dichlorido-bis(4-methylphenyl-κC)-bis(triphenylarsine oxide-κO)tin(IV), C50H44As2Cl2O2Sn
  60. Crystal structure of 4-benzyl-1-oxo-N-phenethyl-1H-[1,4]oxazino [4,3-b]indazole-3-carboxamide, C26H21N3O3
  61. Crystal structure of bis{(N-[(5-chloro-2-oxidophenyl)methylidene]-2-hydroxybenzenecarbohydrazonato)-dioxo-molybdenum(VI)}(μ2-4,4′-bipyridine), C38H26Cl2Mo2N6O10
  62. Crystal structure of dichlorido-octamethyl-bis(μ3-oxido)-bis(μ2-2-(phenylamino)ethanolato-κ2O:O)tetratin(IV), C24H44Cl2N2O4Sn4
  63. The crystal structure of 1-(2-(2-(imidazo[1,5-a]pyridine-4-ium)ethoxy)ethyl)-imidazo[1,5-a]pyridine-4-ium bis(hexafluorophosphate) — acetonitrile (1/1), C18H20ON4F12P2
  64. Crystal structure of cyclo[tetra(μ2-cyanido)-tetracyanido-bis(1,4,7,10-tetraazacyclododecane-κ4N,N′,N′′,N′′′)dinickel(II)dipalladium(II)] hexahydrate, C24H52N16Ni2O6Pd2
  65. Crystal structure of (dimethyl sulfoxide)-dioxido-[2-hydroxy-N′-(4-oxo-4-phenylbutan-2-ylidene)benzohydrazidato κ3N,O,O′]molybdenum(VI), C19H20MoN2O6S
  66. Crystal structure of bis(acetylacetonato-κ2O,O′)-(ethanolamine-κ2N,O)copper(II), C14H25CuNO5
  67. Crystal structure of chlorido-diphenyl-(isopropyl(propyl)carbamodithioato-κ2S,S′)tin(IV), C19H24ClNS2Sn
  68. The crystal structure of bis(imidazole-1-yl)methane monohydrate, C7H10N4O
  69. The crystal structure of bis(4-nitroimidazole-1-1yl)methane, C7H6N6O4
  70. Crystal structure of di(naphthalen-2-yl)sulfane, C20H14S
  71. Crystal structure of 3-acetyl-6-bromo-4-hydroxy-2H-chromen-2-one, C11H7BrO4
  72. Crystal structure of N′2,N′6-bis((E)-1-(pyrazin-2-yl)ethylidene)pyridine-2,6-dicarbohydrazide — methanol (1/2), C21H25N9O4
  73. The crystal structure of 3-nitro-4-(p-tolylamino)-2H-chromen-2-one, C16H12N2O4
  74. The crystal structure of 1,2-bis((4-methoxyphenyl)ethynyl)benzene, C24H18O2
  75. Crystal structure of a low-temperature (100 K) polymorph of catena-poly[(μ2-4,4′-bipyridine-κ2N,N′)-bis(O,O′-diethyldithiophosphato-κ1S)zinc(II)], C18H28N2O4P2S4Zn
  76. The pseudosymmetric low temperature polymorph of catena-poly[(μ2-4,4′-bipyridyl-κN,N′)-bis(O,O′-diethyldithiophosphato-κS)-cadmium(II)], {C18H28CdN2O4P2S4}n
  77. Crystal structure of 3-iodophthalic acid, C8H5IO4
  78. The crystal structure of tert-butyl (tert-butoxy(oxo)methyl)(5-bromo-2-fluorophenyl)carbamate, C16H21BrFNO4
  79. The crystal structure of bis(μ2-5,7-dichloroquinolin-8-olato-κ3N,O:O)-tetrakis(5,7-dichloroquinolin-8-olato-κ2N,O)bis(methanol-κ1O)dieuropium(III) — toluene (1/1), C63H39Cl12Eu2N6O8
  80. Crystal structure of dichlorido-(N′-(1-(3-ethylpyrazin-2-yl)ethylidene)-4-methoxybenzohydrazide-κ3N,N′,O)cadmium(II), C16H18N4O2Cl2Cd
  81. A redetermination of the crystal structure of catena-poly[(bis(O,O′-isopropyl dithiophosphato-κ2S,S′)-(μ2-1,2-bis(3-pyridylmethylene)hydrazine-κ2N,N′)cadmium(II)], {C24H38CdN4O4P2S4}n
Downloaded on 18.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2019-0578/html
Scroll to top button