Home Technology A comparative study to solve fractional initial value problems in discrete domain
Article Open Access

A comparative study to solve fractional initial value problems in discrete domain

  • Alaa Mohsin Abed EMAIL logo , Hossein Jafari and Mohammed Sahib Mechee
Published/Copyright: October 12, 2023
Become an author with De Gruyter Brill

Abstract

In this article, we used some methods to solve Riemann-type fractional difference equations. Firstly, we use a method that is a composite method based on the successive approximation method with the Sumudu transform. Secondly, we use a method that is a composite method that consists of the homotopic perturbation method with the Sumudu transform. It was found that the results obtained from these combined methods are identical when compared. We also provided theories and illustrative examples to support the research findings.

1 Introduction

In recent years, theoretical difference equations have garnered the support and approval of several researchers. They have found increasing application in a wide range of domains, including engineering, physics, applied science, control theory, finite mathematics, and numerical analysis. It is anticipated that this pattern will carry on well into the foreseeable future. This is how it appears when viewed through the lens of a number of significant theories [116]. Fractional calculus and fractional systems can be found in a variety of applications and disciplines, where they both play an important role [10,12,17,18]. In order to tackle problems of this nature, one must make use of the many mathematical tools, theories, and approaches [11]. Klçman and Gadain investigated the properties of the Sumudu transform as well as the relationship between the Laplace and Sumudu transforms. In addition, we show how to use the double Sumudu transform to solve a wave equation in one dimension that has a singularity at the start [13]. A method was then used to solve the Whittaker and Zettl equations. Eltayeb and Abdeldaim have used the Sumudu transform decomposition method to solve fractional delay differential equations that are both linear and nonlinear [5]. So, this study was provided by Mungkasi and Widjaja to uncover a new technique to solve the Van der Pol issue precisely and effectively. Despite the availability of various iterative approximation methods, the researchers concentrated on applying the successive approximation method (SAM) to solve the Van der Pol problem [19].

In this research, we solved the fractional order difference equations relying on important combination methods, the first of which was the Sumudu transformation, and the other was the successful approximation method, so we used Sumudu transforms with the homotopy perturbation method (HPM), using the properties of fractional orders, we presented fractional equation problems of the Riemann–Liouville type. We presented fractional Initial Value Problems and the type of difference operator used was Riemann-Liouville using the properties of fractional order as well as the iterative method used, were able to obtain the final solution. The illustrations show it.

2 Preliminary

In this section, we introduce some definitions, concepts, and axioms of the Sumudu transform that are related to this article.

Definition 2.1

(Sumudu Transform) [17]

If f : N 0 C is a function, then its discrete Sumudu transform is defined as follows:

(1) S { f } ( u ) = 1 u k = 0 u u + 1 k + 1 f ( k ) ,

where S { f } ( u ) = S 0 { f } ( u ) for all values of u 1 such that the series converges. If = lim k sup | f ( k ) | 1 k , then one of these three possibilities applies to our situation:

  1. If 0 < < , and consequently u + 1 u > , then the solution to equation (1) will be convergent, while it will diverge everywhere else.

  2. If is equal to zero, then equation (1) will converge for all values of u, with the possible exception of the value ‒1.

  3. The equation diverges everywhere if = .

Theorem 2.2

[8]

If S { f } ( u ) = F ( u ) for u + 1 u > and assuming that u has the same values, then S { f ( k + 1 ) } ( u ) = u + 1 u F ( u ) f ( 0 ) u .

Lemma 2.3

[7]

The discrete Sumudu transforms for some elementary functions for u + 1 u > are as follows:

( i ) S { c } = c for c R . ( ii ) S { ( 1 + λ ) t } = 1 1 λ u for ( 1 + λ ) u u + 1 < 1 , λ R . ( iii ) S m = 0 k 1 f ( m ) = u S { f ( t ) } . ( iv ) S { t n ¯ } = n ! u n , where t n ¯ = t ( t 1 ) ( t n + 1 ) , n N .

Definition 2.4

(Falling factorial function) [20]

The falling factorial power t ν ¯ (read t to ν falling) is defined as follows:

ƭ ν ¯ = ƭ ( ƭ 1 ) ( ƭ 2 ) ( ƭ ( ν 1 ) ) = k = 0 v 1 ( ƭ k ) = Γ ( ƭ + 1 ) Γ ( ƭ + 1 v ) ,

where ν 0 . It is also symbolized in some research t ( v ) .

Remark 2.5

[20]

If ƭ v + 1 is a nonpositive integer and ƭ + 1 is not a nonpositive integer, then lim ƭ 1 ƭ ν ¯ = lim s 1 Γ ( ƭ + 1 ) Γ ( ƭ ν + 1 ) = 0

Lemma 2.6

[21]

If u + 1 u > , then for the same values of u ,

(2) ( i ) S { Δ f ( k ) } ( u ) = 1 u [ F ( u ) f ( 0 ) ] ,

and in general,

(3) ( ii ) S { Δ n f ( k ) } ( u ) = u n F ( u ) i = 0 n 1 u i | Δ i f ( k ) | k = 0 ,

where Δ f ( k ) = f ( k + 1 ) f ( k ) and Δ 0 f ( k ) = f ( k ) .

3 Fractional sum operator and fractional difference operator

Definition 3.1

(the sum fractional) [22]

If Ƒ : N a R and α > 0 is given, then the α th -order fractional sum of Ƒ is defined as follows:

(4) ( Δ a α Ƒ ) ( ƭ ) 1 Γ ( v ) s = a ƭ α ( ƭ σ ( s ) ) α 1 ¯ Ƒ ( s ) for ƭ N a + α

where ( ƭ σ ( s ) ) α 1 ¯ is the generalized falling function.

Definition 3.2

(Riemann–Liouville difference) [3,21]

For Ƒ ( ƭ ) defined on N a and 0 < α , α N , the R L difference is defined as follows: Δ a α Ƒ ( ƭ ) Δ m Δ a ( m α ) Ƒ ( ƭ ) , ƭ N a + m α , m = [ α ] + 1 .

Remark 3.3

[23,24]

We note that for α = 1 definition equation (4) reduces to discrete sum operator Δ a 1 Ƒ ( ƭ ) = s = a ƭ 1 Ƒ ( s ) . Let a be any real number and α be any positive real number such that ϒ 1 < α < ϒ , where ϒ is an integer.

4 Composing fractional sum and difference operators with some properties

In this section, we will introduce the relationship composing between the sum and difference operators

Theorem 4.1

(Composing a sum with a sum) [2]

Let ϒ : N a R be a given and suppose α , μ > 0 . Then,

Δ a + μ α Δ a μ Ƒ ( ƭ ) = Δ a α μ Ƒ ( ƭ ) for ƭ N a + μ + α .

Lemma 4.2

[2]

Let Ƒ : N a R be given. For any k N 0 and μ > 0 with M 1 < μ < M , we have

  1. Δ k Δ a μ Ƒ ( ƭ ) = a k μ Ƒ ( ƭ ) , ƭ N a + μ ,

  2. Δ k Δ a μ Ƒ ( ƭ ) = a k + μ Ƒ ( ƭ ) , ƭ N a + M μ .

Theorem 4.3

(Composing a difference with sum) [2]

Let Ƒ : N a R be given and suppose α , μ > 0 with ϒ 1 < α ϒ . Then, we have Δ a + μ α Δ a μ Ƒ ( ƭ ) = Δ a α μ Ƒ ( ƭ ) for t N a + μ + ϒ α .

5 Sumudu transform fractional sum and difference operator with some properties

In this section, we present some definitions and theories that concern Sumudu transform fractional sum and difference operator with some properties.

Lemma 5.1

[7]

Let m N 0 and f : N a m R and g : N a R are of exponential order r > 0 . Then, for all u C { 1 , 0 } such that | ( u + 1 ) / u | > r ,

( i ) S a m { f } ( u ) = u u + 1 m S a { f } ( u ) + 1 u k = 0 m 1 u u + 1 k + 1 f ( k + a m ) , ( ii ) S a + m { g } ( u ) = u + 1 u m S a { g } ( u ) 1 u k = 0 m 1 u + 1 u m 1 k g ( k + a ) .

Definition 5.2

[7]

For each μ R ( N ) , define the μ th-Taylor monomial to be

h μ ( ƭ , a ) ( ƭ a ) μ ¯ Γ ( μ + 1 ) for ƭ N a .

Theorem 5.3

[7]

Suppose f : N a R is of exponential order r 1 and let ν > 0 with N 1 < v N . Then, for all u C { 1 , 0 } such that | ( u + 1 ) / u | > r ,

( i ) S a + v { Δ a v f } ( u ) = ( u + 1 ) v S a { f } ( u ) , ( ii ) S a + ν N { Δ a v f } ( u ) = u N ( u + 1 ) N v S a { f } ( u ) .

Theorem 5.4

[7]

Suppose f : N a R is of exponential order r 1 and let v > 0 with N 1 < v N . Then, for all u C { 1 , 0 } such that | ( u + 1 ) / u | > r ,

S a + N v { Δ a v f } ( u ) = ( u + 1 ) N v u N S a { f } ( u ) k = 0 N 1 u k N Δ a v N + k f ( a + N v ) .

Lemma 5.5

[9]

Let μ R ( N ) and a , b R such that b a = μ . Then, for all u C { 1 , 0 } such that | ( u + 1 ) / u | > 1 , one has

  1. S b { h μ ( . , a ) } ( u ) = ( u + 1 ) μ .

  2. for v , x , y R such that ( x + y ) v = k = 0 v k x k y v k .

  3. v k v k ¯ k ! .

  4. v k = ( 1 ) k k + v 1 v 1 .

Theorem 5.6

[6]

Let f : N a R and ν > 0 be given with N 1 < ν N . Consider the νth-order fractional difference equation

(5) Δ a + v N v y ( t ) = f ( t ) , t N a ,

Then,

Δ a + v N i + v N y ( a ) Γ ( i + v N + 1 ) = p = 0 i k = 0 i p ( 1 ) k i ! ( i k ) N v i p i p k Δ i y ( a + v N )

for i { 0 , 1 , , N 1 } .

Theorem 5.7

Let f : N 0 R and ν > 0 be given with N 1 < ν N . Consider the ν th -order fractional difference equation (5)

Then, β i = Δ a + v N i + v N y ( a ) Γ ( i + v N + 1 ) , i { 0 , 1 , , N 1 } , and γ i = Δ i y ( a + v N ) such that

  1. β 0 = z ( 0 ) γ 0 ,

  2. β 1 = z ( 1 ) γ 1 [ z ( 0 ) z ( 1 ) ] γ 0 ,

  3. β 2 = 1 2 z ( 2 ) γ 2 ( z ( 1 ) z ( 2 ) ) γ 1 + 1 2 [ z ( 0 ) 2 z ( 1 ) + z ( 2 ) ] γ 0 ,

  4. β 3 = 1 6 z ( 3 ) γ 3 1 2 ( z ( 2 ) z ( 3 ) ) γ 2 + 1 2 [ z ( 1 ) 2 z ( 2 ) + z ( 3 ) ] γ 1 ,

  5. β 4 = 1 24 z ( 4 ) γ 4 1 6 ( z ( 3 ) z ( 4 ) ) γ 3 + 1 4 [ z ( 2 ) 2 z ( 3 ) + z ( 4 ) ] γ 2 1 6 ( z ( 1 ) 3 z ( 2 ) + 3 z ( 3 ) z ( 4 ) ) γ 1 + 1 24 ( z ( 0 ) 4 z ( 1 ) + 6 z ( 2 ) 4 z ( 3 ) + z ( 4 ) ) γ 0 .

