Home Physical Sciences Crystal structure of 1-(4-chloro-2-hydroxy-5-iodophenyl)ethan-1-one, C8H6ClIO2
Article Open Access

Crystal structure of 1-(4-chloro-2-hydroxy-5-iodophenyl)ethan-1-one, C8H6ClIO2

  • Malose J. Mphahlele ORCID logo EMAIL logo
Published/Copyright: September 18, 2019

Abstract

C8H6ClIO2, orthorhombic, Pbcn (no. 60), a = 13.3204(7) Å, b = 7.2517(4) Å, c = 18.5627(9) Å, V = 1793.07(16) Å3, Z = 8, Rgt(F) = 0.0195, wRref(F2) = 0.0483, T = 173 K.

CCDC no.: 1941054

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal:Colourless rod
Size:0.46 × 0.07 × 0.07 mm
Wavelength:Mo Kα radiation (0.71073 Å)
μ:3.82 mm−1
Diffractometer, scan mode:Bruker D8 Venture Photon, ω
θmax, completeness:28.0°, >99%
N(hkl)measured, N(hkl)unique, Rint:65860, 2158, 0.034
Criterion for Iobs, N(hkl)gt:Iobs > 2 σ(Iobs), 1983
N(param)refined:114
Programs:Bruker [1], ORTEP-3 [2], SHELX [3], PLATON [4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyzUiso*/Ueq
C10.84530(17)0.7014(3)0.45147(12)0.0189(4)
C20.85496(17)0.7681(3)0.38144(12)0.0195(4)
H20.919710.7890740.3616030.023*
C30.77010(17)0.8037(3)0.34086(11)0.0176(4)
C40.67405(16)0.7787(3)0.36951(11)0.0173(4)
C50.66486(17)0.7165(3)0.43956(11)0.0182(4)
H50.5997810.7013920.4596420.022*
C60.74932(18)0.6752(3)0.48176(11)0.0177(4)
C70.73909(18)0.6015(3)0.55591(12)0.0223(5)
C80.6372(2)0.5819(4)0.58930(13)0.0292(5)
H8A0.6433050.5188150.6357860.044*
H8B0.5938750.5096770.557290.044*
H8C0.607820.7043370.5966530.044*
O10.93070(13)0.6652(3)0.48769(10)0.0275(4)
O20.81425(14)0.5555(3)0.58975(9)0.0295(4)
Cl10.78693(4)0.87837(8)0.25322(3)0.02311(12)
I10.54310(2)0.82672(2)0.31056(2)0.02499(6)
H10.912(3)0.626(5)0.528(2)0.056(11)*

Source of material

The preparation and analytical data for the title compound have been described before [5]. A stirred mixture of a 4-chloro-2-hydroxyacetophenone (5.00 g, 29.3 mmol) and p-toluenesulfonic acid (12.04 g, 35.1 mmol) in acetonitrile (200 mL) at 0 °C was treated with N-iodosuccinimide (5.17 g, 29.3 mmol) over 5 min. The mixture was allowed to stir at room temperature for 14 h, and then quenched with an ice-cold saturated aqueous solution of sodium thiosulphate. The precipitate was filtered and recrystallized to afford the title compound as a solid (7.39 g, 85%), mp. 143–145 °C. Single crystals were obtained by slow evaporation of a ethanol solution of the title compound at room temperature.

Experimental details

Intensity data was determined on a Bruker Venture D8 Photon CMOS diffractometer with graphite-monochromated Mo1 (λ 0.71073 Å) radiation at 173 K using an Oxford Cryostream 600 cooler. Data reduction was carried out using the program SAINT+, version 6.02 [1] and empirical absorption corrections were made using SADABS [1]. The structure was solved in the WinGX [2] Suite of programs, using intrinsic phasing through SHELXT [3] and refined using full-matrix least-squares/difference Fourier techniques using SHELXL [3]. All C bound H hydrogen atoms were placed at idealized positions and refined as riding atoms with isotropic parameters 1.2 times those of their parent atoms. The O-bound hydrogen atom were located in the difference fourier map and their coordinates and an isotropic thermal parameter allowed to refine freely. Diagrams and publication material were generated using ORTEP-3 [2], and PLATON [4].

