Antioxidant activity as a response to cadmium pollution in three durum wheat genotypes differing in salt-tolerance
-
Jakub Pastuszak
, Przemysław Kopeć
Abstract
Durum wheat is commonly used in various food industry industries and cultivated worldwide. A serious problem with the species cultivation is its capability to accumulate cadmium (Cd) in the grains. The aim of this study is to investigate whether antioxidant activity may be used as a marker of Cd tolerance in durum wheat. The experiment involved three durum wheat genotypes/lines differing in salt tolerance. The plant response to Cd was appraised based on the activity of ascorbate–glutathione (AsA–GSH) cycle enzymes, ascorbate-to-dehydroascorbate ratio, reduced-to-oxidized glutathione ratio (GSH:GSSG), as well as Cd content in the seeds. The highest activity of dehydroascorbate reductase, monodehydroascorbate reductase, and glutathione reductase was noted in control plants of salt-sensitive cultivar “Tamaroi.” In the presence of Cd, activity of these enzymes was considerably reduced. “Tamaroi” plants demonstrated also the highest Cd content in the grain. In conclusion, we identified the cultivar “Tamaroi” as most susceptible to cadmium, and the level of durum wheat sensitivity to the element can be evaluated based on a significant decrease in the activity of AsA–GSH cycle enzymes and GSH:GSSG ratio.
1 Introduction
Durum wheat (Triticum turgidum L. subsp. durum (Desf.) Husn.) is one of the cereals most commonly used in the food industry and cultivated around the world [1]. The species is highly valued for its grain protein content, especially gliadin and gluten, high fiber content, low glycemic index, and high levels of vitamins and valuable micronutrients [2,3]. Tolerance to salinity is a crucial factor in durum wheat cultivation [4]. Salinity tolerance mechanisms in plants causes excretion of salt ions, control of ion uptake by roots and their transport to the leaves, and activation of the antioxidant system [5]. Australian researchers identified two loci, Nax1 and Nax2, in Triticum monococcum, with genes responsible for the excretion of sodium ions from xylem, and consequently limited the accumulation of Na+ in the leaves. A cross with a salt-sensitive cultivar “Tamaroi” produced a new line containing these genes and tolerant to high salt concentrations [4]. Durum wheat accumulates large amounts of cadmium (Cd) ions in the grains [6]. The European Union has proposed a limit of Cd concentration in food that should not exceed 0.2 mg kg−1 fresh weight of a product [7]. In humans, even small amounts of Cd can be toxic and cause permanent organ damage [8,9]. Crop plants growing at a higher content of Cd show many physiological disorders, such as inhibition of seed germination and plant growth [10], leaf rolling, chlorosis and necrosis [11], disturbed distribution of nutrients [12], reduction of photosynthesis efficiency and chlorophyll content, and imbalance of water uptake and stomatal closure [13,14]. Zook et al. [15] and Jalil et al. [16] notified that durum wheat plants are more effective accumulators of Cd in the grain than Triticum aestivum L. They reported significant disparities between species and cultivars in the amount of absorbed Cd content and their tolerance to its poisonous effects. Some cultivars of durum wheat have a genetically determined potential for accumulation of significant amounts of Cd [17]. For example, one of the major genes in Cdu1 locus is responsible for Cd tolerance of durum wheat [18,19,20,21]. Hart et al. [22] reported that the Cd level in the grain was regulated not only by genetic propensity but also by physiological factors including Cd absorption from the soil solution, ion transport from root to shoot, Cd sequestration in subcellular compartments, and phloem movement into the grain during fruit development. The analysis of Cd accumulation mechanisms should account for the strong influence of soil properties on the content of bioavailable forms of this element [23]. To become tolerant to Cd toxicity, plants have developed a number of protective mechanisms, including higher activity of enzymatic and nonenzymatic antioxidants [24], adjustment of the influx and efflux of heavy metals [25], and regulation of the levels of heavy metal chelators, phytochelatins, and metallothioneins [26]. Cd does not participate in redox reactions but triggers overproduction of reactive oxygen species (ROS), including H2O2 [27]. Cd increases lipid peroxidation, protein oxidation, and nucleic acid oxidation. Also, Cd inactivates several enzymes by binding with their sulfhydryl groups (–SH) and increases free Fe concentration by its replacement with various proteins [28,29]. Some studies reported that exposure to Cd induces specific alterations in the mitochondrial structure and function in animals [30]. Tolerance to toxic Cd content depends on plant capacity to scavenge or detoxify activated oxygen species. The key molecules in these processes are glutathione (GSH) and ascorbate (AsA), i.e., nonenzymatic antioxidants. They are components of the cellular antioxidant defense system, i.e., the ascorbate–glutathione cycle (AsA–GSH cycle) [31,32]. They act as cofactors for numerous enzymes and signaling molecules regulating pivotal cellular processes. Ascorbate reacts with singlet oxygen, hydrogen peroxide, superoxide, and hydroxyl radicals. Glutathione is a tripeptide with a sulfhydryl group (l-γ-glutamyl-l-cysteinyl-glycine) and is recognized as a key molecule in the detoxification system. The fundamental function of GSH consists of thiol-disulphide interactions, in which reduced glutathione (GSH) is continuously oxidized to a disulphide form (GSSG) [31]. The AsA–GSH pathway comprises four enzymes: ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), and glutathione reductase (GR) [33]. According to Hasanuzzaman et al. [34], all enzymes of the ascorbate–glutathione cycle work closely together, which may additionally improve Cd tolerance. Figure 1 shows a simplified scheme of the ascorbate–glutathione cycle.