Proof

Define g : N 0 R by ( t ) ƭ N v , we can calculate some terms of β i as follows:

  1. β 0 = z ( 0 ) γ 0 , γ 0 = Δ i y ( a + v N ) , when i = 0 , we can get, p = 0 0 k = 0 0 ( 1 ) k i ! ( 0 k ) N v 0 p 0 k Δ 0 y ( a + v N ) = ( 0 ) N v γ 0 , then β 0 = z ( 0 ) γ 0 ,

  2. β 1 = z ( 1 ) γ 1 [ z ( 0 ) z ( 1 ) ] γ 0 , let i = 1, p = 0 1 k = 0 1 p ( 1 ) k i ! ( 1 k ) N v 1 p 1 p k Δ 1 y ( a + v N ) = ( 1 ) N v ( 0 ) N v γ 0 + ( 1 ) N v γ 1 , then β 1 = z ( 1 ) γ 1 [ z ( 0 ) z ( 1 ) ] γ 0 ,

  3. β 2 = 1 2 z ( 2 ) γ 2 ( z ( 1 ) z ( 2 ) ) γ 1 + 1 2 [ z ( 0 ) 2 z ( 1 ) + z ( 2 ) ] γ 0 , let i = 2, p = 0 2 k = 0 2 p ( 1 ) k i ! ( 2 k ) N v 2 p 2 p k Δ 2 y ( a + v N ) = 1 2 ! ( 2 ) N v 2 1 2 ! ( 1 ) N v + 1 2 ! ( 0 ) N v γ 0 + 2 1 2 ! ( 2 ) N v 2 1 2 ! ( 1 ) N v γ 1 + 1 2 ! ( 2 ) N v γ 2 , then β 2 = 1 2 z ( 2 ) γ 2 ( z ( 1 ) z ( 2 ) ) γ 1 + 1 2 [ z ( 0 ) 2 z ( 1 ) + z ( 2 ) ] γ 0 ,

  4. β 3 = 1 6 z ( 3 ) γ 3 1 2 ( z ( 2 ) z ( 3 ) ) γ 2 + 1 2 [ z ( 1 ) 2 z ( 2 ) + z ( 3 ) ] γ 1 , let i =   3, p = 0 2 k = 0 3 p ( 1 ) k i ! ( 3 k ) N v 3 p 3 p k Δ 2 y ( a + v N ) , and in the same way, we can prove that β 3 = 1 6 z ( 3 ) γ 3 1 2 ( z ( 2 ) z ( 3 ) ) γ 2 + 1 2 [ z ( 1 ) 2 z ( 2 ) + z ( 3 ) ] γ 1 ,

  5. β 4 = 1 24 z ( 4 ) γ 4 1 6 ( z ( 3 ) z ( 4 ) ) γ 3 + 1 4 [ z ( 2 ) 2 z ( 3 ) + z ( 4 ) ] γ 2 1 6 ( z ( 1 ) 3 z ( 2 ) + 3 z ( 3 ) z ( 4 ) ) γ 1 + 1 24 ( z ( 0 ) 4 z ( 1 ) + 6 z ( 2 ) 4 z ( 3 ) + z ( 4 ) ) γ 0 , let i = 4 , p = 0 4 k = 0 4 p ( 1 ) k i ! ( 4 k ) N v 4 p 4 p k Δ 2 y ( a + v N ) ,

and in the same way, we can prove that

β 4 = 1 24 z ( 4 ) γ 4 1 6 ( z ( 3 ) z ( 4 ) ) γ 3 + 1 4 [ z ( 2 ) 2 z ( 3 ) + z ( 4 ) ] γ 2 1 6 ( z ( 1 ) 3 z ( 2 ) + 3 z ( 3 ) z ( 4 ) ) γ 1 + 1 24 ( z ( 0 ) 4 z ( 1 ) + 6 z ( 2 ) 4 z ( 3 ) + z ( 4 ) ) γ 0 .

6 Main results

In this section, we introduce Sumudu discrete transformation by SAM and study discrete Sumudu transformation by homotopy perturbation to solve the following general fractional initial value difference equation:

(6) f ( y ( ƭ ) , Δ a + v N v y ( ƭ ) , Δ y ( ƭ ) , Δ 2 y ( ƭ ) , Δ 3 y ( ƭ ) , , Δ n y ( ƭ ) ) = g ( ƭ ) , t N a ,

(7) Δ i y ( a + v N ) = y i ( a + v N ) , i = 0 , 1 , 2 , , n 1 .

6.1 Discrete Sumudu transform with SAM

Now, in this section, we introduce the solution of the type fractional difference equation using a combination involving the Sumudu transformation with the SAM, and in the same time, we study Sumudu transform with HPM.

Problem 6.1.1

Consider the fractional initial value problem difference equation

(8) Δ a + v N v y ( ƭ ) Δ a n y ( ƭ ) = g ( ƭ ) t N a ,

(9) Δ k y ( a + v N ) = C k , C k R , k { 0 , 1 , 2 , 3 , } .

Then, the solution y ( t ) = lim m y m ( t ) , where y m ( ƭ ) = k = 0 N 1 ( ƭ a ) v + k N ¯ Γ ( v + k N + 1 ) C k + Δ a n v k = 0 N 1 ( ƭ a ) v + k N ¯ Γ ( v + k N + 1 ) C k + Δ a 2 n 2 v k = 0 N 1 ( ƭ a ) v + k N ¯ Γ ( v + k N + 1 ) C k + Δ a 3 n 3 v k = 0 N 1 ( ƭ a ) v + k N ¯ Γ ( v + k N + 1 ) C k + Δ a 4 n 4 v k = 0 N 1 ( ƭ a ) v + k N ¯ Γ ( v + k N + 1 ) C k + + Δ a ( m 1 ) n ( m 1 ) v k = 0 N 1 ( ƭ a ) v + k N ¯ Γ ( v + k N + 1 ) C k + Δ a ( m 1 ) n mv g ( ƭ ) + + Δ a 3 n 4 v g ( ƭ ) + Δ a 2 n 3 v g ( ƭ ) + Δ a n 2 v g ( ƭ ) + Δ a v g ( ƭ ) .

Proof

By taking the Sumudu transform for equation (8),

S a { Δ a + v N v y ( ƭ ) } S a { Δ a n y ( ƭ ) } = S a { g ( ƭ ) } .

Using Theorem 5.4,

( u + 1 ) N v u N S a + v N { y ( ƭ ) } ( u ) k = 0 N 1 u k N Δ a v N + k y ( a + N v ) S a { Δ n y ( ƭ ) } = S a { g ( ƭ ) .

Hence,

( u + 1 ) N v u N S a + v N { y ( ƭ ) } ( u ) k = 0 N 1 u k N Δ a v N + k y ( a + N v ) = S a { Δ n y ( ƭ ) } + S a { g ( ƭ ) } .

Multiplying both sides of the equation by u N ( u + 1 ) N v , we obtain

S a + v N { y ( ƭ ) } ( u ) u N ( u + 1 ) N v k = 0 N 1 u k N Δ a + v N v N + k y ( a + N v ) = u N ( u + 1 ) N v { S a { Δ n y ( ƭ ) } + S a { g ( ƭ ) } } .

Hence,

S a + v N { y ( ƭ ) } ( u ) = u N ( u + 1 ) N v k = 0 N 1 u k N Δ a v N + k y ( a + N v ) + u N ( u + 1 ) N v { S a { Δ n y ( ƭ ) } + S a { g ( ƭ ) } } .

Then,

S a + v N { y ( ƭ ) } ( u ) = k = 0 N 1 u u + 1 k ( u + 1 ) v + k N Δ a v N + k y ( a + N v ) + u N ( u + 1 ) N v { S a { Δ n y ( ƭ ) } + S a { g ( ƭ ) } } .

Using Lemma 5.5(i),

S a + v N { y ( t ) } ( u ) = k = 0 N 1 u u + 1 k S a + v + k N { h μ ( . , a ) } Δ a v N + k y ( a + N v ) + u N ( u + 1 ) N v { S a { Δ n y ( ƭ ) } + S a { g ( ƭ ) } } .

Using Lemma 5.1 (i),

(10) u u + 1 k S a + v + k N { h μ ( . , a ) } ( u ) = u u + 1 k S a + v + k k N { h μ ( . , a ) } ( u ) 1 u i = 0 k 1 u u + 1 i + 1 S a + v + k N { h v + k N ( i + a + v N , a ) } .

Using equation (10), we can obtain

(11) S a + v N { y ( ƭ ) } ( u ) = k = 0 N 1 S a + v + k N { h a + v + k N ( . , a ) } 1 u i = 0 k 1 u u + 1 i + 1 Δ a v N + i { h v + k N ( i + a + v N , a ) } Δ a v N + k y ( a + N v ) + u N ( u + 1 ) N v { S a { Δ n y ( ƭ ) } + S a { g ( ƭ ) } } .

Using Remark 2.5 , we can obtain

h v + k N ( i + a + v N , a ) = 0 ,

then

S a + v N { y ( ƭ ) } ( u ) = k = 0 N 1 S a + v + k N { h a + v + k N ( . , a ) } Δ a v N + k y ( a + N v ) + u N ( u + 1 ) N v { S { Δ n y ( ƭ ) } + S { g ( ƭ ) } } .

Using Theorem 5.3(ii), we can obtain

S a + v N { y ( ƭ ) } ( u ) = k = 0 N 1 S a + v + k N { h a + v + k N ( . , a ) } Δ a v N + k y ( a + N v ) + S a + ν N { Δ a v { { Δ n y ( ƭ ) } + { g ( ƭ ) } } } .

Hence,

(12) S a + v N { y ( ƭ ) } ( u ) = S a + v + k N k = 0 N 1 h a + v + k N ( . , a ) Δ a v N + k y ( a + N v ) + Δ a v { { Δ n y ( ƭ ) } + { g ( ƭ ) } } .

Applying the inverse Sumudu transform, we can obtain

y ( ƭ ) = k = 0 N 1 h a + v + k N ( . , a ) Δ a v N + k y ( a + N v ) + Δ a v { { Δ n y ( ƭ ) } + { g ( ƭ ) } } .

Using Definition 5.2 , we can obtain ( t a ) v + k N ¯

y ( ƭ ) = k = 0 N 1 ( ƭ a ) v + k N ¯ Γ ( v + k N + 1 ) Δ + v + k N v N + k y ( a + N v ) + Δ a v { { Δ n y ( ƭ ) } + { g ( ƭ ) } } .

Using the initial conditions, we obtain

(13) y ( ƭ ) = k = 0 N 1 ( ƭ a ) v + k N ¯ Γ ( v + k N + 1 ) C k + Δ a v { { Δ n y ( ƭ ) } + { g ( ƭ ) } } .

Now, applying the method of SAM, we obtain

(14) y m ( ƭ ) = k = 0 N 1 ( ƭ a ) v + k N ¯ Γ ( v + k N + 1 ) C k + Δ a v { Δ n { y m 1 ( ƭ ) } + g ( ƭ ) } , m = 1 , 2 , 3 , .