Comment

Phenyl methyl ketones (acetophenones) are a class of aromatic compounds produced by plants in response to stress or as protection reaction against parasites or herbivors [6]. Halogenated 2-hydroxyacetophenones are important intermediates in the synthesis of polysubstituted and polycyclic flavonoid derivatives. The reactions of 2-hydroxoacetophenones with the Vilsmeier-Haack reagent, for example, afford chromone-3-carbaldehyde derivatives with potential anti-inflammatory activity [7] and inhibitory effect against protein tyrosine phosphatase 1B [8], thymidine phosphorylase [9], carbonic anhydrase [10], and metallo-β-lactamase [11]. Claisen-Schmidt aldol condensation of the 2-hydroxyacetophenones with substituted benzaldehydes, on the other hand, furnishes chalcone derivatives with a wide range of biological properties [12]. The presence of the ortho-hydroxy-trans-α,β-unsaturated carbonyl moiety facilitates acid or base mediated cycloisomerization into the corresponding flavanones or oxidative cyclization to afford flavones, isoflavones and flavonol derivatives [13]. We have previously reported the synthesis and in vitro inhibitory effect of a series of 4-halogeno-2-hydroxy-5-iodochalcones and their 7-halogeno substituted 2-aryl-3-hydroxy-6-iodo-4H-chromen-4-one derivatives against acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and β-secretase (BACE1) activities [5]. The 4-halogeno-2-hydroxy-5-iodochalcones were, in turn, prepared via a Claisen-Schmidt aldol condensation of the 4-halogeno substituted 2-hydroxy-4-iodoacetophenones with benzaldehyde derivatives. Aryl and heteroaryl iodides in radioiodinated form are routinely used in single photon emission computed tomography (SPECT) imaging for the clinical diagnosis of disease and drug development [14]. Moreover, the reactivity of the carbon–iodine bond allows facile oxidative addition and subsequent application as organometallic reagents in cross-coupling reactions.

Small model systems with intramolecular and/or intermolecular hydrogen bonds such as the 2-hydroxyacetophenones are often employed to study these interactions in the solid state [15]. Hydrogen bond formation causes changes in the distances between atoms and the rearrangement of electron densities on the groups involved in the interaction and therefore chemical reactivity especially if the reaction centres are directly involved in the hydrogen bonding [16]. Likewise, halogen bonding and halogen-halogen interactions continue to attract considerable attention in medicinal chemistry, chemical biology, supramolecular chemistry and crystal engineering [17], [18], [19], [20]. Our continued interest in hydrogen and halogen bonding [21], [22] prompted us to study the structure of the 4-substituted 2-hydroxy-5-iodoacetophenones in the solid state by single crystal X-ray diffraction (XRD) method.

Single crystals of 1-(4-chloro-2-hydroxy-5-iodophenyl)ethanone (4-chloro-2-hydroxy-5-iodoacetophenone) suitable for X-ray diffraction analysis were obtained by slow evaporation of ethanol. The crystallographic numbering in the above figure has been used in the context of the X-ray analysis and differs with the systematic numbering for these compounds. Single crystal XRD analysis confirmed the existence of one molecule in the asymmetric unit (cf. the figure) with intramolecular hydrogen bond involving the hydroxyl group (donor) and the oxygen atom (acceptor) of the carbonyl group with hydrogen bond distance, d(O(1)–H(1)⋯O(2) = 1.81 Å. Due to involvement in hydrogen bonding, the carbonyl C=O bond is longer 1.228 Å as compared to a typical acetophenone (1.216 Å) [23]. The molecules exist in the crystal lattice as stacked in anti-parallel chains, each chain held together by a combination of aromatic-aromatic stacking interactions, and intra- and intermolecular O—H⋯O hydrogen bonding interactions. Apart from the differences in C—I and C—Cl bond lengths 2.088 Å and 1.729 Å, respectively, PLATON analysis [24] revealed the involvement of chlorine atom as an electron density acceptor in contact with the carbonyl oxygen (3.09 Å). Such halogen bond interaction is not observed with iodine atom though it has the largest σ-hole among the halogen atoms [17], [20]. The I⋯Cl contacts of about 3.63 Å are essentially close packing van der Waals interactions that connect the two parallel layers together in eight-membered rings. The molecules are involved in aromatic-aromatic stacking interactions, which are known to maintain a favourable geometry between aromatic units [25]. Aromatic-aromatic stacking interactions and halogen contacts are responsible for the supramolecular arrangements of the title structure. These observations should be valuable for rational drug design and helpful in understanding interactions of halogenated ligands with proteins.