![Figure 1 Schematic representation of antioxidant enzymes in the ascorbate–glutathione cycle investigated in this study (according to Szymańska and Strzałka [35]).](/document/doi/10.1515/chem-2020-0113/asset/graphic/j_chem-2020-0113_fig_001.jpg)
Schematic representation of antioxidant enzymes in the ascorbate–glutathione cycle investigated in this study (according to Szymańska and Strzałka [35]).
Our hypothesis was that the degree of durum wheat tolerance to salinity caused by NaCl coincides with the tolerance to Cd and that the antioxidant activity of AsA-GSH cycle maybe a marker of this tolerance. We compared the response to soil contamination with Cd applied at 3 and 5 mg kg−1 DM (dry matter) in three genotypes of durum wheat: Polish line SMH87 with moderate tolerance to salinity stress, Australian NaCl-sensitive cultivar “Tamaroi,” and NaCl-resistant line BC5Nax2. The defense response of the studied durum wheat genotypes included evaluation of AsA–GSH cycle enzyme activity, ascorbate-to-dehydroascorbate ratio, reduced-to-oxidized glutathione ratio, and Cd content in the seeds.
2 Materials and methods
2.1 Plant material
This study involved three genotypes of spring durum wheat. SMH87 line was obtained from Dr Jarosław Bojarczuk from Plant Breeding Center in Smolice, Plant Breeding and Acclimatization Institute Group (Poland). In our preliminary study, we identified SMH87 as moderately tolerant to salinity. BC5Nax2 line and cultivar “Tamaroi” were obtained from Dr Richard A. James from CSIRO Plant Industry (Australia). The Australian genotypes of durum wheat differed in their salt tolerance: cultivar “Tamaroi” was sensitive, while BC5Nax2, containing Nax2 locus with salt tolerance genes, was tolerant to salt stress.
2.2 Experimental treatments
Seeds were sterilized with 70% ethanol for 1 min and placed in Petri dishes (Ø = 9 cm) on filter paper wetted with distilled water. The seeds germinated in the dark at 4°C for 21 days. Next, they were sown into pots (4 dm3) filled with soil classified as degraded chernozem, formed from loess, the first soil quality class of very good wheat complex. Preliminary analysis of the soil used in the experiment revealed the presence of Cd ions at a concentration of 0.43 mg Cd kg–1 DM of soil. The Cd content in the soil was determined according to Baran et al. [36]. Based on data published by Tóth et al. [37], a dose of 3 mg Cd kg−1 DM was used in the experiment as average soil pollution with Cd ions, while a dose of 5 mg Cd kg−1 DM of soil corresponded to the maximum Cd content determined in Europe. The germinating seeds were sown into the soil contaminated with 3 CdSO4 8 H2O at three concentrations: 0 (control), 3, and 5 mg of pure Cd per 1 kg DM of soil. Cd salt was evenly distributed in the entire volume of the pot. After adding the salt at both concentrations, soil salinity did not exceed 0.2 mS cm−1. Its conductivity was measured according to Płażek et al. [38]. Each pot harbored five seedlings. Each treatment (genotype/Cd dose) contained 10 pots. The plants were cultivated to full seed ripening phase in air-conditioned glasshouse at 22 ± 3°C/18 ± 1°C day/night, in daylight (March–May) supplemented with light intensity (AGRO Philips sodium lamps) of 400 µmol m−2 s−2 PPFD (photosynthetic photon flux density), up to a 16 h photoperiod. Relative humidity was 65 ± 2%/75 ± 1% day/night. The plants were fertilized with Hoagland medium [39] once a week to ensure proper nutrition. The experiment was performed twice in 2018 and 2019, and the data presented are the means of the results obtained.
