Home The crystal structure of (E)-1-phenyl-3-(p-tolylthio)but-2-en-1-one, C17H16OS
Article Open Access

The crystal structure of (E)-1-phenyl-3-(p-tolylthio)but-2-en-1-one, C17H16OS

  • Jinpeng Tang , Cheng Wang , Xiang Long , Xiongwei Wu , Xiaoming Zhu ORCID logo EMAIL logo and Fuxing Zhang ORCID logo
Published/Copyright: October 1, 2024

Abstract

C17H16OS, monoclinic, P21/n (no. 14), a = 5.4605(12) Å, b = 19.767(4) Å, c = 13.357(4) Å, β = 92.834(3)°, V = 1,439.9(6) Å3, Z = 4, R gt(F) = 0.0398, wR ref(F 2) = 0.1144, T = 296(2) K.

CCDC no.: 2371298

Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Colorless block
Size 0.31 × 0.26 × 0.23 mm
Wavelength: MoKα radiation (0.71073 Å)
μ: 0.21 mm−1
Diffractometer, scan mode: Bruker APEX-II, φ and ω
θ max, completeness: 25.0°, >99 %
N(hkl)measured, N(hkl)unique, R int: 7,262, 2,541, 0.018
Criterion for I obs, N(hkl)gt: I obs > 2σ (I obs), 2,147
N(param)refined: 175
Programs: Bruker, 1 SHELX, 2 , 3 WinGX/ORTEP 4
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
C1 0.5988 (3) 0.35369 (8) 0.95850 (12) 0.0469 (4)
C2 0.5455 (3) 0.31101 (9) 0.87880 (14) 0.0607 (5)
H2 0.642271 0.272932 0.870230 0.073*
C3 0.3509 (4) 0.32377 (11) 0.81143 (15) 0.0717 (6)
H3 0.318389 0.294341 0.758096 0.086*
C4 0.2065 (4) 0.37912 (10) 0.82255 (15) 0.0697 (5)
H4 0.074617 0.387250 0.777397 0.084*
C5 0.2560 (4) 0.42262 (10) 0.90027 (17) 0.0750 (6)
H5 0.158807 0.460766 0.907646 0.090*
C6 0.4503 (4) 0.41012 (9) 0.96810 (15) 0.0641 (5)
H6 0.482029 0.439981 1.020963 0.077*
C7 0.8027 (3) 0.34223 (8) 1.03630 (12) 0.0508 (4)
C8 0.9408 (3) 0.27906 (8) 1.03330 (12) 0.0502 (4)
H8 0.888419 0.246969 0.986031 0.060*
C9 1.1368 (3) 0.26365 (8) 1.09323 (12) 0.0510 (4)
C10 1.1306 (3) 0.13821 (8) 0.99565 (13) 0.0532 (4)
C11 0.9234 (3) 0.10373 (9) 1.02104 (15) 0.0615 (5)
H11 0.865498 0.108228 1.085016 0.074*
C12 0.8021 (4) 0.06261 (10) 0.95175 (16) 0.0687 (5)
H12 0.661127 0.040166 0.969655 0.082*
C13 0.8836 (4) 0.05377 (9) 0.85660 (15) 0.0632 (5)
C14 1.0906 (4) 0.08811 (10) 0.83221 (15) 0.0682 (5)
H14 1.149352 0.083047 0.768468 0.082*
C15 1.2132 (3) 0.12995 (10) 0.90025 (14) 0.0652 (5)
H15 1.352751 0.152853 0.881825 0.078*
C16 0.7489 (5) 0.00794 (12) 0.78190 (19) 0.0974 (8)
H16A 0.661491 0.034889 0.732163 0.146*
H16B 0.635077 −0.019731 0.816040 0.146*
H16C 0.864623 −0.020447 0.750045 0.146*
C17 1.2511 (4) 0.30737 (10) 1.17439 (14) 0.0655 (5)
H17A 1.297136 0.350015 1.146504 0.098*
H17B 1.394106 0.285312 1.203590 0.098*
H17C 1.135417 0.314800 1.225082 0.098*
O1 0.8440 (3) 0.38557 (7) 1.10038 (10) 0.0750 (4)
S1 1.29935 (9) 0.18752 (3) 1.08569 (4) 0.0691 (2)

1 Source of material

All chemicals were purchased from commercial sources and used as received without further purification. An oven-dried flask was charged with 1-phenylbuta-2,3-dien-1-one (0.2 mmol), p-toluenethiol (0.2 mmol) and CH3CN (2 mL). Then, after the mixture was stirred at room temperature for 3.5 h, the mixture was extracted with ethyl acetate. The combined organic layer was dried over Na2SO4, and concentrated in vacuum, and the residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate) to afford the pure title product. Finally, crystals were obtained by slow evaporation from petroleum ether (b.p.: 60–90 °C) solution at room temperature.