Acknowledgements

The author thanks the University of South Africa and the National Research Foundation (GUN: 118554) for financial assistance. Ms MM Maluleka is gratefully acknowledged for the design and proof-reading of the manuscript. The X-ray data was acquired by Prof A. Lemmerer of the University of the Witwatersrand using the single-crystal diffractometer acquired through the NRF National Equipment Programme (UID: 78572).

References

1. Bruker. APEX-3 and SAINT+. Version 6.02 (Includes XPREP and SADABS). Bruker AXS Inc., Madison, WI, USA (2016).Search in Google Scholar

2. Farrugia, L. J.: ORTEP-3 for Windows – a version of ORTEP-III with a graphical user interface (GUI). J. Appl. Crystallogr. 45 (2012) 849–854.10.1107/S0021889897003117Search in Google Scholar

3. Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. C71 (2015) 3–8.10.1107/S2053229614024218Search in Google Scholar PubMed PubMed Central

4. Spek, A. L.: Structure validation in chemical crystallography. Acta Crystallogr. D65 (2009) 148–15510.1107/S090744490804362XSearch in Google Scholar PubMed PubMed Central

5. Mphahlele, M. J.; Agbo, E. N.; Gildenhys, S.: Synthesis and evaluation of the 4-substituted 2-hydroxy-5-iodochalcones and their 7-substituted 6-iodoflavonol derivatives for inhibitory effect on cholinesterases and β-secretase. Int. J. Mol. Sci. 19 (2018) 4112–4135.10.3390/ijms19124112Search in Google Scholar PubMed PubMed Central

6. Tocco, G.; Eloh, K.; Onnis, V.; Sasanelli, N.; Caboni, P.: Haloacetophenones as newly potent nematicides against Meloidogyne incognita. Ind. Crop. Prod. 110 (2017) 94–102.10.1016/j.indcrop.2017.06.003Search in Google Scholar

7. Khan, K. M.; Ambreen, N.; Mughal, U. R.; Jalil, S.; Perveen, S.; Choudhary, M. I.: 3-Formylchromones: potential anti-inflammatory agents. Eur. J. Med. Chem. 45 (2010) 4058–4064.10.1016/j.ejmech.2010.05.065Search in Google Scholar PubMed

8. Shim, Y. S.; Kim, K. C.; Lee, K. A.; Shrestha, S.; Lee, K. H.; Kim, C. K.; Cho, H.: Formylchromone derivatives as irreversible and selective inhibitors of human protein tyrosine phosphatase 1B. kinetic and modeling studies. Bioorg. Med. Chem. 13 (2005) 1325–1332.10.1016/j.bmc.2004.11.006Search in Google Scholar PubMed

9. Khan, K. M.; Ambreen, N.; Hussain, S.; Perveen, S.; Choudhary, M. I.: Schiff bases of 3-formylchromone as thymidine phosphorylase inhibitors. Bioorg. Med. Chem. 17 (2009) 2983–2988.10.1016/j.bmc.2009.03.020Search in Google Scholar PubMed

10. Ekinci, D.; Al-Rashida, M.; Abbas, G.; Senturk, M.; Supuran, C. T.: Chromone containing sulfonamides as potent carbonic anhydrase inhibitors. J. Enzyme Inhib. Med. Chem. 27 (2012) 744–747.10.3109/14756366.2011.614607Search in Google Scholar PubMed