2.3 Measurements
2.3.1 Hydrogen peroxide assay
Hydrogen peroxide in flag leaf material was determined using the Amplex Red Hydrogen Peroxide/Peroxidase Assay kit of Invitrogen (Oregon, USA). Leaf material (0.1 g) was homogenized in 0.5 cm3 of 50 mM potassium phosphate buffer (pH 7.5). The homogenates were centrifuged (19,000 g, 10 min, 4°C), and H2O2 concentration was measured colorimetrically in the supernatant according to the manufacturer’s protocol. Hydrogen peroxide content was calculated from the standard curve prepared with H2O2 solutions. Results are expressed in µM H2O2 g−1 fresh weight. The measurements were taken in five replicates for each genotype/treatment with using Synergy 2 Microplate Reader (BioTek, USA).
2.3.2 Antioxidant assays
The concentration of reduced AsA, DHA, reduced (GSH) and oxidized (GSSG) glutathione, and the activity of APX, DHAR, and GR in flag leaves were measured spectrophotometrically as described by Harrach et al. [40]. The activity of MDHAR was determined according to Hossain et al. [41]. All assays were performed at 25°C using the Ultrospec 2100 pro UV/visible spectrophotometer (Amersham, Umeå, Sweden). The measurements were taken in five replicates for each genotype/treatment.
2.3.2.1 Low-molecular-weight antioxidant assays
For determination of low-molecular-weight antioxidant content, flag leaf material (0.1 mg) was homogenized in 0.5 cm3 of 5% (w/v) metaphosphoric acid at 4°C and centrifuged (19,000 g, 30 min, 4°C). The supernatant was used for the assays. The content of AsA was detected as described by Foyer et al. [42] using ascorbate oxidase. Metaphosphoric acid extracts (125 µL) were neutralized with 25 µL of 1.5 M triethanolamine. The reaction mixture contained 133.3 µL of 150 mM sodium phosphate buffer (pH 7.4), 66.7 µL of H2O, 2 cm3 of 100 mM sodium phosphate buffer (pH 5.6), and 1 unit of ascorbate oxidase. The extinction was measured immediately at 265 nm after the preparation of solution, and then, there was a decrease in the absorbance. The level of DHA was calculated as a difference between total ascorbate and AsA according to Harrach et al. [40]. Total ascorbate was determined after a reduction of DHA with dithiothreitol. Neutralized leaf extracts (45 µL) with 54 µL of 150 mM sodium phosphate buffer (pH 7.4) and 27 µL of 10 mM dithiothreitol were incubated for 15 min at room temperature. Total ascorbate levels were measured as mentioned earlier. The standard curve was created by known concentrations of AsA and DHA prepared in 5% metaphosphoric acid. GSH and GSSG were determined by the recycling method, using GR, according to Law et al. [43]. Metaphosphoric acid extracts (100 µL) were neutralized with 36 µL of 1 M triethanolamine. Initially, total glutathione was estimated, and then, to determine GSSG, GSH was derivatized with 2-vinylopyridine to the neutralized samples. The amount of GSH was estimated as a difference between these two assays. To determine total glutathione content, we prepared 1 cm3 of a reaction mixture containing 50 mM potassium phosphate buffer (pH 7.5), 2.5 mM EDTA-Na2, 1 mM 5,5′-dithio-bis(2-nitrobenzoic acid), 1 unit of GR, 0.2 mM NADPH, and 20 µL of the neutralized sample. Absorbance increases at 412 nm after the addition of GR and NADPH. Before measuring GSSG concentration, the neutralized samples were mixed with 8 µL of 2-vinylopyridine and incubated at 25°C for 1 h. Oxidized glutathione was determined as described earlier, using a 50 µL sample and the reaction mixture of a total volume of 1 cm3. Total glutathione and GSSG content were estimated based on a standard curve generated with stock solutions of GSH and GSSG prepared in 5% metaphosphoric acid.