2 Experimental details

All H-atoms bonded to C atoms were placed geometrically and refined using a riding model with common isotropic displacement factors U iso(H) = 1.2 or 1.5 U eq (parent C-atom).

3 Comment

Vinyl sulfides play an important role as versatile intermediates in organic chemistry and coordination chemistry, and they also are vital core structures for many natural products and biologically active compounds. 5 , 6 , 7 , 8 Due to the molecular structure of a compound determining its properties, considerable interest has been inclined toward the development of structures for access to vinyl sulfides. 9 , 10 , 11 , 12 , 13 Therefore, we have crystallized the title compound and report its crystal structure in this context.

In the molecular structure (Figure), the dihedral angle between the almost planar vinylthio group (S1/C17/C7–C9) and the benzoyl group (O1/C1–C7) is 8.1°. The C(10)–S(1)–C(9)–C(8) and C(10)–S(1)–C(9)–C(17) torsion angles are – 5.54(18)° and 179.97(12)°. The bond lengths and angles are all in the expected ranges. 14 The thioether bond distances are 1.7526(18) Å for S(1)–C(9) and 1.7708(18) Å for S(1)–C(10), respectively, and the C(3)–S(1)–C(6) bond angle is 105.28(8)°. The bond lengths of C(8)–C(9), C(7)–C(8) and O(1)–C(7) are 1.340(2), 1.460(2) and 1.224(2) Å, respectively. The title compound forms a 2D structure by C–H⋯π and C–H⋯O hydrogen bonds.


Corresponding author: Xiaoming Zhu, School of Chemistry and Materials Science, Hengyang Normal University, Hengyang, Hunan 421008, China, E-mail:

Funding source: Hunan Provincial Natural Science Foundation of China

Award Identifier / Grant number: 2024JJ5057

Funding source: Postgraduate Scientific Research Innovation Project of Hunan Province

Award Identifier / Grant number: CX20240978

Funding source: College Students Innovation and Entrepreneurship Training Program of Hengyang Normal University

Award Identifier / Grant number: S202410546045

Funding source: Scientific Research Projects of Education Department of Hunan Province

Award Identifier / Grant number: 23B0669

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by the Hunan Provincial Natural Science Foundation of China (No. 2024JJ5057), Postgraduate Scientific Research Innovation Project of Hunan Province (No. CX20240978), College Students Innovation and Entrepreneurship Training Program of Hengyang Normal University (No. S202410546045), and Scientific Research Projects of Education Department of Hunan Province (No. 23B0669).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Bruker. SAINT, APEX2 and SADABS; Bruker AXS Inc.: Madison, WI, USA, 2012.Search in Google Scholar

2. Sheldrick, G. M. SHELXTL – Integrated Space–Group and Crystal–Structure Determination. Acta Crystallogr. 2015, A71, 3–8.10.1107/S2053273314026370Search in Google Scholar PubMed PubMed Central

3. Sheldrick, G. M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

4. Farrugia, L. J. WinGX and Ortep for Windows: An Update. J. Appl. Crystallogr. 2012, 45, 849–854; https://doi.org/10.1107/s0021889812029111.Search in Google Scholar

5. Fogeron, T.; Retailleau, P.; Chamoreau, L.-M.; Li, Y.; Fontecave, M. Pyranopterin Related Dithiolene Molybdenum Complexes as Homogeneous Catalysts for CO2 Photoreduction. Angew. Chem. Int. Ed. 2018, 57, 17033–17037; https://doi.org/10.1002/anie.201809084.Search in Google Scholar PubMed

6. Chen, J.; Chen, S.; Xu, X.; Tang, Z.; Au, C.-T.; Qiu, R. Nickel–Catalyzed Regioselective Cleavage of Csp2–S Bonds: Method for the Synthesis of Tri- and Tetrasubstituted Alkenes. J. Org. Chem. 2016, 81, 3246–3255; https://doi.org/10.1021/acs.joc.6b00203.Search in Google Scholar PubMed