11. Christopeit, T.; Albert, A.; Leiros, H. K.: Discovery of a novel covalent non-β-lactam inhibitor of the metallo-β-lactamase NDM-1. Bioorg. Med. Chem. 24 (2016) 2947–2953.10.1016/j.bmc.2016.04.064Search in Google Scholar PubMed

12. Chavan, B. B.; Gadekar, A. S.; Mehta1, P. P.; Vawhal1, P. K.; Kolsure1, A. K.; Chabukswar, A. R.: Synthesis and medicinal significance of chalcones – a review. Asian J. Biomed. Pharm. Sci. 6 (2016) 1–7.Search in Google Scholar

13. Kumar, S.; Pandey, A. K.: Chemistry and biological activities of flavonoids: an overview. Sci. World J. 2013 (2013) 162–750.10.1155/2013/162750Search in Google Scholar

14. Pimlott, S. L.; Sutherland, A.: Molecular tracers for the PET and SPECT imaging of disease. Chem. Soc. Rev. 40 (2011) 149–162.10.1039/B922628CSearch in Google Scholar

15. Saikat, K. S.; Dipak, H. K.; Monika, M.; Tanusree, K.: Synthesis, structural elucidation and DFT studies of ortho-hydroxy acetophenones. J. Mol. Struct. 936 (2009) 277–282.10.1016/j.molstruc.2009.08.013Search in Google Scholar

16. Hadzi, D.; Kidric, J.; Koller, J.; Mavrij, J.: The role of hydrogen bonding in drug-receptor interactions. J. Mol. Struct. 237 (1990) 139–150.10.1016/0022-2860(90)80136-8Search in Google Scholar

17. Scholfield, M. R.; Zanden, C. M.; Carter, M.; Ho, P. S.: Halogen bonding (X-bonding): a biological perspective. Protein Sci. 22 (2013) 139–152.10.1002/pro.2201Search in Google Scholar PubMed PubMed Central

18. Wilcken, R.; Zimmermann, M. O.; Lange, A.; Joerger, A. C.; Boeckler, F. M.: Principles and applications of halogen bonding in medicinal chemistry and chemical biology J. Med. Chem. 56 (2013) 1363–1388.10.1021/jm3012068Search in Google Scholar PubMed

19. Persch, E.; Dumele, O.; Diederich, F.: Molecular recognition in chemical and biological systems. Angew. Chem. Int. Ed. 54 (2015) 3290–3327.10.1002/anie.201408487Search in Google Scholar PubMed

20. Cavallo, G.; Metrangolo, P.; Milani, R.; Pilati, T.; Priimagi, A.; Resnati, G.; Terraneo, G.: The halogen bond. Chem. Rev. 116 (2016) 2478–2601.10.1021/acs.chemrev.5b00484Search in Google Scholar PubMed PubMed Central

21. Mphahlele, M. J.; Maluleka, M. M.; Ramasami, P.; Rhyman, L.; Mampa, R. M.: Spectroscopic, DFT and XRD studies of hydrogen bonds in N-unsubstituted 2-aminobenzamides. Molecules 22 (2017) 83–96.10.3390/molecules22010083Search in Google Scholar PubMed PubMed Central

22. Mphahlele, M. J.: Crystal structure and hydrogen bonding study of the 3-trifluoroacetyloxime substituted 7-acetamido-2-aryl-5-bromoindoles. Crystals 8 (2018) 274–284.10.3390/cryst8070274Search in Google Scholar

23. Yaninmoto, Y.; Kabayashi, H.; Nagakura, S.; Saito, Y.: The crystal structure of acetophenone at 154 K. Acta Crystallogr. B29 (1973) 1822–1826.10.1107/S0567740873005583Search in Google Scholar

24. Clark, T.; Hennemann, M.; Murray, J. S.; Politzer, P. J.: Halogen bonding: the σ-hole. J. Mol. Model. 13 (2007) 291–296.10.1007/s00894-006-0130-2Search in Google Scholar PubMed

25. Martinez, C. R.; Iverson, B. L.: Rethinking the term “p-stacking”. Chem. Sci. 3 (2012) 2191–2201.10.1039/c2sc20045gSearch in Google Scholar

Received: 2019-07-17
Accepted: 2019-09-04
Published Online: 2019-09-18
Published in Print: 2019-12-18

©2019 Malose J. Mphahlele, published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 Public License.