2.3.2.2 Antioxidant enzyme activity assays
For the detection of AsA–GSH cycle enzyme activity, flag leaf material (0.1 mg) was homogenized at 4°C in 0.5 cm3 50 mM Tris–HCl buffer (pH 7.8) containing 1 mM EDTA-Na2 and 7.5% (w/v) soluble polyvinylpyrrolidone. The suspension was centrifuged (12,000 g, 20 min, 4°C), and the supernatant was used to measure the total soluble enzyme activity. The APX activity was determined by following the oxidation of ascorbic acid at 290 nm (extinction coefficient of ascorbic acid was 2.8 mM−1 cm−1) according to Nakano and Asada [44]. The reaction mixture (2.25 cm3) consisted of 2 cm3 of 50 mM Tris–HCl buffer (pH 7.8), 100 µL of 5.7 mM ascorbic acid, 100 µL of 11.25 mM H2O2, and 50 µL of the leaf extract. The control reaction was performed using the buffer instead of H2O2 solution. Results of the APX activity are expressed in nMAsA mg−1 protein min−1. The DHAR activity was estimated by following the reduction of DHA at 265 nm (extinction coefficient of ascorbic acid was 14 mM−1 cm−1), as described by Klapheck et al. [45]. The assay mixture contained 2 cm3 of 50 mM sodium phosphate buffer (pH 7.5) with 2.5 mM EDTA-Na2, 100 µL of 22.8 mM GSH, 100 µL of 11.5 mM DHA, and 100 µL of the leaf extract. The control reaction mixtures contained the buffer instead of the supernatant. Results of the DHAR activity are expressed in nM AsA mg–1 protein min–1. The measurement of the MDHAR activity was based on monitoring the consumption of NADH at 340 nm (extinction coefficient of NADH was 6.2 mM−1 cm−1). The reaction mix consisted of 2 cm3 of 50 mM Tris–HCl buffer (pH 7.8), 100 µL of 22.7 mM ascorbic acid, 100 µL of 2.6 mM NADH, 6.6 units of ascorbate oxidase, and 100 µL of the leaf extract. The control reaction mix contained the buffer instead of ascorbate oxidase. Results of the MDHAR activity are expressed in nM NADH mg−1 protein min−1. The GR activity was assayed by the decrease in absorbance at 340 nm due to the oxidation of NADPH (extinction coefficient of NADPH was 6.2 mM−1 cm−1) according to Klapheck et al. [45]. The reaction mixture contained 2 cm3 of 50 mM Tris–HCl buffer (pH 7.8), 100 µL of 2.4 mM NADPH, 300 µL of 4.6 mM GSSG, and 100 µL of the leaf extract. The control reaction was performed with the buffer instead of GSSG solution. Results of the GR activity are expressed in nM NADPH mg−1 protein min−1.
2.3.3 Determination of Cd content in the grains
The content of Cd was determined as described by Ostrowska et al. [46]. The grains were collected from plants in each treatment and dried separately in an air flow dryer at 65°C for 48 h, weighed, and powdered in a ball mill MM400 (Retsch, Haan, Germany). For determination of hygroscopic water, the ground samples were dried at 105oC and later mineralized in a chamber furnace at 450°C for 12 h. The residue was dissolved in diluted nitric acid (acid:water ratio of 1:2; v/v). The content of the element was determined using the ICP-OES method in PerkinElmer Optima 7300DV apparatus (Norwalk, CT, USA). Reference material NCS DC73348 (China National Analysis Center for Iron & Steel) was applied to each analytical series as described by Fuentes et al. [47]. Analyses of chemical element content were done in five replicates for each Cd treatment/wheat line.
2.3.4 Statistical analysis
Two-way analysis of variance and Duncan’s multiple range test (at P < 0.05) were performed using the statistical software of STATISTICA 13.0 (Stat-Soft, Inc., Tulsa, OK, USA). Data were represented as means ± SE (standard error), and linear correlation coefficients (Pearson’s) were putative as statistically significant at P < 0.05.
Ethical approval: The conducted research is not related to either human or animal use.
3 Results and discussion
3.1 Visual symptoms of Cd treatment
All cultivated plants showed no symptoms of Cd toxicity such as necrosis or leaf rolling; however, Cd accelerated seed maturation and early plant drying (Figure 2). In some cases, the plants grown in soil contaminated with 3 mg Cd kg−1 DM, and even with the higher dose showed greater vigor than control plants. This effect was most evident before flowering. Most often, however, the observed differences between plants resulted from their genotypic diversity.