If m = 1 , we can obtain

y 1 ( ƭ ) = k = 0 N 1 ( ƭ a ) v + k N ¯ Γ ( v + k N + 1 ) C k + Δ a v { Δ n { y 0 ( ƭ ) } + g ( ƭ ) } .

By using, then y 0 ( ƭ ) = y ( a + v N ) = C 0 , R

y 1 ( ƭ ) = k = 0 N 1 ( ƭ a ) v + k N ¯ Γ ( v + k N + 1 ) C k + Δ a v { Δ n { C 0 } + g ( ƭ ) } ,

= k = 0 N 1 ( ƭ a ) v + k N ¯ Γ ( v + k N + 1 ) C k + Δ a v g ( t ) .

If m = 2 , we can obtain

y 2 ( ƭ ) = k = 0 N 1 ( ƭ a ) v + k N ¯ Γ ( v + k N + 1 ) C k + Δ a v { Δ n { y 1 ( ƭ ) } + g ( ƭ ) } ,

y 2 ( ƭ ) = k = 0 N 1 ( ƭ a ) v + k N ¯ Γ ( v + k N + 1 ) C k + Δ a v Δ n k = 0 N 1 ƭ Γ ( v + k N + 1 ) C k + Δ a v g ( ƭ ) + g ( ƭ ) .

Hence,

y 2 ( ƭ ) = k = 0 N 1 ( ƭ a ) v + k N ¯ Γ ( v + k N + 1 ) C k + Δ a v Δ n k = 0 N 1 ( ƭ a ) v + k N ¯ Γ ( v + k N + 1 ) C k + Δ a n 2 v g ( ƭ ) + Δ a v g ( ƭ ) .

Hence,

y 2 ( ƭ ) = k = 0 N 1 ( ƭ a ) v + k N ¯ Γ ( v + k N + 1 ) C k + Δ a n v k = 0 N 1 ( ƭ a ) v + k N ¯ Γ ( v + k N + 1 ) C k + Δ a n 2 v g ( ƭ ) } + Δ a v g ( ƭ ) .

If m = 3, we can obtain

y 3 ( t ) = k = 0 N 1 ( ƭ a ) v + k N ¯ Γ ( v + k N + 1 ) C k + Δ a v { Δ n { y 2 ( ƭ ) } + g ( ƭ ) } ,

y 3 ( ƭ ) = k = 0 N 1 ( ƭ a ) v + k N ¯ Γ ( v + k N + 1 ) C k + Δ a v Δ n k = 0 N 1 ( ƭ a ) v + k N ¯ Γ ( v + k N + 1 ) C k + Δ a n v k = 0 N 1 ( ƭ a ) v + k N ¯ Γ ( v + k N + 1 ) C k + Δ a n 2 v g ( ƭ ) + Δ a v g ( ƭ ) + g ( ƭ ) .

Hence,

y 3 ( ƭ ) = k = 0 N 1 ( ƭ a ) v + k N ¯ Γ ( v + k N + 1 ) C k + Δ a v Δ n k = 0 N 1 ( ƭ a ) v + k N ¯ Γ ( v + k N + 1 ) C k + Δ a v Δ a 2 n v k = 0 N 1 ( ƭ a ) v + k N ¯ Γ ( v + k N + 1 ) C k + Δ a v Δ a 2 n 2 v g ( ƭ ) + Δ a n 2 v g ( ƭ ) + Δ a v g ( ƭ ) .

Hence,

y 3 ( ƭ ) = k = 0 N 1 ( ƭ a ) v + k N ¯ Γ ( v + k N + 1 ) C k + Δ a n v k = 0 N 1 ( ƭ a ) v + k N ¯ Γ ( v + k N + 1 ) C k + Δ a 2 n 2 v k = 0 N 1 ( ƭ a ) v + k N ¯ Γ ( v + k N + 1 ) C k + Δ a 2 n 3 v g ( ƭ ) + Δ a n 2 v g ( ƭ ) + Δ a v g ( ƭ ) .

If m = 4, we can obtain

y 4 ( ƭ ) = k = 0 N 1 ( ƭ a ) v + k N ¯ Γ ( v + k N + 1 ) C k + Δ a n v k = 0 N 1 ( ƭ a ) v + k N ¯ Γ ( v + k N + 1 ) C k + Δ a 2 n 2 v k = 0 N 1 ( ƭ a ) v + k N ¯ Γ ( v + k N + 1 ) C k + Δ a 3 n 3 v k = 0 N 1 ( ƭ a ) v + k N ¯ Γ ( v + k N + 1 ) C k + Δ a 3 n 4 v g ( ƭ ) + Δ a 2 n 3 v g ( ƭ ) + Δ a n 2 v g ( ƭ ) + Δ a v g ( ƭ ) .

y m ( ƭ ) = k = 0 N 1 ( ƭ a ) v + k N ¯ Γ ( v + k N + 1 ) C k + Δ a n v k = 0 N 1 ( ƭ a ) v + k N ¯ Γ ( v + k N + 1 ) C k + Δ a 2 n 2 v k = 0 N 1 ( ƭ a ) v + k N ¯ Γ ( v + k N + 1 ) C k + Δ a 3 n 3 v k = 0 N 1 ( ƭ a ) v + k N ¯ Γ ( v + k N + 1 ) C k + Δ a 4 n 4 v k = 0 N 1 ( ƭ a ) v + k N ¯ Γ ( v + k N + 1 ) C k + + Δ a ( m 1 ) n ( m 1 ) v k = 0 N 1 ( ƭ a ) v + k N ¯ Γ ( v + k N + 1 ) C k + Δ a ( m 1 ) n mv g ( ƭ ) + + Δ a 3 n 4 v g ( ƭ ) + Δ a 2 n 3 v g ( ƭ ) + Δ a n 2 v g ( ƭ ) + Δ a v g ( ƭ ) .

Then, the solution y ( t ) = lim m y m ( t ) , m = 1,2,… .

Theorem 6.1.2

The solution of equations (8) and (9) is given by y ( ƭ ) = lim m y m ( ƭ ) ,

y m ( V ) = k = 0 N 1 β i ( ƭ a ) i + v N ¯ + Δ a v { Δ n { y m 1 ( ƭ ) } + g ( ƭ ) }

(15) for t N α + v N ,

where β i = Δ a + v N i + v N y ( a ) Γ ( i + v N + 1 ) for i { 0 , 1 , , N 1 } .

Proof

Using equation (13),

y ( ƭ ) = k = 0 N 1 ( ƭ a ) v + k N ¯ Γ ( v + k N + 1 ) C k + Δ a v { { Δ n y ( ƭ ) } + { g ( ƭ ) } } .

We assume β i = Δ a + v N i + v N y ( a ) Γ ( i + v N + 1 ) = C k Γ ( i + v N + 1 ) , then

y ( ƭ ) = k = 0 N 1 β i ( ƭ a ) i + v N ¯ + Δ a v { { Δ n y ( ƭ ) } + { g ( ƭ ) } } .

Now, applying the method of SAM, we obtain

(16) y m ( ƭ ) = k = 0 N 1 ( ƭ a ) v + k N ¯ Γ ( v + k N + 1 ) C k + Δ a v { Δ n { y m 1 ( ƭ ) } + g ( ƭ ) } , m = 1 , 2 , 3 , .

Hence,

y m ( ƭ ) = k = 0 N 1 β i ( ƭ a ) i + v N ¯ + Δ a v { Δ n { y m 1 ( ƭ ) } + g ( ƭ ) } for ƭ N α + v N .

Then, the solution y ( ƭ ) = lim m y m ( ƭ ) .

Now we solve equations (8) and (9) by using the method Sumudu transform with homotopy perturbation

6.2 Discrete Sumudu transform with HPM Problem Theorem 6.2.1

The solution of equations (8) and (9) is given as follows:

y ( ƭ ) = lim p 1 j = 0 p j ϑ j ( ƭ ) .

Proof

By taking Sumudu transform for equation (8),

S a { Δ a + v N v y ( ƭ ) } S a { Δ a n y ( ƭ ) } = S a { g ( ƭ ) } .

Using Theorem 5.4,

( u + 1 ) N v u N S a + v N { y ( ƭ ) } ( u ) k = 0 N 1 u k N Δ a v N + k y ( a + N v ) S a { Δ n y ( t ) } S a { Δ μ y ( t ) } = S a { g ( ƭ ) } .

Hence,

( u + 1 ) N v u N S a + v N { y ( ƭ ) } ( u ) k = 0 N 1 u k N Δ a v N + k y ( a + N v ) = S a { Δ n y ( t ) } + S a { g ( t ) } .

By multiplying both sides of the equation by u N ( u + 1 ) N v , we obtain

S a + v N { y ( ƭ ) } ( u ) u N ( u + 1 ) N v k = 0 N 1 u k N Δ a + v N v N + k y ( a + N v ) = u N ( u + 1 ) N v { S { Δ n y ( ƭ ) } + S { g ( ƭ ) } } .

Hence,

S a + v N { y ( ƭ ) } ( u ) = u N ( u + 1 ) N v k = 0 N 1 u k N Δ a v N + k y ( a + N v ) + u N ( u + 1 ) N v { S a { Δ n y ( ƭ ) } + S a { g ( ƭ ) } } .

Then,

S a + v N { y ( ƭ ) } ( u ) = k = 0 N 1 u u + 1 k ( u + 1 ) v + k N Δ a v N + k y ( a + N v ) + u N ( u + 1 ) N v { S a { Δ n y ( ƭ ) } + S a { g ( ƭ ) } } .

Using Lemma 5.5 (i),

S a + v N { y ( ƭ ) } ( u ) = k = 0 N 1 u u + 1 k S a + v + k N { h μ ( . , a ) } Δ a v N + k y ( a + N v ) + u N ( u + 1 ) N v { S a { Δ n y ( ƭ ) } + S a { g ( ƭ ) } } .

Using Lemma 5.1(i), we obtain

(17) u u + 1 k S a + v + k N { h μ ( . , a ) } ( u ) = u u + 1 k S a + v + k k N { h μ ( . , a ) } ( u ) 1 u i = 0 k 1 u u + 1 i + 1 S a + v + k N { h v + k N ( i + a + v N , a ) } .

Using equation (17), we can obtain

(18) S a + v N { y ( ƭ ) } ( u ) = k = 0 N 1 S a + v + k N { h a + v + k N ( . , a ) } 1 u i = 0 k 1 u u + 1 i + 1 Δ a v N + k { h v + k N ( i + a + v N , a ) } Δ a v N + k y ( a + N v ) + u N ( u + 1 ) N v { S { Δ n y ( ƭ ) } + S { g ( ƭ ) } } .

Using Remark 2.5 , we can obtain

h v + k N ( i + a + v N , a ) = 0 ,

then

S a + v N { y ( ƭ ) } ( u ) = k = 0 N 1 S a + v + k N { h a + v + k N ( . , a ) } Δ a v N + k y ( a + N v ) + u N ( u + 1 ) N v { S { Δ n y ( ƭ ) } + S { g ( ƭ ) } } .

Using Theorem 5.3(ii), we can obtain

S a + v N { y ( ƭ ) } ( u ) = k = 0 N 1 S a + v + k N { h a + v + k N ( . , a ) } Δ a v N + k y ( a + N v ) + S a + ν N { Δ a v { { Δ n y ( ƭ ) } + { g ( ƭ ) } } } .