Articles in the same Issue

  1. 10.1515/ncrs-2020-frontmatter1
  2. The crystal structure of 3,5-dicarboxybenzenaminium perchlorate monohydrate, C8H8ClNO9
  3. The crystal structure of poly[(m4-4-bromoisophthalato-κ4O: O′:O′′:O′′′)zinc(II)], C8H3BrO4Zn
  4. Crystal structure of (E)-2-(2-chloro-6-hydroxybenzylidene)hydrazine-1-carbothioamide, C8H8ClN3O4S
  5. Crystal structure of 1,1′-methylenebis(3-ethyl-1H-imidazol-3-ium) bis(hexafluorophosphate(V)), C11H18F12N4P2
  6. The crystal structure of hexakis(1-isopropyl-1H-imidazole-κ1N)copper(II) dichloride, C36H58Cl2CuN12
  7. Crystal structure of catena-poly[μ2-4,4′-bipyridine-κ2N:N′)-tetrakis(μ2-2-((3,5,6-trichloropyridin-2-yl)oxy)acetato-κ2O:O′)dicobalt(II)], C19H10Cl6CoN3O6
  8. Crystal structure of (E)-1-(4-(((E)-2-bromo-6-hydroxybenzylidene)amino)phenyl)ethan-1-one O-methyl oxime, C16H15BrN2O2
  9. Crystal structure of ethyl 2-methyl-4-(5-methylthiophen-2-yl)-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate, C18H21NO3S
  10. The crystal structure of 5-bromo-2-(1-methyl-1H-tetrazol-5-yl)pyridine, C7H6BrN5
  11. Crystal structure of Bis(acetato-κ2O,O′)-bis[4-(dimethylamino)pyridine-κN]nickel(II), C18H26N4NiO4
  12. Crystal structure of (E)-3-chloro-2-(((4-chlorophenyl)imino)methyl)phenol, C13H9Cl2NO
  13. The co-crystal structure of (17b)-estra-1,3,5(10)-triene-3,17diol – acetamide (1/1), a Z′ = 4 structure, C20H29NO3
  14. Crystal structure of 3-(3-(pyridin-3-yl)ureido)benzoic acid, C13H11N3O3
  15. The crystal structure of 1,1′-(9-ethyl-9H-carbazole-3,6-diyl)bis(3-ethyl-1H-imidazol-3-ium) bis(hexafluorophosphate(IV)), C24H27N5F12P2
  16. The crystal structure of 2-bromoisophthalic acid, C8H5BrO4
  17. The crystal structure of 13-ethoxycarbonyl-9-methyl-4-chlor-11-thioxo-8-oxa-10,12-diazatricyclo[7.3.1.02,7]trideca-2,4,6-triene, C14H15ClN2O3S
  18. The crystal structure of (E)-4-((4-(diethylamino)benzylidene)amino)-N,N-diphenylaniline, C29H29N3
  19. Crystal structure of 2-(3-(2-(4-phenylpiperazin-1-yl)ethyl)benzyl)isoindoline-1,3-dione, C27H27N3O2
  20. Crystal structure of 2-ethoxy-6-((E)-((3-(((E)-3-ethoxy-2-hydroxybenzylidene)amino)-2-hydroxypropyl)iminio)methyl)phenolate, C21H26N2O5
  21. The crystal structure of catena-poly2-4,4′-bipyridine-κ2N:N′)-tetrakis(μ2-2-((3,5,6-trichloropyridin-2-yl)oxy)acetato-κ2O:O′)dinickel(II)], C19H10Cl6N3NiO6
  22. Crystal structure of hexakis(μ2-azido-κ2N:N)-diazido-κ1N-tetrakis(phenanthroline-κ2N,N′)tetrazinc(II), C48H32N32Zn4