Plants of the studied genotypes, in the heading phase, growing in the soil without Cd (control) (a) and in the soil contaminated with 3 mg Cd kg−1 DM (b) and 5 mg Cd kg−1 DM (c).
Our observations showed that plants growing in soil contaminated with 5 mg kg−1 DM Cd generally did not differ in appearance from those grown at 3 mg kg−1 DM Cd, and even some of them looked more viable. It is difficult to unambiguously explain this phenomenon. It might be due to so-called hormesis effect. Hormesis involves stimulation of various parameters in living organisms by stress factors of low intensity [36,48]. The effect was reported in plants treated with low concentrations of heavy metals [49]. Moral et al. [12] proved lower tomato yield during Cd presence but no differences in mean fresh weight of the fruit. However, these authors stated that Cd negatively affected the plant growth and root and stem length, and also fresh weight decreased with increasing concentrations of Cd. An analysis of Cd accumulation mechanisms should account for a strong influence of soil properties on the content of bioavailable forms of this element [23]. The study by Dai et al. [23] revealed that the introduction of nutrients, namely, nitrogen and sulfur, could be a significant factor determining wheat response to Cd contamination in the soil. It should be noted that by increasing the dose of Cd used as sulfate, the dose of sulfur also increased. Khan et al. [50] stated that coordination between the main N and S assimilation pathways can strengthen plant defense mechanisms and effectively alleviate Cd negative effects. Gill et al. [51] notified that high Cd content in soil affects photosynthesis process and alignment between carbon, nitrogen, and sulfur metabolism.
3.2 Hydrogen peroxide content
Hydrogen peroxide production under Cd stress was specific for each studied genotype (Figure 3). The lowest level of this compound was recorded in control plants of SMH87, and its content in the leaves gradually increases with an increase in Cd dose. “Tamaroi” control plants produced the highest amount of H2O2, and contrary to SMH87 and BC5Nax2, growing Cd pressure reduced its content. This response of “Tamaroi” to Cd depended on the decrease in APX, GR, and MDHAR activities noted in plants of this cultivar (Figure 4a–c). In BC5Nax2 line, 3 mg Cd kg−1 DM enhanced the hydrogen peroxide amount, while higher metal dose reduced its level, which was still higher than that of the control.

Hydrogen peroxide level in the flag leaves of three durum wheat genotypes grown in the soil contaminated with Cd at 0 mg (control), 3 and 5 mg kg−1 DM. Data are represented as mean ± SE in five replicates, which are significantly different at P < 0.05 using Duncan multiple range test.

Activity of ascorbate–glutathione cycle enzymes in the flag leaves of three durum wheat genotypes grown in the soil contaminated with Cd at 0 mg (control), 3 and 5 mg kg−1 DM. Data are represented as mean ± SE in five replicates. Means with different letters (a, b, c,…) are significantly different at P < 0.05 using the Duncan multiple range test.
Cd is not a redox metal, and it cannot catalyze Fenton reaction that affects the ROS production in plant cells. Higher H2O2 level noticed in plants of SMH87 and BC5Nax2 lines cultivated in contaminated soil presumably results from the decreased H2O2 scavenging rate or the increased H2O2 synthesis in enzymatic or nonenzymatic reactions. Hydrogen peroxide production might be associated with cellular integration processes and/or adaptation to environmental conditions [52]. Sarker and Oba [53] detected very low amounts of hydrogen peroxide in drought-sensitive genotype of Amaranthus sp. versus more tolerant genotypes. As described further in the article, salt-sensitive “Tamaroi” was recognized as considerably more sensitive to Cd ions than SMH87 and BC5Nax2, so the reduction in hydrogen peroxide under Cd stress may be a marker of plant sensitivity to various environmental stresses. Similar results were reported by Płażek and Żur [54]. These authors concluded that crop resistance to pathogens depended on low activity of catalase and high amount of hydrogen peroxide.
3.3 Enzyme activity
The lowest APX activity was recorded in SMH87 plants, and it was unaffected by increasing Cd concentration (Figure 4a). “Tamaroi” plants showed a decrease (by 21%) in the APX activity under both Cd concentrations. The highest APX activity was detected in the leaves of BC5Nax2 line, and it declined rapidly (by about 86%) with the increasing Cd amount in the soil.