7. Zhao, Y.-M.; Wang, X.; Guo, Z.-Y.; Li, H.; Zhang, J.-T.; Xie, M.-H. Cu–Catalyzed Diarylthiolation of Ynones with Aryl Iodides and Elemental Sulfur: An Access to Tetrasubstituted (Z)-1,2–Bis(arylthio)alkenes and Benzo[b] [1,4]dithiines. J. Org. Chem. 2022, 87, 11796–11804; https://doi.org/10.1021/acs.joc.2c01575.Search in Google Scholar PubMed

8. Li, Y.; Wu, J.; Li, H.; Sun, Q.; Xiong, L.; Yin, G. Highly Regio- and Stereoselective Synthesis of Bis-sulfanylSubstituted Conjugated Dienes by Copper–Palladium Cooperative Catalysis. Org. Chem. Front. 2021, 8, 628–634; https://doi.org/10.1039/d0qo01256d.Search in Google Scholar

9. Jali, B. R.; Baruah, J. B. Polymorphs and Solvates of 2-(1,4–Dihydro-1,4-Dioxonaphthalen-3-Ylthio)Benzoic Acid. Cryst. Growth Des. 2012, 12, 3114–3122; https://doi.org/10.1021/cg300318u.Search in Google Scholar

10. Stephens, F. S. Crystal and Molecular Structure of trans-3-p–Tolylthiocinnamic Acid. J. Chem. Soc. A 1970, 1843–1846; https://doi.org/10.1039/j19700001843.Search in Google Scholar

11. Roche, D.; Métin, J.; Madesclaire, M. (E)-3-(4–Chlorophenyl)-3-Cyclopropyl-2-(Phenylthio)Acrylonitrile. Acta Crystallogr. 1996, C52, 3104–3105; https://doi.org/10.1107/s0108270196007172.Search in Google Scholar

12. Yavari, I.; Taheri, Z.; Sheikhi, S.; Halvagar, M. R. A Synthesis of (Arylthio-Ethylidene)Indolin-2-Ones via S-Arylation of Oxoindolin-Ethanethiolates with Aryl Halides. J. Sulfur Chem. 2019, 40, 124–136; https://doi.org/10.1080/17415993.2018.1540701.Search in Google Scholar

13. Kang, G.; Kim, J.; Lim, H.; Kim, T. H. Crystal Structure of Benzobicyclon. Acta Crystallogr. 2015, E52, o1035–o3105; https://doi.org/10.1107/s2056989015023221.Search in Google Scholar

14. Dong, L.; Guo, Y.-F.; Ma, J.-Y.; Wang, J.-L.; Feng, S.-X.; Huo, H.-K. Crystal Structure of (E)-3-((4-(tert-Butyl)Phenyl)Thio)-4-Hydroxypent-3-en-2-one, C15H20O2S. Z. Kristallogr. N. Cryst. Struct. 2022, 237, 37–39; https://doi.org/10.1515/ncrs-2021-0365.Search in Google Scholar

Received: 2024-07-23
Accepted: 2024-09-17
Published Online: 2024-10-01
Published in Print: 2024-12-17