Hence, S a + v N { y ( ƭ ) } ( u ) = S a + v + k N k = 0 N 1 h a + v + k N ( . , a ) Δ a v N + k y ( a + N v ) + Δ a v { { Δ n y ( ƭ ) } + { g ( ƭ ) } } .

By applying inverse Sumudu transform, we can obtain

y ( ƭ ) = k = 0 N 1 h a + v + k N ( . , a ) Δ a v N + k y ( a + N v ) + Δ a v { { Δ n y ( ƭ ) } + { g ( ƭ ) } } .

Using Definition 5.2 , we can get ( ƭ a ) v + k N ¯

y ( t ) = k = 0 N 1 ( ƭ a ) v + k N ¯ Γ ( v + k N + 1 ) Δ + v + k N v N + k f ( a + N v ) + Δ a v { { Δ n y ( t ) } + { g ( t ) } } .

Using the initial conditions, we obtain

(19) y ( t ) = k = 0 N 1 ( ƭ a ) v + k N ¯ Γ ( v + k N + 1 ) C k + Δ a v { { Δ n y ( ƭ ) } + { g ( ƭ ) } } .

Now, we apply the homotopy perturbation Sumudu transform method.

We construct Homotopy with the following formula

( 1 p ) [ { ϑ ( ƭ ) } ( u ) y 0 ( t ) ] + p [ { ϑ ( ƭ ) } ( u ) k = 0 N 1 ( ƭ a ) v + k N ¯ Γ ( v + k N + 1 ) C k Δ a v { { Δ n { ϑ ( ƭ ) } ( p ) } + { g ( ƭ ) } } = 0 ,

or equivalently,

{ ϑ ( ƭ ) } ( p ) + y 0 ( ƭ ) p { ϑ ( ƭ ) } + p y 0 ( ƭ ) ( u ) + p { ϑ ( ƭ ) } ( p ) p k = 0 N 1 ( ƭ a ) v + k N ¯ Γ ( v + k N + 1 ) C k p Δ a v { { Δ n { ϑ ( v ) } ( p ) } + { g ( ƭ ) } } = 0 .

Hence,

(20) { ϑ ( ƭ ) } ( p ) = y 0 ( t ) p y 0 ( ƭ ) ( u ) + p k = 0 N 1 ( ƭ a ) v + k N ¯ Γ ( v + k N + 1 ) C k + p Δ a v { { Δ n y ( ƭ ) } + { g ( ƭ ) } } .

We assume

(21) { ϑ ( ƭ ) } ( p ) = j = 0 p j ϑ j ( ƭ ) .

Substituting equation (21) in equation (20), we obtain

j = 0 p j ϑ j ( ƭ ) = y 0 ( ƭ ) p y 0 ( ƭ ) ( u ) + p k = 0 N 1 ( ƭ a ) v + k N ¯ Γ ( v + k N + 1 ) C k + p Δ a v Δ n j = 0 p j ϑ j ( ƭ ) + { g ( ƭ ) } .

Hence,

( p 0 ϑ 0 ( ƭ ) + p 1 ϑ 1 ( t ) + p 2 ϑ 2 ( ƭ ) + ) = y 0 ( ƭ ) p y 0 ( ƭ ) ( u ) + p k = 0 N 1 ( ƭ a ) v + k N ¯ Γ ( v + k N + 1 ) C k + p Δ a v { { Δ n ( p 0 ϑ 0 ( ƭ ) + p 1 ϑ 1 ( ƭ ) + p 2 ϑ 2 ( ƭ ) + ) } + { g ( ƭ ) } } .

We compare the coefficients of the term with the identical power of p, then

p 0 : ϑ 0 ( ƭ ) = y 0 ( ƭ ) = C 0 ,

p 1 : ϑ 1 ( ƭ ) = y 0 ( ƭ ) + k = 0 N 1 ( ƭ a ) v + k N ¯ Γ ( v + k N + 1 ) C k + Δ a v { { Δ n ϑ 0 ( ƭ ) } + { g ( ƭ ) } } ,

p 2 : ϑ 2 ( ƭ ) = Δ a v Δ n ϑ 1 ( ƭ ) = Δ a n v ϑ 1 ( ƭ ) ,

p 3 : ϑ 2 ( ƭ ) = Δ a v Δ n ϑ 2 ( ƭ ) = Δ a n v ϑ 2 ( ƭ ) ,

p m : ϑ m ( ƭ ) = Δ a v Δ n ϑ m 1 ( ƭ ) = Δ a n v ϑ m 1 ( ƭ ) .

Then, the solution y ( ƭ ) = lim p 1 j = 0 p j ϑ j ( ƭ ) .

Theorem 6.2.2

The solution of equation (8)–(9) is given by y ( ƭ ) = lim p 1 j = 0 p j ϑ j ( ƭ ) ,

y m ( ƭ ) = k = 0 N 1 β i ( ƭ a ) i + v N ¯ + Δ a v { Δ n { y m 1 ( ƭ ) } + g ( ƭ ) }

for ƭ N α + v N ,

β i = Δ a + v N i + v N y ( a ) Γ ( i + v N + 1 ) for i { 0 , 1 , , N 1 } .

Proof

Using equation (19),

y ( ƭ ) = k = 0 N 1 ( ƭ a ) v + k N ¯ Γ ( v + k N + 1 ) C k + Δ a v { { Δ n y ( ƭ ) } + { g ( ƭ ) } } .

We assume β i = Δ a + v N i + v N y ( a ) Γ ( i + v N + 1 ) = C k Γ ( i + v N + 1 ) , then

(22) y ( t ) = k = 0 N 1 β i ( ƭ a ) i + v N ¯ + Δ a v { { Δ n y ( ƭ ) } + { g ( ƭ ) } } .

Now, we apply the homotopy perturbation Sumudu transform method.

We construct Homotopy with the following formula

( 1 p ) [ { ϑ ( ƭ ) } ( u ) y 0 ( ƭ ) ] + p [ { ϑ ( ƭ ) } ( u ) k = 0 N 1 β i ( ƭ a ) i + v N ¯ Δ a v { { Δ n { ϑ ( ƭ ) } ( p ) } + { g ( ƭ ) } } = 0 ,

or equivalently,

{ ϑ ( ƭ ) } ( p ) + y 0 ( t ) p { ϑ ( ƭ ) } + p y 0 ( ƭ ) ( u ) + p { ϑ ( ƭ ) } ( p ) p k = 0 N 1 β i ( ƭ a ) i + v N ¯ p Δ a v { { Δ n { ϑ ( ƭ ) } ( p ) } + { g ( ƭ ) } } = 0 .

Hence,

(23) { ϑ ( ƭ ) } ( p ) = y 0 ( ƭ ) p y 0 ( ƭ ) ( u ) + p k = 0 N 1 β i ( ƭ a ) i + v N ¯ + p Δ a v { { Δ n y ( ƭ ) } + { g ( ƭ ) } } .

Using equation (21), we assume { ϑ ( ƭ ) } ( p ) = j = 0 p j ϑ j ( ƭ ) .

Substituting equation (21) into equation (23), then

j = 0 p j ϑ j ( ƭ ) = y 0 ( ƭ ) p y 0 ( t ) ( u ) + p k = 0 N 1 β i ( ƭ a ) i + v N ¯ + p Δ a v Δ n j = 0 p j ϑ j ( ƭ ) + { g ( ƭ ) } .

Hence,

( p 0 ϑ 0 ( ƭ ) + p 1 ϑ 1 ( ƭ ) + p 2 ϑ 2 ( ƭ ) + ) = y 0 ( ƭ ) p y 0 ( ƭ ) ( u ) + p k = 0 N 1 β i ( ƭ a ) i + v N ¯ + p Δ a v { { Δ n ( p 0 ϑ 0 ( ƭ ) + p 1 ϑ 1 ( ƭ ) + p 2 ϑ 2 ( ƭ ) + ) } + { g ( ƭ ) } } .

We compare the coefficients of the term with the identical power of p, then

p 0 : ϑ 0 ( ƭ ) = y 0 ( ƭ ) = C 0 ,

p 1 : ϑ 1 ( ƭ ) = y 0 ( ƭ ) + k = 0 N 1 β i ( ƭ a ) i + v N ¯ { { Δ n ϑ 0 ( ƭ ) } + { g ( ƭ ) } } ,

p 2 : ϑ 2 ( ƭ ) = Δ a v Δ n ϑ 1 ( ƭ ) = Δ a n v ϑ 1 ( ƭ ) ,

p 3 : ϑ 2 ( ƭ ) = Δ a v Δ n ϑ 2 ( ƭ ) = Δ a n v ϑ 2 ( ƭ ) ,

p m : ϑ m ( ƭ ) = Δ a v Δ n ϑ m 1 ( ƭ ) = Δ a n v ϑ m 1 ( ƭ ) .

Then, the solution y ( ƭ ) = lim p 1 j = 0 p j ϑ j ( ƭ ) .

7 Implementations

In this section, the test examples of initial value problems of partial difference equations are implemented to examine the efficiency of the proposed method. Then, the approximated solutions of initial value problems of fractional difference equations in discrete domain with different orders have been evaluated and compared with the exact solutions of these problems.

Example 7.1

Consider the initial value problem difference equation

(24) Δ 0.2 1.8 y ( ƭ ) Δ 0 2 y ( ƭ ) = Γ ( 0.8 ) ƭ 1 ¯ , t N 0 ,

(25) y ( 0.2 ) = Γ ( 0.8 ) = Δ y ( 0.2 ) = Γ ( 1.8 ) ,

a = 0 , v = 1.8 , N = 2 , n = 2 , a + v N = 0.2 , N v = 0.2 ,

then the exact solution is y ( t ) = ƭ 0.2 ¯ + Γ ( 0.8 ) Γ ( 1.8 ) ƭ 0.8 ¯ .

By taking Sumudu transform on both sides of equation (24),

S 0 { Δ 0.2 1.8 y ( ƭ ) } S 0 { Δ 0 2 y ( ƭ ) } = S 0 { Γ ( 0.8 ) ƭ 1 ¯ } .

Using Theorem 5.4, we obtain

( u + 1 ) 0.2 u 2 S 0.2 { y ( ƭ ) } ( u ) k = 0 2 1 u k 2 Δ 0 1.8 2 + k y ( 0.2 ) = S 0.2 { Δ 0 2 y ( ƭ ) + Γ ( 0.8 ) ƭ 1 ¯ } .

Multiplying both sides of the equation by u 2 ( u + 1 ) 0.2 , we obtain

S 0.2 { y ( t ) } ( u ) u 2 ( u + 1 ) 0.2 k = 0 2 1 u k N Δ a v N + k y ( 0.2 ) = u 2 ( u + 1 ) 0.2 { S 0.2 { Δ 0 2 y ( ƭ ) + Γ ( 0.8 ) ƭ 1 ¯ } } ,

Hence

S 0.2 { y ( ƭ ) } ( u ) = u 2 ( u + 1 ) 0.2 k = 0 2 1 u k N Δ a v N + k y ( 0.2 ) + u 2 ( u + 1 ) 0.2 { S 0.2 { Δ 0 2 y ( ƭ ) + Γ ( 0.8 ) ƭ 1 ¯ } } .

Using Theorem 6.1.2 equation (24),

(26) y m ( ƭ ) = k = 0 1 β k ( ƭ ) k 0.2 ¯ + Δ 0 1.8 [ Δ 0 2 y ( ƭ ) + Γ ( 0.8 ) ƭ 1 ¯ ] .