The pattern of the GR activity was specific for each studied genotype (Figure 4b). It was the lowest in SMH87 and did not change in the presence of 3 mg Cd kg−1 DM but dropped at 5 mg Cd kg−1 DM. Very high GR activity in control “Tamaroi” plants gradually decreased in the plants grown in the contaminated soil. Only in BC5Nax2 plants, the increasing Cd amount enhanced the GR activity. The MDHAR activity was the highest in “Tamaroi” plants, while in SMH87 and BC5Nax2 plants, it was considerably lower (Figure 4c). Cd inhibited the MDHAR activity in “Tamaroi” and BC5Nax2 plants, while in SMH87 line, it remained unaffected. Cd contamination did not influence the DHAR activity in SMH87 and BC5Nax2 lines, while in “Tamaroi,” we saw a decline in the activity of DHAR only at 5 mg Cd kg−1 DM (Figure 4d). Similarly, as for the highest MDHAR activity, the highest activity of DHAR was observed in “Tamaroi” plants. Figure 5a presents ascorbate-to-dehydroascorbate ratio (AsA:DHA). Predominance of ascorbic acid over its oxidized form was visible mainly in control plants of SMH87 and BC5Nax2 lines, while in “Tamaroi” control, DHA level was significantly higher than that of AsA. The AsA:DHA ratio decreased in all plants exposed to Cd, and a particularly strong response was noticed in both Australian genotypes. The ratio depended strongly on APX and DHAR activities (Figure 4a and d).

Ascorbate (AsA)-to-dehydroascorbate (DHA) ratio (a) and reduced-to-oxidized glutathione ratio (GSH:GSSG) (b) in the flag leaves of three durum wheat genotypes grown in the soil contaminated with Cd at 0 mg (control), 3 mg kg−1 DM and 5 mg kg−1 DM. Data are represented as mean ± SE in five replicates. Means with different letters (a, b, c,…) are significantly different at P < 0.05 using the Duncan multiple range test.
Similarly as for GR, the ratio of reduced to oxidized glutathione (GSH:GSSG) was specific for each studied genotype (Figure 5b). In SMH87 plants, the ratio increased at both applied Cd levels compared with that of the control. Control plants of cv. “Tamaroi” exhibited the highest GSH:GSSG ratio that rapidly (by 75%) declined in plants grown in the soil containing 3 mg Cd kg−1 DM. Higher Cd dose boosted GSH amount and in consequence GSH:GSSG ratio. In the case of BC5Nax2, only 5 mg Cd kg−1 DM increased the ratio, which indicated an increase in GSSG accumulation. The quantity of hydrogen peroxide correlated positively with the activity of all studied enzymes and with GSH:GSSG ratio, while the latter correlated only with the quantity of H2O2 amount (Table 1). GR activity correlated positively with APX, DHAR, and MDHAR activities. Sarker and Oba [53] observed a minute increase in ascorbate–glutathione content, ascorbate–glutathione redox, and ascorbate–glutathione cycle enzyme activities, which correlated with dramatic increment in hydrogen peroxide in drought-sensitive genotype of Amaranthus tricolor.
Correlation between the activity of enzymes involved in the ascorbate–glutathione cycle, GR, reduced-to-oxidized glutathione ratio (GSH:GSSG), and hydrogen peroxide (H2O2) determined in all studied durum wheat plants grown under Cd pollution
Variable | GR | GSH:GSSG | H2O2 |
---|---|---|---|
APX | 0.711 | ns | 0.463 |
DHAR | 0.877 | ns | 0.593 |
MDHAR | 0.607 | ns | 0.381 |
GR | — | ns | 0.685 |
GSH:GSSG | ns | — | 0.385 |
H2O2 | 0.686 | 0.385 | — |
Linear correlation coefficients (Pearson’s) were assumed statistically significant at P < 0.05 (ns – not statistically significant).