© 2024 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of 3-nitrophenol-2,1,3-benzoselenadiazole (1/1), C12H9N3O3Se
  4. Crystal structure of diaqua-(hydroxido)-{μ-[2-(hydroxy)-5-[(4-nitrophenyl)diazenyl]benzoato]}-{2-hydroxy-5-[(4-nitrophenyl)diazenyl]benzoato}-(1,10-phenanthroline)-diterbium hydrate, C38H27.4N8O12.2Tb
  5. Crystal structure of poly[bis(μ3-3-fluoro-4-(1H-1,2,4-triazol-1-yl)benzoato-κ3 O:O′:N)cadmium(II)] – dimethylformamide (1/1), C21H17CdF2N7O5
  6. The crystal structure of 2-amino-N-(pyridin-2-yl)benzamide, C12H11N3O
  7. The crystal structure of 2,3-di(pyridin-2-yl)-2,3-dihydroquinazolin-4(1H)-one, C18H14N4O
  8. Crystal structure of 2-chloro-4-fluorobenzyl (R)-2-(6-methoxynaphthalen-2-yl)propanoate, C21H18ClFO3
  9. Crystal structure of [1-(4-carboxyphenyl)-4-oxo-1,4-dihydropyridazine-3-carboxylic acid]-(methylsulfinyl)methane, C15H16N2O6S
  10. The crystal structure of 2-ethyl-1,1-dimethyl-1H-benzo[e]indole, C16H17N
  11. The crystal structure of (Z)-5-amino-N -hydroxy-1H-pyrazole-4-carboximidamide, C4H7N5O
  12. The crystal structure of 2,2,5-trimethyl-3-(4-(4-(5-phenyl-4,5-dihydroisoxazol-3-yl)thiazol-2-yl)phenyl)imidazolidin-4-one, C24H24N4O2S
  13. The crystal structure of tetrakis(μ2-acetato-κ2 O:O′)-bis[(4′-phenyl-4,2′:6′,4″-terpyridine-κ1 N)dicopper(II)], C25H21CuN3O4
  14. Crystal structure of poly(3-thiophenecarboxylato-κ 3 O,O′:O′)-(methanol-κO)cadmium(II), C11H10O5S2Cd
  15. The crystal structure of dichloridobis[4′-(p-methoxylphenyl)-4,2′:6′,4″-terpyridine-κN] zinc(II), C44H34Cl2N6O2Zn
  16. The crystal structure of 1-(2-carboxyethyl)-1H-imidazole 3-oxide
  17. Crystal structure of 1,1′,1″-(nitrilotris(ethane-2,1-diyl))tris(3-(4-(((E)-pyridin-2-ylmethylene)amino)phenyl)urea), C45H47N13O4
  18. Crystal structure of a (E)-4-bromo-N-(4-(diethylamino)-2-hydroxybenzylidene) benzenaminium acetate ─ 4-bromoaniline (1/1)
  19. Crystal structure of 2,2′-(iminobis(methylene))bis(benzimidazolium) bis(p-toluenesulfonate), C30H31N5O6S2
  20. The crystal structure of alogliptinium meta-chlorobenzoate
  21. Crystal structure of 4-bromobenzyl 2-(6-methoxy-naphthalen-2-yl)propanoate, C21H19BrO3
  22. The hydrated double salt structure of (E)-4-(2-benzylidenehydrazine-1-carbonyl)pyridin-1-ium cation with 2-hydroxybenzoate and benzoate anions
  23. Crystal structure of (R)(R)-5-chloro-3-((S,1E,3E)-3,5-dimethyl-hepta-1,3-dien-1-yl)-7-methyl-6,8-dioxo-2,6,7,8-tetrahydroisoquinolin-7-yl acetate, C21H24ClNO4
  24. The crystal structure of bis(3-oxo-1,3-diphenylprop-1-en-1-olato-κ 2 O:O′)-bis(1,4-dioxane-κ 1 O)nickel(II), C38H38O8Ni
  25. Crystal structure of poly[aqua-(pyridine-3-carboxylato-κ1 N)(pyridine-3-carboxylato-κ2 O,O′) cadmium(II)] dihydrate, C12H14N2O7Cd
  26. The crystal structure of 4-(4-phenyl-5-(((1-(2,4,6-tribromophenyl)-1H-1,2,3-triazol-4-yl)methyl)thio)-4H-1,2,4-triazol-3-yl)pyridine, C22H14Br3N7S
  27. The crystal structure of N-benzylquinoline-2-carbothioamide, C17H14N2S
  28. Crystal structure of bis(3-isopropylphenyl)-4,4′-bipyridinium dichloride dihydrate, C28H30N2⋅2Cl⋅2H2O
  29. The crystal structure of ethyl 2-amino-4-(cyanophenyl)-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carboxylate, C19H18N2O4
  30. Crystal structure of (4R,10S)-6-hydroxy-7-isopropyl-4,10-dimethyl-1,2,3,5-hexahydro-6,10-epoxyazulen-9-one, C15H22O3