Now, we calculate β i based on Theorem 5.7(i), (ii) such that β 0 = z ( 0 ) γ 0 , then using the initial conditions γ 0 = 6 , γ 1 = 4 , we obtain

β 0 = 0 0.2 ¯ γ 0 = Γ ( 0 + 1 ) Γ ( 0 + 1 0.2 ) ( 6 ) = Γ ( 1 ) Γ ( 0.8 ) Γ ( 0.8 ) = 1 ,

β 1 = z ( 1 ) γ 1 [ z ( 0 ) z ( 1 ) ] γ 0 ,

β 1 = 1 0.2 ¯ ( Γ ( 1.8 ) ) [ 0 0.2 ¯ 1 0.2 ¯ ] ( Γ ( 0.8 ) ) = Γ ( 1 + 1 ) Γ ( 0 + 1 0.2 ) ( Γ ( 1.8 ) ) Γ ( 1 + 1 ) Γ ( 0 + 1 0.2 ) Γ ( 1 + 1 ) Γ ( 1 + 1 0.2 ) ( Γ ( 0.8 ) )

= Γ ( 2 ) Γ ( 1.8 ) ( Γ ( 1.8 ) ) Γ ( 2 ) Γ ( 1.8 ) Γ ( 2 ) Γ ( 0.8 ) ( Γ ( 0.8 ) ) = Γ ( 0.8 ) Γ ( 1.8 ) .

Now, substituting β 0 and β 1 in equation (26), we obtain

y m ( t ) = β 0 ƭ 0.2 ¯ + β 1 ƭ 0.8 ¯ + Δ a 1.8 [ Δ 0 2 y m 1 ( ƭ ) + Γ ( 0.8 ) ƭ 1 ¯ ] ,

y m ( t ) = ƭ 0.2 ¯ + Γ ( 0.8 ) Γ ( 1.8 ) ƭ 0.8 ¯ + Δ 0 1.8 [ Δ 0 2 y m 1 ( ƭ ) + Γ ( 0.8 ) ƭ 1 ¯ ] .

We calculate Δ 0 1.8 Γ ( 0.8 ) t 1 ¯ = Γ ( 0.8 ) Γ ( 1 + 1 ) Γ ( 1 + 1 + 1.8 ) t 1 + 1.8 ¯ = Γ ( 0.8 ) Γ ( 1.8 ) t 0.8 ¯ .

Then,

(27) y m ( ƭ ) = ƭ 0.2 ¯ + 2 Γ ( 0.8 ) Γ ( 1.8 ) ƭ 0.8 ¯ + Δ 0 0.2 y m 1 ( ƭ ) .

Now, we apply the method of SAM.

If m = 1, we can get

y 1 ( t ) = ƭ 0.2 ¯ + 2 Γ ( 0.8 ) Γ ( 1.8 ) ƭ 0.8 ¯ + Δ 0 0.2 y 0 ( ƭ ) .

Using the initial conditions, we obtain

y 1 ( t ) = ƭ 0.2 ¯ + 2 Γ ( 0.8 ) Γ ( 1.8 ) ƭ 0.8 ¯ + Δ 0 0.2 ( Γ ( 0.8 ) ) .

Hence,

y 1 ( ƭ ) = ƭ 0.2 ¯ + 2 Γ ( 0.8 ) Γ ( 1.8 ) ƭ 0.8 ¯ + Δ 0 0.2 ƭ 0 ¯ .

Since Δ 0 0.2 ƭ 0 ¯ = Γ ( 0.8 ) 1 Γ ( 0.8 ) ƭ 0.2 ¯ ,

Δ 0 0.2 ƭ 0 ¯ = Γ ( 0.8 ) 1 Γ ( 0.8 ) ƭ 0.2 ¯ .

If y 1 ( ƭ ) = t 0.2 ¯ + 2 Γ ( 0.8 ) Γ ( 1.8 ) ƭ 0.8 ¯ + ƭ 0.2 ¯ , then

y 1 ( ƭ ) = 2 ƭ 0.2 ¯ + 2 Γ ( 0.8 ) Γ ( 1.8 ) ƭ 0.8 ¯ .

If m = 2, then

y 2 ( ƭ ) = ƭ 0.2 ¯ + 2 Γ ( 0.8 ) Γ ( 1.8 ) ƭ 0.8 ¯ + Δ 0 0.2 y 1 ( ƭ ) .

Hence,

y 2 ( ƭ ) = ƭ 0.2 ¯ + 2 Γ ( 0.8 ) Γ ( 1.8 ) ƭ 0.8 ¯ + Δ 0 0.2 2 ƭ 0.2 ¯ + 2 Γ ( 0.8 ) Γ ( 1.8 ) ƭ 0.8 ¯ .

Hence,

y 2 ( ƭ ) = ƭ 0.2 ¯ + 2 Γ ( 0.8 ) Γ ( 1.8 ) ƭ 0.8 ¯ + 2 Γ ( 0.8 ) Γ ( 0.6 ) ƭ 0.2 0.2 ¯ + 2 Γ ( 0.8 ) Γ ( 1.8 ) Γ ( 1.8 ) Γ ( 1.6 ) ƭ 0.6 ¯ ,

y 2 ( ƭ ) = ƭ 0.2 ¯ + 2 Γ ( 0.8 ) Γ ( 1.8 ) ƭ 0.8 ¯ + 2 Γ ( 0.8 ) Γ ( 0.6 ) ƭ 0.4 ¯ + 2 Γ ( 0.8 ) Γ ( 1.6 ) ƭ 0.6 ¯ .

If m = 3, we can get

= ƭ 0.2 ¯ + 2 Γ ( 0.8 ) Γ ( 1.8 ) ƭ 0.8 ¯ + Δ 0 0.2 y 2 ( ƭ ) ,

y 3 ( ƭ ) = ƭ 0.2 ¯ + 2 Γ ( 0.8 ) Γ ( 1.8 ) ƭ 0.8 ¯ + Δ 0 0.2 ƭ 0.2 ¯ + 2 Γ ( 0.8 ) Γ ( 1.8 ) ƭ 0.8 ¯ + 2 Γ ( 0.8 ) Γ ( 0.4 ) ƭ 0.4 ¯ + 2 Γ ( 0.8 ) Γ ( 1.6 ) ƭ 0.6 ¯ .

Hence,

y 3 ( ƭ ) = ƭ 0.2 ¯ + 2 Γ ( 0.8 ) Γ ( 1.8 ) ƭ 0.8 ¯ + Γ ( 0.8 ) Γ ( 0.6 ) ƭ 0.4 ¯ + 2 Γ ( 0.8 ) Γ ( 1.6 ) ƭ 0.6 ¯ + 2 Γ ( 0.8 ) Γ ( 0.4 ) ƭ 0.6 ¯ + 2 Γ ( 0.8 ) Γ ( 1.4 ) ƭ 0.4 .

If m = 4, then

y 4 ( ƭ ) = ƭ 0.2 ¯ + 2 Γ ( 0.8 ) Γ ( 1.8 ) ƭ 0.8 ¯ + Δ 0 0.2 y 3 ( ƭ ) ,

y 4 ( t ) = ƭ 0.2 ¯ + 2 Γ ( 0.8 ) Γ ( 1.8 ) ƭ 0.8 ¯ + Δ 0 0.2 ƭ 0.2 ¯ + 2 Γ ( 0.8 ) Γ ( 1.8 ) ƭ 0.8 ¯ + Γ ( 0.8 ) Γ ( 0.6 ) ƭ 0.4 ¯ + 2 Γ ( 0.8 ) Γ ( 1.6 ) ƭ 0.6 ¯ + 2 Γ ( 0.8 ) Γ ( 0.4 ) ƭ 0.6 ¯ + 2 Γ ( 0.8 ) Γ ( 1.4 ) ƭ 0.4 .

Hence,

y 4 ( t ) = ƭ 0.2 ¯ + 2 Γ ( 0.8 ) Γ ( 1.8 ) ƭ 0.8 ¯ + Γ ( 0.8 ) Γ ( 0.6 ) ƭ 0.4 ¯ + 2 Γ ( 0.8 ) Γ ( 1.6 ) ƭ 0.6 ¯ + 2 Γ ( 0.8 ) Γ ( 0.6 ) Γ ( 0.6 ) Γ ( 0.4 ) ƭ 0.6 ¯ + 2 Γ ( 0.8 ) Γ ( 1.6 ) Γ ( 1.6 ) Γ ( 1.4 ) ƭ 0.4 ¯ + 2 Γ ( 0.8 ) Γ ( 0.4 ) Γ ( 0.4 ) Γ ( 0.2 ) ƭ 0.6 0.2 ¯ + 2 Γ ( 0.8 ) Γ ( 1.4 ) Γ ( 1.4 ) Γ ( 1.2 ) ƭ 0.4 0.2 ¯ ,

y 4 ( t ) = ƭ 0.2 ¯ + 2 Γ ( 0.8 ) Γ ( 1.8 ) ƭ 0.8 ¯ + Γ ( 0.8 ) Γ ( 0.6 ) ƭ 0.4 ¯ + 2 Γ ( 0.8 ) Γ ( 1.6 ) ƭ 0.6 ¯ + 2 Γ ( 0.8 ) Γ ( 0.4 ) ƭ 0.6 ¯ + 2 Γ ( 0.8 ) Γ ( 1.4 ) ƭ 0.4 ¯ + 2 Γ ( 0.8 ) Γ ( 0.2 ) ƭ 0.8 ¯ + 2 Γ ( 0.8 ) Γ ( 1.2 ) ƭ 0.2 ¯ .

If m = 5, then

y 5 ( t ) = ƭ 0.2 ¯ + 2 Γ ( 0.8 ) Γ ( 1.8 ) ƭ 0.8 ¯ + Δ 0 0.2 y 4 ( ƭ ) ,

y 5 ( ƭ ) = ƭ 0.2 ¯ + 2 Γ ( 0.8 ) Γ ( 1.8 ) ƭ 0.8 ¯ + Δ 0 0.2 ƭ 0.2 ¯ + 2 Γ ( 0.8 ) Γ ( 1.8 ) ƭ 0.8 ¯ + Γ ( 0.8 ) Γ ( 0.6 ) ƭ 0.4 ¯ + 2 Γ ( 0.8 ) Γ ( 1.6 ) ƭ 0.6 ¯ + 2 Γ ( 0.8 ) Γ ( 0.4 ) ƭ 0.6 ¯ + 2 Γ ( 0.8 ) Γ ( 1.4 ) ƭ 0.4 ¯ + 2 Γ ( 0.8 ) Γ ( 0.2 ) ƭ 0.8 ¯ + 2 Γ ( 0.8 ) Γ ( 1.2 ) ƭ 0.2 ¯ .