  23. Synthesis and crystal structure of bis{2-bromo-6-(((4-(1-(methoxyimino)ethyl)phenyl)imino)methyl)phenolato-κ2N,O}cobalt(II)–dichloromethane(1/1), C34H32Br2Cl4CoN4O4
  24. Crystal structure of (E)-3-chloro-2-(((4-nitrophenyl)imino)methyl)phenol, C13H9ClN2O3
  25. Crystal structure of aqua-bis(5-bromo-6-methyl-picolinato-κ2N,O)zinc(II) dihydrate, C14H16Br2N2O7Zn
  26. Crystal structure of biaqua(2,2′-bipyridine-4,4′-dicarboxylato-κ2N,N′)(pyridine-2,6-dicarboxylato-κ3O,N,O′)nickel(II) hydrate, C19H15N3NiO10
  27. Synthesis and crystal structure of bis(2-(((4-(1-(ethoxyimino)ethyl)phenyl)imino)methyl)-5-fluorophenolato-κ2N,O)zinc(II) - methanol (1/1), C33H32F2N4O4Zn
  28. Crystal structure of tetraaqua-bis(μ2-5-aminoisophthalato-κ3N:O,O′)-bis(4,4′-dipyridylsulfide-κ1N)dizinc(II), C36H34N6O12S2Ni2
  29. Crystal structure of (1,4,8,11-tetraazacyclotetradecane-κ4N,N′,N′′,N′′′)palladium(II) tetracyanonickelate(II), C14H24N8NiPd
  30. The crystal structure of 3-benzyl-1-((8-(benzyloxy)quinolin-2-yl)methyl)-1H-imidazol-3-ium hexafluorophosphate, C27H24N3OF6P
  31. Crystal structure of 1-(4-chloro-2-hydroxy-5-iodophenyl)ethan-1-one, C8H6ClIO2
  32. Crystal structure of hexaaquamagnesium(II) bis((E)-4-((4-(dimethylamino)phenyl)diazenyl)benzenesulfonate), C28H40MgN6O12S2
  33. Crystal structure of the coordination polymer catena-poly[(1,2-di(pyridin-4-yl)ethane-κN)-(μ2-2-nitroisophthalato-κ2O:O′)zinc(II)], C20H17N3O7Zn
  34. Crystal structure of catena-{[tri-aqua-di-sodium bis(2-{[n-butyl(methyl)carbamothioyl]sulfanyl}acetate)]}n, [C16H34N2Na2O7S4]n
  35. The crystal structure of diaqua-bis(μ2-3-((3-acetyl-5-carboxyphenyl)oxidophosphoryl)-5-carboxybenzoato-κ2O:O′)bis(5,5′-dimethyl-2,2′-bipyridine-k2N,N′)zinc(II), C56H46N4O22P2Zn2
  36. Crystal structure of N′,2-bis((E)-2-chloro-6-hydroxybenzylidene)hydrazine-1-carbothiohydrazide, C15H12Cl2N4O2S
  37. Crystal structure of 2-[(1E)-{[1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl]iminiumyl}methyl]-5-(dodecyloxy)benzen-1-olate, C23H39NO5
  38. Crystal structure of 12-(2-hydroxybenzoyl)benzo[f]pyrido[1,2-a]indole-6,11-dione, C23H13NO4
  39. Crystal structure of chlorido-(4-chloro-6-(p-tolyl)pyrimidine-κ2C,N)-(triphenylphosphane-κP)palladium(II), C29H23Cl2N2PPd
  40. Crystal structure of catena-poly[diaqua-bis(3,4,5,6-tetrabromo-carboxybenzoato-κ1O)-(μ2-4,4′-bipyridine-κ2N:N′)cobalt(II)], C26H14Br8CoN2O10
  41. Crystal structure of catena-poly[dibenzyl-dichlorido-(μ2-[4,4′-bipyridine]1,1′-dioxide-κ2O:O′)tin(IV)], C24H22Cl2N2O2Sn
  42. Crystal structure of benzyl-chlorido-(4-chloro-N-[(2-oxidophenyl)methylidene]benzenecarbohydrazonato)-methanol-tin(IV), C22H20Cl2N2O3Sn