  31. The crystal structure of (E)-(2-(2-hydroxy-3-methoxybenzylidene)aminophenyl)arsonic acid, C14H14AsNO5
  32. The crystal structure of poly[(μ 2-2-aminoisophthalato-κ4O,O′:O″:O″′)-(N-methylpyrrolidone κ1O)-dioxido-uranium(VI)], C13H14N2O7U
  33. The crystal structure of the co-crystal isonicotinamide · terephthalic acid, C8H6O4·2(C6H6N2O)
  34. The crystal structure of (E)-1-phenyl-3-(p-tolylthio)but-2-en-1-one, C17H16OS
  35. The crystal structure of 4,5-bis((Z)-chloro(hydroxyimino)methyl)-1H-imidazol-3-ium chloride monohydrate
  36. The crystal structure of 1,2-bis(4-(dimethylamino)phenyl)ethane-1,2-dione. C18H20N2O2
  37. Crystal structure of 2-chloro-4-fluorobenzyl 2-acetoxybenzoate, C16H12ClFO4
  38. Crystal structure of methyl 1-phenyl-9H-pyrido[3,4-b]indole-3-carboxylate, C19H14N2O2
  39. Crystal structure of (3-(dimethoxymethyl)-5-methoxy-1H-indol-1-yl)(5-fluoro-2-iodophenyl)methanone, C19H17FINO4
  40. Crystal structure of tetrachlorido-bis(1-[(1H-triazole-1-yl)methyl]-1H-benzotriazole-κ2 N:N′)dicopper, C36H32Cu2N24Cl4
  41. Crystal structure of 2-(2,3-bis(4-methoxyphenyl)-1H-pyrrolo[2,3-b]quinoxalin-1-yl)anilin, C30H24N4O2
  42. Crystal structure of 5,7-dihydroxy-2-phenyl-4H-chromen-4-one–N,N-dimethylformamide(1/1), C18H17NO5
  43. The crystal structure of bis(μ 2-biphenyl-2,2′-dicarboxylato)-diaqua-bis(nitrato)-bis(2,2′:6′,2′′-terpyridine)dineodymium(III), C46H32I2N8Nd2O16
  44. Crystal structure of (Z)-4-amino-N -((4-chlorophenyl)(phenyl)methylene)benzohydrazide, C20H16ClN3O
  45. Crystal structure of (E)-6,8-dimethoxy-4-(4-morpholinobenzylidene)-3,4-dihydro-1-benzoxepin-5(2H)-one, C23H25NO5
  46. Crystal structure of (R)-2-((3-(3-aminopiperidin-1-yl)-6-methyl-5-oxo-1,2,4-triazin-4(5H)-yl) methyl)-4-fluorobenzonitrile benzoate monohydrate, C24H27FN6O4
  47. The crystal structure of [triaqua-(8-carboxymethoxy-quinoline-2-carboxylato-κ 3 N,O,O)copper(II)]monohydrate, C12H15NO9Cu
  48. Crystal structure of (((4-chlorophenyl)sulfonyl)glycinato-κ 2 N,O)bis(1,10-phenanthroline-κ 2 N,N′)cobalt(II) tetrahydrate, C32H30ClCoN5O8S
  49. Crystal structure of (((3-nitrophenyl)sulfonyl)-β-alaninato-κO)bis(2,2′-bipyridine-κ 2 N, N′)copper(II) 3-nitrobenzenesulfonate, C35H29CuN7O11S2
  50. Crystal structure of 3-phenoxybenzyl 2-(6-methoxynaphthalen-2-yl)propanoate, C27H24O4
  51. 6-(2′,3′-Dihydroxy-3′-methylbutyl)-7-methoxy-8-(3″-methylbut-2″-en-1″-yl)-2H-chromen-2-one, C20H26O5
  52. Crystal structure of bromido-(2,2′:6′,2″-terpyridine-4′-onato-κ3N)palladium(II) methanol solvate
  53. The crystal structure of ethyl 2-amino-(4-nitrophenyl)-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carboxylate, C20H22N2O6
  54. Crystal structure of (1E,3E,5E)-1,6-bis(4-(pentyloxy)phenyl)hexa-1,3,5-triene, C28H36O2
  55. The crystal structure of tris(2-bromo-4-methylphenyl)amine, C21H18Br3N
  56. The crystal structure of 3-(2,5-dimethylanilino)-1-(2,5-dimethylphenyl)-4-methyl-1H-pyrrole-2,5-dione, C21H22N2O2
  57. Crystal structure of dicarbonyl (μ2-indole-2-carboxylato κ2 O:O′)tris(triphenylarsine-κAs)dirhodium(I) acetone solvate, C68H56As3NO5Rh2
  58. The crystal structure of 4-chloro-2-formylphenyl 4-methylbenzenesulfonate, C14H11ClO4S
  59. Crystal structure of 4-iodobenzyl 2-(6-methoxynaphthalen-2-yl) propanoate, C21H19IO3
Downloaded on 6.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2024-0313/html?lang=en
Scroll to top button