Hence,

y 5 ( ƭ ) = ƭ 0.2 ¯ + 2 Γ ( 0.8 ) Γ ( 1.8 ) ƭ 0.8 ¯ + Γ ( 0.8 ) Γ ( 0.6 ) ƭ 0.4 ¯ + 2 Γ ( 0.8 ) Γ ( 1.6 ) ƭ 0.6 ¯ + 2 Γ ( 0.8 ) Γ ( 0.6 ) Γ ( 0.6 ) Γ ( 0.4 ) ƭ 0.6 ¯ + 2 Γ ( 0.8 ) Γ ( 1.4 ) ƭ 0.4 ¯ + 2 Γ ( 0.8 ) Γ ( 0.2 ) Γ ( 0.2 ) Γ ( 0 ) ƭ 0.8 0.2 ¯ + 2 Γ ( 0.8 ) Γ ( 1.2 ) Γ ( 1.2 ) Γ ( 1 ) ƭ 0.2 0.2 ¯ ,

y 5 ( ƭ ) = ƭ 0.2 ¯ + 2 Γ ( 0.8 ) Γ ( 1.8 ) ƭ 0.8 ¯ + Γ ( 0.8 ) Γ ( 0.6 ) ƭ 0.4 ¯ + 2 Γ ( 0.8 ) Γ ( 1.6 ) ƭ 0.6 ¯ + Γ ( 0.8 ) Γ ( 0.4 ) ƭ 0.6 ¯ + 2 Γ ( 0.8 ) Γ ( 1.4 ) ƭ 0.4 ¯ + 2 Γ ( 0.8 ) Γ ( 0.2 ) ƭ 0.8 ¯ + 2 Γ ( 0.8 ) Γ ( 1.2 ) ƭ 0.2 ¯ + Γ ( 0.8 ) ƭ 1 ¯ + 2 Γ ( 0.8 ) .

If m = 6, then

y 6 ( t ) = ƭ 0.2 ¯ + 2 Γ ( 0.8 ) Γ ( 1.8 ) ƭ 0.8 ¯ + Δ 0 0.2 y 5 ( ƭ ) ,

y 6 ( ƭ ) = ƭ 0.2 ¯ + 2 Γ ( 0.8 ) Γ ( 1.8 ) ƭ 0.8 ¯ + Δ 0 0.2 ƭ 0.2 ¯ + 2 Γ ( 0.8 ) Γ ( 1.8 ) ƭ 0.8 ¯ + Γ ( 0.8 ) Γ ( 0.6 ) ƭ 0.4 ¯ + 2 Γ ( 0.8 ) Γ ( 1.6 ) ƭ 0.6 ¯ + Γ ( 0.8 ) Γ ( 0.4 ) ƭ 0.6 ¯ + 2 Γ ( 0.8 ) Γ ( 1.4 ) ƭ 0.4 ¯ + 2 Γ ( 0.8 ) Γ ( 0.2 ) ƭ 0.8 ¯ + 2 Γ ( 0.8 ) Γ ( 1.2 ) ƭ 0.2 ¯ + Γ ( 0.8 ) ƭ 1 ¯ + 2 Γ ( 0.8 ) .

Hence,

y 5 ( t ) = ƭ 0.2 ¯ + 2 Γ ( 0.8 ) Γ ( 1.8 ) ƭ 0.8 ¯ + Γ ( 0.8 ) Γ ( 0.6 ) ƭ 0.4 ¯ + 2 Γ ( 0.8 ) Γ ( 1.6 ) ƭ 0.6 ¯ + 2 Γ ( 0.8 ) Γ ( 0.6 ) Γ ( 0.6 ) Γ ( 0.4 ) ƭ 0.6 ¯ + 2 Γ ( 0.8 ) Γ ( 1.4 ) ƭ 0.4 ¯ + 2 Γ ( 0.8 ) Γ ( 0.2 ) Γ ( 0.2 ) Γ ( 0 ) ƭ 0.8 0.2 ¯ + 2 Γ ( 0.8 ) Γ ( 1.2 ) Γ ( 1.2 ) Γ ( 1 ) ƭ 0.2 0.2 ¯ ,

y 6 ( t ) = ƭ 0.2 ¯ + 2 Γ ( 0.8 ) Γ ( 1.8 ) ƭ 0.8 ¯ + Γ ( 0.8 ) Γ ( 0.6 ) ƭ 0.4 ¯ + 2 Γ ( 0.8 ) Γ ( 1.6 ) ƭ 0.6 ¯ + Γ ( 0.8 ) Γ ( 0.4 ) ƭ 0.6 ¯ + 2 Γ ( 0.8 ) Γ ( 1.4 ) ƭ 0.4 ¯ + 2 Γ ( 0.8 ) Γ ( 0.2 ) ƭ 0.8 ¯ + 2 Γ ( 0.8 ) Γ ( 1.2 ) ƭ 0.2 ¯ + Γ ( 0.8 ) ƭ 1 ¯ + 2 Γ ( 0.8 ) ,

y m ( ƭ ) = ƭ 0.2 ¯ + 2 Γ ( 0.8 ) Γ ( 1.8 ) ƭ 0.8 ¯ + Γ ( 0.8 ) Γ ( 0.6 ) ƭ 0.4 ¯ + 2 Γ ( 0.8 ) Γ ( 1.6 ) ƭ 0.6 ¯ + Γ ( 0.8 ) Γ ( 0.4 ) ƭ 0.6 ¯ + 2 Γ ( 0.8 ) Γ ( 1.4 ) ƭ 0.4 ¯ + 2 Γ ( 0.8 ) Γ ( 0.2 ) ƭ 0.8 ¯ + 2 Γ ( 0.8 ) Γ ( 1.2 ) ƭ 0.2 ¯ + Γ ( 0.8 ) ƭ 1 ¯ + 2 Γ ( 0.8 ) .

Then, the solution y ( ƭ ) = lim m y m ( ƭ ) is written as follows:

y ( ƭ ) = lim m ƭ 0.2 ¯ + 2 Γ ( 0.8 ) Γ ( 1.8 ) ƭ 0.8 ¯ + Γ ( 0.8 ) Γ ( 0.6 ) ƭ 0.4 ¯ + 2 Γ ( 0.8 ) Γ ( 1.6 ) ƭ 0.6 ¯ + Γ ( 0.8 ) Γ ( 0.4 ) ƭ 0.6 ¯ + 2 Γ ( 0.8 ) Γ ( 1.4 ) ƭ 0.4 ¯ + 2 Γ ( 0.8 ) Γ ( 0.2 ) ƭ 0.8 ¯ + 2 Γ ( 0.8 ) Γ ( 1.2 ) ƭ 0.2 ¯ + Γ ( 0.8 ) ƭ 1 ¯ + 2 Γ ( 0.8 ) ,

y ( t ) = ƭ 0.2 ¯ + 2 Γ ( 0.8 ) Γ ( 1.8 ) ƭ 0.8 ¯ + Γ ( 0.8 ) Γ ( 0.6 ) ƭ 0.4 ¯ + 2 Γ ( 0.8 ) Γ ( 1.6 ) ƭ 0.6 ¯ + Γ ( 0.8 ) Γ ( 0.4 ) t 0.6 ¯ + 2 Γ ( 0.8 ) Γ ( 1.4 ) ƭ 0.4 ¯ + 2 Γ ( 0.8 ) Γ ( 0.2 ) ƭ 0.8 ¯ + 2 Γ ( 0.8 ) Γ ( 1.2 ) ƭ 0.2 ¯ + Γ ( 0.8 ) ƭ 1 ¯ + 2 Γ ( 0.8 ) .

Now, in the following example, we will solve the problem using two methods: Sumudu transforms with SAM and Sumudu transforms with HPM.

Example 7 . 2

Consider the initial value problem difference equation

(28) Δ 0.4 0.6 y ( ƭ ) Δ 0 3 y ( ƭ ) = 2 t 1 ¯ , ƭ N 0 , n = 1, g ( ƭ ) = 2 ƭ 1 ¯

(29) y ( 0.4 ) = 2 , Δ y ( 0.2 ) = 4

a = 0 , v = 0.6 , N = 1 , n = 3 , a + v N = 0.4 , N v = 0.4 , γ o = 2 , then the exact solution is y ( ƭ ) = 2 Γ ( 0.6 ) t 0.4 ¯ .

First, we solve equation (28) by Sumudu transforms with SAM.

By taking Sumudu transform on both sides of equation (28),

S 0 { Δ 0.4 0.6 y ( ƭ ) } S 0 { Δ 0 3 y ( ƭ ) } = S 0 { 2 ƭ 1 ¯ } .

Then, using Theorem 5.4,

( u + 1 ) 0.4 u 1 S 0.4 { y ( t ) } ( u ) k = 0 1 1 u k 1 Δ 0 0.6 1 + k y ( 0.4 ) = S 0.4 { Δ 0 4 y ( ƭ ) + 2 ƭ 1 ¯ } .

Multiplying both sides of the equation by u 1 ( u + 1 ) 0.4 , we obtain

S 0.4 { y ( ƭ ) } ( u ) u 1 ( u + 1 ) 0.4 k = 0 1 1 u k 1 Δ a 0.6 1 + k y ( 0.4 ) = u 1 ( u + 1 ) 0.4 { S 0.4 { Δ 0 3 y ( ƭ ) + 3 ƭ 1 ¯ } } , and hence

(30) S 0.4 { y ( ƭ ) } ( u ) = k = 0 0 u k 1 Δ a 0.4 + k y ( 0.4 ) + u 1 ( u + 1 ) 0.4 { S 0.4 { Δ 0 2 y ( ƭ ) + 2 ƭ 1 ¯ } } .

Using Theorem 6.1.2 equation (30), we obtain

y m ( ƭ ) = β 0 ( ƭ ) 0.4 ¯ + Δ 0 0.6 [ Δ 0 3 y m 1 ( ƭ ) + 2 ƭ 1 ¯ ] , and by using the properties of composing difference by Lemma 4.2 (i),

(31) y m ( ƭ ) = β 0 ( ƭ ) 0.4 ¯ + Δ 0 2.4 y m 1 ( ƭ ) + Δ 0 0.6 2 ƭ 1 ¯ .

Now, we calculate β 0 based on Theorem 5.7 (i) such that β 0 = z ( 0 ) γ 0 , then using the initial condition γ 0 = 2 , we obtain

β 0 = 0 0.4 ¯ γ 0 = Γ ( 0 + 1 ) Γ ( 0 + 1 0.4 ) ( 2 ) = Γ ( 1 ) Γ ( 0.6 ) ( 2 ) = 2 Γ ( 0.6 ) .

We calculate 2 Δ 0 0.6 ƭ 1 ¯ = 2 Γ ( 1 + 1 ) Γ ( 1 + 1 + 0.6 ) ƭ 1 + 0.6 ¯ = 2 Γ ( 0 ) Γ ( 0.6 ) ƭ 0.4 ¯ = 2 Γ ( 0.6 ) ƭ 0.4 ¯ .

Now, substituting the values of β 0 and 2 Δ 0 0.6 ƭ 1 ¯ , we obtain

y m ( ƭ ) = 2 Γ ( 0.6 ) ƭ 0.4 ¯ + 2 Γ ( 0.6 ) ƭ 0.4 ¯ + Δ 0 2.4 y m 1 ( ƭ ) .

Then, y m ( ƭ ) = 4 Γ ( 0.6 ) ƭ 0.4 ¯ + Δ a 2.4 y m 1 ( ƭ ) , applying the method of SAM.

If m = 1, then y 1 ( ƭ ) = 4 Γ ( 0.6 ) ƭ 0.4 ¯ + Δ a 2.4 y 0 ( ƭ ) .

Using the initial condition, we obtain

y 1 ( ƭ ) = 4 Γ ( 0.6 ) ƭ 0.4 ¯ + Δ a 2.4 [ 2 ] ƭ 0 ¯ .