  43. Crystal structure of catena-poly[triaqua-(1,3-di(1H-imidazol-1-yl)benzene-κ2N:N′)-(3-nitrophthalato-κ1O)cobalt(II)] — water (2/3), C20H22N5O10.5Co
  44. Crystal structure of (3R,5R,8R,9R,10R,12R,13R,14R)-4,4,8,10,14-pentamethyl-17-((R)-2,6,6-trimethyltetrahydro-2H-pyran-2-yl)hexadecahydro-1H-cyclopenta[a]phenanthrene-3,12-diol, C30H52O3
  45. Crystal structure of 3-(3-(4-carboxyphenyl)ureido)pyridin-1-ium perchlorate, C26H24Cl2N6O14
  46. Crystal structure of 8-hydroxy-2-methylquinolin-1-ium chloride dihydrate, C10H14ClNO3
  47. Crystal structure of (dibenzyl sulphoxide-κO)dibromido-bis(4-bromobenzyl-κC)tin(IV), C28H26Br4OSSn
  48. Crystal structure of bromido-tri(4-chlorophenyl-κ1C)-(ethanol-κ1O)tin(IV) — 4,4′-dimethyl-2,2′-bipyridine (2/1), C52H48Br2Cl6N2O2Sn2
  49. Crystal structure of 2-butyl-6-(ethylamino)-1H-benzo[de]isoquinoline-1,3(2H)-dione, C18H20N2O2
  50. Crystal structure of (4-chloro-N-[(2-oxido-5-chlorophenyl)methylidene] benzene-carbohydrazonato-κ3N,O,O′)bis(2-fluorobenzyl)tin(IV), C28H20Cl2F2N2O2Sn
  51. Crystal structure of aqua-chlorido-(4-fluorobenzyl-κC)-(N′-(4-methoxy-2-oxidobenzylidene)-3-hydroxy-2-naphthohydrazidato-κ3N,O,O′)tin(IV), C26H22ClFN2O5Sn
  52. Crystal structure of catena-poly[tri(4-chlorophenyl)-(μ2-hydroxido)tin(IV)] – 2-propanol (1/1), C21H21Cl3O2Sn
  53. Crystal structure of bromido-dimethyl-4-tolyl-(triphenylphosphine oxide)tin(IV), C27H28BrOPSn
  54. Crystal structure of 2-(bis(2-hydroxyethyl)ammonio)ethane-1-sulfonate, C6H15NO5S
  55. Crystal structure of bis[triaqua-(μ2-1,2-di(4-pyridyl)ethylene-κ2N:N′)-(4-sulfonatobenzoato-κ2O,O′)zinc(II)], C13H15NO8SZn
  56. Crystal structure of 2-((2-(3-hydroxy-7-methylene-2,3-dihydro-7H-furo[3,2-g]chromen-2-yl)propan-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol – a marmesin derivative, C20H24O10
  57. Crystal structure of octa(4-chlorobenzyl)-dichlorido-bis(μ2-methanolato)-bis(μ3-oxo)-tetratin(IV), C58H54Cl10O4Sn4
  58. Crystal structure of iodido-triphenyl-(triphenylphosphine oxide)tin(IV), C36H30IOPSn
  59. Crystal structure of dichlorido-bis(4-methylphenyl-κC)-bis(triphenylarsine oxide-κO)tin(IV), C50H44As2Cl2O2Sn
  60. Crystal structure of 4-benzyl-1-oxo-N-phenethyl-1H-[1,4]oxazino [4,3-b]indazole-3-carboxamide, C26H21N3O3
  61. Crystal structure of bis{(N-[(5-chloro-2-oxidophenyl)methylidene]-2-hydroxybenzenecarbohydrazonato)-dioxo-molybdenum(VI)}(μ2-4,4′-bipyridine), C38H26Cl2Mo2N6O10