Hence, 2 Δ a 2.4 [ ƭ 0 ¯ ] Γ ( 0 + 1 ) Γ ( 0 + 1 2.4 ) ƭ 0 2.4 ¯ = 0 , then

y 1 ( ƭ ) = 4 Γ ( 0.6 ) ƭ 0.4 ¯ .

If m = 2, then y 2 ( ƭ ) = 4 Γ ( 0.6 ) ƭ 0.4 ¯ + Δ a 2.4 y 1 ( ƭ ) ,

y 2 ( ƭ ) = 4 Γ ( 0.6 ) ƭ 0.4 ¯ + Δ a 2.4 4 Γ ( 0.6 ) ƭ 0.4 ¯ .

Hence, Δ a 2.4 [ ƭ 0.4 ¯ ] Γ ( 0.4 + 1 ) Γ ( 0.4 + 1 2.4 ) ƭ 0.4 2.4 ¯ = 0 ,

y 2 ( ƭ ) = 4 Γ ( 0.6 ) ƭ 0.4 ¯ .

If m = 3, then y 3 ( ƭ ) = 4 Γ ( 0.6 ) ƭ 0.4 ¯ + Δ a 2.4 y 2 ( ƭ ) ,

y 3 ( ƭ ) = 4 Γ ( 0.6 ) ƭ 0.4 ¯ + Δ a 2.4 4 Γ ( 0.6 ) ƭ 0.4 ¯ .

Hence, Δ a 2.4 [ ƭ 0.4 ¯ ] Γ ( 0.4 + 1 ) Γ ( 0.4 + 1 2.4 ) ƭ 0.4 2.4 ¯ = 0 ,

y 3 ( ƭ ) = 4 Γ ( 0.6 ) ƭ 0.4 ¯ ,

y m ( ƭ ) = 4 Γ ( 0.6 ) ƭ 0.4 ¯ .

Then, the solution y ( ƭ ) = lim m y m ( ƭ ) ,

y ( t ) = lim m 4 Γ ( 0.6 ) ƭ 0.4 ¯ = 4 Γ ( 0.6 ) ƭ 0.4 ¯ .

Now solve equations (28) and (29) by discrete homotopy perturbation Sumudu transform.

Using equation (30), we can obtain

S 0.4 { y ( ƭ ) } ( u ) = k = 0 0 u k 1 Δ a 0.4 + k y ( 0.4 ) + u 1 ( u + 1 ) 0.4 { S 0.4 { Δ 0 2 y ( ƭ ) + 2 ƭ 1 ¯ } } .

Now, we apply the method of homotopy perturbation Sumudu transform method.

We construct homotopy and by equation (23) in Theorem 6.2.2, we can obtain

(32) { ϑ ( ƭ ) } ( p ) = 2 2 p + p k = 0 0 β i ( ƭ a ) i + v N ¯ + p Δ a 0.6 { { Δ 3 y ( ƭ ) } + 2 ƭ 1 ¯ } .

Now, we calculate β i based on Theorem 5.7 (i) such that β 0 = z ( 0 ) γ 0 , then using the initial condition γ 0 = 6 , we obtain

β 0 = 0 0.4 ¯ γ 0 = Γ ( 0 + 1 ) Γ ( 0 + 1 0.4 ) ( 2 ) = Γ ( 1 ) Γ ( 0.6 ) ( 2 ) = 2 Γ ( 0.6 ) .

Now, substituting β 0 in equation (32), we obtain

(33) { ϑ ( ƭ ) } ( p ) = 2 2 p + p 2 Γ ( 0.6 ) ( ƭ ) i 0.4 ¯ + p Δ a 0.6 { { Δ 3 y ( ƭ ) } + 2 ƭ 1 ¯ } .

Using equation (21), { ϑ ( ƭ ) } ( p ) = j = 0 p j ϑ j ( ƭ ) .

Substituting equation (21) in equation (34), we obtain

j = 0 p j ϑ j ( ƭ ) = 2 2 p + p 2 Γ ( 0.6 ) ( ƭ ) i 0.4 ¯ + p Δ a 0.6 [ Δ a 3 y ( ƭ ) + 2 ƭ 1 ¯ ] } .

Hence,

( p 0 ϑ 0 ( ƭ ) + p 1 ϑ 1 ( ƭ ) + p 2 ϑ 2 ( ƭ ) + ) = 2 2 p + p 2 Γ ( 0.6 ) ( ƭ ) i 0.4 ¯ + p Δ a 0.6 { { Δ 3 ( p 0 ϑ 0 ( ƭ ) + p 1 ϑ 1 ( ƭ ) + p 2 ϑ 2 ( ƭ ) + ) } + 2 ƭ 1 ¯ } .

We compare the coefficients of the term with the identical power of p, then

p 0 : ϑ 0 ( t ) = y 0 ( ƭ ) = 2 ,

p 1 : ϑ 1 ( ƭ ) = 2 + 2 Γ ( 0.6 ) ( ƭ ) i 0.4 ¯ { { Δ 3 ϑ 0 ( ƭ ) } + 2 ƭ 1 ¯ }

= 2 + 2 Γ ( 0.6 ) ( t ) 0.4 ¯ Δ a 0.6 { { Δ 3 2 } + 2 t 1 ¯ } = 2 + 2 Γ ( 0.6 ) ( ƭ ) 0.4 ¯ + 2 Γ ( 0.6 ) ( ƭ ) 0.4 ¯ = 2 + 4 Γ ( 0.6 ) ( ƭ ) 0.4 ¯ , Δ a 2.4 [ 2 ] = 0 ,

p 2 : ϑ 2 ( ƭ ) = Δ a 0.6 Δ 3 ϑ 1 ( ƭ ) = Δ a 2.4 2 + 4 Γ ( 0.6 ) ( ƭ ) 0.4 ¯ = 4 Γ ( 0.4 + 1 ) Γ ( 0.4 + 1 2.4 ) ( ƭ ) 0.4 2.4 ¯ = 0 ,

p 3 : ϑ 2 ( ƭ ) = Δ a . 6 Δ 3 ϑ 2 ( ƭ ) = Δ a 2.4 [ 0 ] = 0 ,

p m : ϑ m ( ƭ ) = Δ a 0.6 Δ 3 ϑ m 1 ( ƭ ) = Δ a 2.4 ϑ m 1 ( ƭ ) .

Then, the solution y ( ƭ ) = lim p 1 j = 0 p j ϑ j ( ƭ ) ,

y ( t ) = lim m y m ( t ) ,

y ( ƭ ) = ϑ 0 ( ƭ ) + ϑ 1 ( ƭ ) + ϑ 2 ( ƭ ) + ϑ 3 ( ƭ ) + ϑ 4 ( ƭ ) +

y ( ƭ ) = ( 2 ) + 2 + 4 Γ ( 0.6 ) ( ƭ ) 0.4 ¯ + 0 + 0 + 0 +

y ( t ) = 4 Γ ( 0.6 ) ( ƭ ) 0.4 ¯ .

In Example 7.2, which was solved by two approximate methods, we note the complete congruence between them, and this is a good conclusion that shows the importance of the two approximate methods when used in difference problems of fractional orders (Figures 15).

Figure 1 
               Fractional partial SAM–HPM [0,5].
Figure 1

Fractional partial SAM–HPM [0,5].

Figure 2 
               Fractional partial SAM–HPM [0,10].
Figure 2

Fractional partial SAM–HPM [0,10].

Figure 3 
               Fractional partial SAM–HPM [0,20].
Figure 3

Fractional partial SAM–HPM [0,20].

Figure 4 
               Fractional partial SAM–HPM [0,40].
Figure 4

Fractional partial SAM–HPM [0,40].

Figure 5 
               Fractional partial SAM–HPM [0,100].
Figure 5

Fractional partial SAM–HPM [0,100].

8 Discussion and conclusion

The fractional difference equation is one of the important equations that we were able to solve with the SAM method, and the method was able to find approximate solutions. Then the HPM method was used on the same type of equations mentioned, and the method provided an approximate solution by comparing the solutions between the two solutions. We found that the solutions are very similar, and the graph shows this, confirming the success of the proposed methods when used with Sumudu transformations.

Acknowledgements

The authors thank the University of Mazandaran and the University of Kufa for their support.

  1. Conflict of interest: The authors state no conflict of interest.

  2. Data availability statement: Most datasets generated and analyzed in this study are comprised in this submitted manuscript. The other datasets are available on reasonable request from the corresponding author with the attached information.

References

[1] Agarwal RP, Wong PJ. Advanced topics in difference equations. Springer Science & Business Media. Vol. 404; 2013.Search in Google Scholar

[2] Anastassiou GA. About discrete fractional calculus with inequalities. In: Intelligent Mathematics: Computational analysis. Intelligent Systems Reference Library, vol. 5. Berlin, Heidelberg: Springer; 2011.10.1007/978-3-642-17098-0_35Search in Google Scholar

[3] Atici F, Eloe P. Initial value problems in discrete fractional calculus. Proceedings of the American Mathematical Society. 2009;137(3):981–9.10.1090/S0002-9939-08-09626-3Search in Google Scholar

[4] Atıcı FM, Eloe PW. Gronwall’s inequality on discrete fractional calculus. Comput Math Appl. 2012;64(10):3193–200.10.1016/j.camwa.2011.11.029Search in Google Scholar

[5] Eltayeb H, Abdeldaim E. Sumudu decomposition method for solving fractional delay differential equations. Res Appl Mathematics. 2017;1(1):1–13.10.11131/2017/101268Search in Google Scholar

[6] Goodrich C, Peterson AC. Discrete fractional calculus. Vol. 10. Cham: Springer; 2015. p. 978–3.10.1007/978-3-319-25562-0Search in Google Scholar

[7] Holm M. The theory of discrete fractional calculus: Development and application. The University of Nebraska-Lincoln; 2011.Search in Google Scholar

[8] Jarad F, Bayram K, Abdeljawad T, Baleanu D. On the discrete Sumudu transform. Romanian Reports in Physics. 2012;64(2):347–56.10.1186/1687-1847-2012-72Search in Google Scholar

[9] Jarad F, Taş K. On Sumudu transform method in discrete fractional calculus. In: Abstract Applied Anal. London: Hindawi; 2012.10.1186/1687-1847-2012-190Search in Google Scholar

[10] Kaczorek T, Rogowski K. Fractional linear systems and electrical circuits. Cham, Switzerland: Springer International Publishing; 2015. p. 49–80.10.1007/978-3-319-11361-6_2Search in Google Scholar

[11] Kaisserli ZI, Bouagada DJ. Application of the Sumudu transform to solve regular fractional continuous-time linear systems. Kragujev J Mathematics. 2021;45(2):267–74.10.46793/KgJMat2102.267KSearch in Google Scholar

[12] Karunathilaka SAGR, Hampson NA, Leek R, Sinclair TJ. The impedance of the alkaline zinc-manganese dioxide cell. II. An interpretation of the data. J Appl Electrochem. 1981;11:715–21.10.1007/BF00615175Search in Google Scholar

[13] Kılıçman A, Gadain HE. On the applications of Laplace and Sumudu transforms. J Frankl Inst. 2010;347(5):848–62.10.1016/j.jfranklin.2010.03.008Search in Google Scholar

[14] Lakshmikantham V, Trigiante D. Theory of difference equations numerical methods and applications. Boca Raton: CRC Press; 2002.10.1201/9780203910290Search in Google Scholar

[15] Lan ST, Chen ZX. On properties of meromorphic solutions of certain difference Painlevé III equations. Abstract and Applied Analysis. Vol. 2014. London: Hindawi; 2014.10.1155/2014/208701Search in Google Scholar

[16] Miller KS. On linear difference equations. Am Math Monthly. 1968;75(6):630–2.10.2307/2313781Search in Google Scholar

[17] Özpinar F, Belgacem FBM. The discrete homotopy perturbation Sumudu transform method for solving partial difference equations. Discret Continuous Dynamical Systems- S. 2019;12(3):615.10.3934/dcdss.2019039Search in Google Scholar

[18] Podlubny I. Fractional Differential Equations. New York: Academic Press; 1998.Search in Google Scholar

[19] Mungkasi S, Widjaja D. A numerical-analytical iterative method for solving an electrical oscillator equation. Telkomnika (Telecommun Comput Electron Control). 2021;19(4):1218–25.10.12928/telkomnika.v19i4.18987Search in Google Scholar

[20] Sengul S. Discrete fractional calculus and its applications to tumor growth; 2010.Search in Google Scholar

[21] Ortigueira MD. Fractional central differences and derivatives. IFAC Proceedings Volumes. Vol. 39. Issue 11; 2006. p. 58–63.10.3182/20060719-3-PT-4902.00009Search in Google Scholar

[22] Lizama C. The Poisson distribution, abstract fractional difference equations, and stability. Proceedings of the American Mathematical Society. Vol. 145. Issue 9; 2017. p. 3809–27.10.1090/proc/12895Search in Google Scholar

[23] Nieto JJ, Ouahab A, Slimani MA. Existence and boundedness of solutions for systems of difference equations with infinite delay. Glas matematički. 2018;53(1):123–41.10.3336/gm.53.1.09Search in Google Scholar

[24] Wu GC, Deng ZG, Baleanu D, Zeng DQ. New variable-order fractional chaotic systems for fast image encryption. Chaos: An Interdisciplinary J Nonlinear Sci. 2019;29(8):083103.10.1063/1.5096645Search in Google Scholar PubMed

Received: 2023-05-21
Revised: 2023-06-08
Accepted: 2023-06-12
Published Online: 2023-10-12

© 2023 the author(s), published by De Gruyter

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Regular Articles
  2. Design optimization of a 4-bar exoskeleton with natural trajectories using unique gait-based synthesis approach
  3. Technical review of supervised machine learning studies and potential implementation to identify herbal plant dataset
  4. Effect of ECAP die angle and route type on the experimental evolution, crystallographic texture, and mechanical properties of pure magnesium
  5. Design and characteristics of two-dimensional piezoelectric nanogenerators
  6. Hybrid and cognitive digital twins for the process industry
  7. Discharge predicted in compound channels using adaptive neuro-fuzzy inference system (ANFIS)
  8. Human factors in aviation: Fatigue management in ramp workers
  9. LLDPE matrix with LDPE and UV stabilizer additive to evaluate the interface adhesion impact on the thermal and mechanical degradation
  10. Dislocated time sequences – deep neural network for broken bearing diagnosis
  11. Estimation method of corrosion current density of RC elements
  12. A computational iterative design method for bend-twist deformation in composite ship propeller blades for thrusters
  13. Compressive forces influence on the vibrations of double beams
  14. Research on dynamical properties of a three-wheeled electric vehicle from the point of view of driving safety
  15. Risk management based on the best value approach and its application in conditions of the Czech Republic
  16. Effect of openings on simply supported reinforced concrete skew slabs using finite element method
  17. Experimental and simulation study on a rooftop vertical-axis wind turbine
  18. Rehabilitation of overload-damaged reinforced concrete columns using ultra-high-performance fiber-reinforced concrete
  19. Performance of a horizontal well in a bounded anisotropic reservoir: Part II: Performance analysis of well length and reservoir geometry
  20. Effect of chloride concentration on the corrosion resistance of pure Zn metal in a 0.0626 M H2SO4 solution
  21. Numerical and experimental analysis of the heat transfer process in a railway disc brake tested on a dynamometer stand
  22. Design parameters and mechanical efficiency of jet wind turbine under high wind speed conditions
  23. Architectural modeling of data warehouse and analytic business intelligence for Bedstead manufacturers
  24. Influence of nano chromium addition on the corrosion and erosion–corrosion behavior of cupronickel 70/30 alloy in seawater
  25. Evaluating hydraulic parameters in clays based on in situ tests
  26. Optimization of railway entry and exit transition curves
  27. Daily load curve prediction for Jordan based on statistical techniques
  28. Review Articles
  29. A review of rutting in asphalt concrete pavement
  30. Powered education based on Metaverse: Pre- and post-COVID comprehensive review
  31. A review of safety test methods for new car assessment program in Southeast Asian countries
  32. Communication
  33. StarCrete: A starch-based biocomposite for off-world construction
  34. Special Issue: Transport 2022 - Part I
  35. Analysis and assessment of the human factor as a cause of occurrence of selected railway accidents and incidents
  36. Testing the way of driving a vehicle in real road conditions
  37. Research of dynamic phenomena in a model engine stand
  38. Testing the relationship between the technical condition of motorcycle shock absorbers determined on the diagnostic line and their characteristics
  39. Retrospective analysis of the data concerning inspections of vehicles with adaptive devices
  40. Analysis of the operating parameters of electric, hybrid, and conventional vehicles on different types of roads
  41. Special Issue: 49th KKBN - Part II
  42. Influence of a thin dielectric layer on resonance frequencies of square SRR metasurface operating in THz band
  43. Influence of the presence of a nitrided layer on changes in the ultrasonic wave parameters
  44. Special Issue: ICRTEEC - 2021 - Part III
  45. Reverse droop control strategy with virtual resistance for low-voltage microgrid with multiple distributed generation sources
  46. Special Issue: AESMT-2 - Part II
  47. Waste ceramic as partial replacement for sand in integral waterproof concrete: The durability against sulfate attack of certain properties
  48. Assessment of Manning coefficient for Dujila Canal, Wasit/-Iraq
  49. Special Issue: AESMT-3 - Part I
  50. Modulation and performance of synchronous demodulation for speech signal detection and dialect intelligibility
  51. Seismic evaluation cylindrical concrete shells
  52. Investigating the role of different stabilizers of PVCs by using a torque rheometer
  53. Investigation of high-turbidity tap water problem in Najaf governorate/middle of Iraq
  54. Experimental and numerical evaluation of tire rubber powder effectiveness for reducing seepage rate in earth dams
  55. Enhancement of air conditioning system using direct evaporative cooling: Experimental and theoretical investigation
  56. Assessment for behavior of axially loaded reinforced concrete columns strengthened by different patterns of steel-framed jacket
  57. Novel graph for an appropriate cross section and length for cantilever RC beams
  58. Discharge coefficient and energy dissipation on stepped weir
  59. Numerical study of the fluid flow and heat transfer in a finned heat sink using Ansys Icepak
  60. Integration of numerical models to simulate 2D hydrodynamic/water quality model of contaminant concentration in Shatt Al-Arab River with WRDB calibration tools
  61. Study of the behavior of reactive powder concrete RC deep beams by strengthening shear using near-surface mounted CFRP bars
  62. The nonlinear analysis of reactive powder concrete effectiveness in shear for reinforced concrete deep beams
  63. Activated carbon from sugarcane as an efficient adsorbent for phenol from petroleum refinery wastewater: Equilibrium, kinetic, and thermodynamic study
  64. Structural behavior of concrete filled double-skin PVC tubular columns confined by plain PVC sockets
  65. Probabilistic derivation of droplet velocity using quadrature method of moments
  66. A study of characteristics of man-made lightweight aggregate and lightweight concrete made from expanded polystyrene (eps) and cement mortar
  67. Effect of waste materials on soil properties
  68. Experimental investigation of electrode wear assessment in the EDM process using image processing technique
  69. Punching shear of reinforced concrete slabs bonded with reactive powder after exposure to fire
  70. Deep learning model for intrusion detection system utilizing convolution neural network
  71. Improvement of CBR of gypsum subgrade soil by cement kiln dust and granulated blast-furnace slag
  72. Investigation of effect lengths and angles of the control devices below the hydraulic structure
  73. Finite element analysis for built-up steel beam with extended plate connected by bolts
  74. Finite element analysis and retrofit of the existing reinforced concrete columns in Iraqi schools by using CFRP as confining technique
  75. Performing laboratory study of the behavior of reactive powder concrete on the shear of RC deep beams by the drilling core test
  76. Special Issue: AESMT-4 - Part I
  77. Depletion zones of groundwater resources in the Southwest Desert of Iraq
  78. A case study of T-beams with hybrid section shear characteristics of reactive powder concrete
  79. Feasibility studies and their effects on the success or failure of investment projects. “Najaf governorate as a model”
  80. Optimizing and coordinating the location of raw material suitable for cement manufacturing in Wasit Governorate, Iraq
  81. Effect of the 40-PPI copper foam layer height on the solar cooker performance
  82. Identification and investigation of corrosion behavior of electroless composite coating on steel substrate
  83. Improvement in the California bearing ratio of subbase soil by recycled asphalt pavement and cement
  84. Some properties of thermal insulating cement mortar using Ponza aggregate
  85. Assessment of the impacts of land use/land cover change on water resources in the Diyala River, Iraq
  86. Effect of varied waste concrete ratios on the mechanical properties of polymer concrete
  87. Effect of adverse slope on performance of USBR II stilling basin
  88. Shear capacity of reinforced concrete beams with recycled steel fibers
  89. Extracting oil from oil shale using internal distillation (in situ retorting)
  90. Influence of recycling waste hardened mortar and ceramic rubbish on the properties of flowable fill material
  91. Rehabilitation of reinforced concrete deep beams by near-surface-mounted steel reinforcement
  92. Impact of waste materials (glass powder and silica fume) on features of high-strength concrete
  93. Studying pandemic effects and mitigation measures on management of construction projects: Najaf City as a case study
  94. Design and implementation of a frequency reconfigurable antenna using PIN switch for sub-6 GHz applications
  95. Average monthly recharge, surface runoff, and actual evapotranspiration estimation using WetSpass-M model in Low Folded Zone, Iraq
  96. Simple function to find base pressure under triangular and trapezoidal footing with two eccentric loads
  97. Assessment of ALINEA method performance at different loop detector locations using field data and micro-simulation modeling via AIMSUN
  98. Special Issue: AESMT-5 - Part I
  99. Experimental and theoretical investigation of the structural behavior of reinforced glulam wooden members by NSM steel bars and shear reinforcement CFRP sheet
  100. Improving the fatigue life of composite by using multiwall carbon nanotubes
  101. A comparative study to solve fractional initial value problems in discrete domain
  102. Assessing strength properties of stabilized soils using dynamic cone penetrometer test
  103. Investigating traffic characteristics for merging sections in Iraq
  104. Enhancement of flexural behavior of hybrid flat slab by using SIFCON
  105. The main impacts of a managed aquifer recharge using AHP-weighted overlay analysis based on GIS in the eastern Wasit province, Iraq
Downloaded on 27.1.2026 from https://www.degruyterbrill.com/document/doi/10.1515/eng-2022-0480/html
Scroll to top button