  62. Crystal structure of dichlorido-octamethyl-bis(μ3-oxido)-bis(μ2-2-(phenylamino)ethanolato-κ2O:O)tetratin(IV), C24H44Cl2N2O4Sn4
  63. The crystal structure of 1-(2-(2-(imidazo[1,5-a]pyridine-4-ium)ethoxy)ethyl)-imidazo[1,5-a]pyridine-4-ium bis(hexafluorophosphate) — acetonitrile (1/1), C18H20ON4F12P2
  64. Crystal structure of cyclo[tetra(μ2-cyanido)-tetracyanido-bis(1,4,7,10-tetraazacyclododecane-κ4N,N′,N′′,N′′′)dinickel(II)dipalladium(II)] hexahydrate, C24H52N16Ni2O6Pd2
  65. Crystal structure of (dimethyl sulfoxide)-dioxido-[2-hydroxy-N′-(4-oxo-4-phenylbutan-2-ylidene)benzohydrazidato κ3N,O,O′]molybdenum(VI), C19H20MoN2O6S
  66. Crystal structure of bis(acetylacetonato-κ2O,O′)-(ethanolamine-κ2N,O)copper(II), C14H25CuNO5
  67. Crystal structure of chlorido-diphenyl-(isopropyl(propyl)carbamodithioato-κ2S,S′)tin(IV), C19H24ClNS2Sn
  68. The crystal structure of bis(imidazole-1-yl)methane monohydrate, C7H10N4O
  69. The crystal structure of bis(4-nitroimidazole-1-1yl)methane, C7H6N6O4
  70. Crystal structure of di(naphthalen-2-yl)sulfane, C20H14S
  71. Crystal structure of 3-acetyl-6-bromo-4-hydroxy-2H-chromen-2-one, C11H7BrO4
  72. Crystal structure of N′2,N′6-bis((E)-1-(pyrazin-2-yl)ethylidene)pyridine-2,6-dicarbohydrazide — methanol (1/2), C21H25N9O4
  73. The crystal structure of 3-nitro-4-(p-tolylamino)-2H-chromen-2-one, C16H12N2O4
  74. The crystal structure of 1,2-bis((4-methoxyphenyl)ethynyl)benzene, C24H18O2
  75. Crystal structure of a low-temperature (100 K) polymorph of catena-poly[(μ2-4,4′-bipyridine-κ2N,N′)-bis(O,O′-diethyldithiophosphato-κ1S)zinc(II)], C18H28N2O4P2S4Zn
  76. The pseudosymmetric low temperature polymorph of catena-poly[(μ2-4,4′-bipyridyl-κN,N′)-bis(O,O′-diethyldithiophosphato-κS)-cadmium(II)], {C18H28CdN2O4P2S4}n
  77. Crystal structure of 3-iodophthalic acid, C8H5IO4
  78. The crystal structure of tert-butyl (tert-butoxy(oxo)methyl)(5-bromo-2-fluorophenyl)carbamate, C16H21BrFNO4
  79. The crystal structure of bis(μ2-5,7-dichloroquinolin-8-olato-κ3N,O:O)-tetrakis(5,7-dichloroquinolin-8-olato-κ2N,O)bis(methanol-κ1O)dieuropium(III) — toluene (1/1), C63H39Cl12Eu2N6O8
  80. Crystal structure of dichlorido-(N′-(1-(3-ethylpyrazin-2-yl)ethylidene)-4-methoxybenzohydrazide-κ3N,N′,O)cadmium(II), C16H18N4O2Cl2Cd
  81. A redetermination of the crystal structure of catena-poly[(bis(O,O′-isopropyl dithiophosphato-κ2S,S′)-(μ2-1,2-bis(3-pyridylmethylene)hydrazine-κ2N,N′)cadmium(II)], {C24H38CdN4O4P2S4}n
Downloaded on 9.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2019-0504/html
Scroll to top button