According to Cuypers et al. [30], Cd can induce oxidative stress by inhibiting antioxidants, but it also activates several antioxidant compounds. In the present experiment, the investigated genotypes showed considerable differences in Cd-induced response. The activity of individual enzymes of ascorbate–glutathione cycle and AsA:DHA and GSH:GSSG ratios were specific for each genotype. In the case of control “Tamaroi” plants, the activity of most studied enzymes was many times higher than in the remaining genotypes. Also, these plants responded to the increasing Cd content by a reduction of APX, MDHAR, DHAR, and GR activities. This effect was not visible or was considerably weaker in SMH87 and BC5Nax2 lines. Particular attention should be paid to the activity of ascorbate peroxidase that occurs in chloroplasts and cytoplasm. Hydrogen peroxide in chloroplasts is mainly removed by APX. In chloroplast stroma, APX concentration is about 37 µM, which is a high value for an enzyme [55]. In our experiments, the highest APX activity was noted in control plants of BC5Nax2; however, increasing doses of Cd in this line severely decreased the enzyme activity by up to 87%, while in “Tamaroi,” it dropped by only 21%. Large differences in the APX activity in the plants treated with Cd were additionally emphasized by the response of SMH87 plants in which no changes in the activity of this enzyme were observed. In “Tamaroi,” both Cd doses drastically decreased glutathione pool, while a reverse pattern developed in SMH87 and BC5Nax2 lines. The response to Cd pollution in salt-resistant BC5Nax2 seemed more similar to moderately salt-tolerant SMH87 and differed from that of salt-sensitive “Tamaroi.” Considering the results described earlier, it could be concluded that significant inhibition of ascorbate–glutathione cycle activity may be a marker of durum wheat sensitivity to Cd. Our findings also suggest that the most salt-sensitive cultivar is also the most sensitive to Cd contamination. This result was confirmed by the analyses of Cd accumulation in the grains. The Cd content was the highest in the grains of the salt-sensitive cultivar and the lowest in the lines moderately tolerant and durable to salinity. The results of our study did not confirm previous reports [31,32] that tolerance to the toxic effects of Cd ions depends on the increased activity of the AsA–GSH cycle enzymes and nonenzymatic low-molecular antioxidants like ascorbic acid. Conversely, the more Cd tolerant cultivars showed a quantitative advantage of glutathione over oxidized glutathione.
3.4 Cd content in the grains
In all studied plants, Cd content in the seeds increased significantly at both applied Cd doses compared with the control (Figure 6). The grain of all plants grown at 5 mg Cd kg−1 DM are concentration less Cd than those produced by plants grown at 3 mg Cd kg−1 DM. Cd accumulation in the grains correlated only with the GSH:GSSG ratio and only for salt-sensitive “Tamaroi” (r = −0.929; P < 0.05) (Figure 7), while in the case of SMH87 and BC5Nax2, this correlation was insignificant.

Cd content (µg g−1 DM) in the grains of three durum wheat genotypes grown in the soil contaminated with Cd at 0 mg (control), 3 and 5 mg kg−1 DM. Data are represented as mean ± SE in five replicates. Means with different letters (a, b, c,…) are significantly different at P < 0.05 using the Duncan multiple range test.

Correlation between Cd accumulation in the grains (mg kg−1 DM) and GSH:GSSG ratio in cv. “Tamaroi.” Linear correlation coefficients (Pearson’s) were assumed statistically significant at P < 0.05.
Cd amount increased significantly in the seeds of all the studied genotypes exposed to the metal; however, the highest Cd ion content in the grain was demonstrated by plants growing at lower Cd concentration in the soil (3 mg kg−1 DM). This observation is difficult to explain. We can assume that higher Cd concentration (5 mg kg−1 DM) was toxic enough to block the processes involved in the transport of assimilates and ions to the seeds. Lu et al. [56] observed a similar phenomenon in Fagopyrum tataricum. They stated that in plants exogenously treated with sulfur, increased Cd uptake in root vacuoles and its decreased translocation to the leaves can result from enhanced Cd binding by cell walls, chelation and vacuolar sequestration with nonprotein thiols, and inhibited transport of Cd from roots to shoots. Hart et al. [22] demonstrated that Cd uptake rates in the roots and xylem translocation to the shoots of durum wheat were not accountable for higher Cd accumulation in mature grains. Cd content in the grains correlated negatively with the GSH:GSSG ratio, which indicates that Cd accumulation is accompanied by intense oxidative stress, as evidenced by greater amount of oxidized form of glutathione. Cultivar “Tamaroi” is highly sensitive to both NaCl salinity and Cd pollution. This might indicate that tolerance to these stresses has a common physiological background. However, SMH87 line, which is similar to “Tamaroi,” does not possess Nax2 locus, demonstrated Cd tolerance at the level of BC5Nax2 line. Thus, it can be assumed that the NaCl-resistant genes in this locus do not contribute to Cd tolerance.
4 Conclusion
Durum wheat genotypes differed considerably in the activity of ASA–GSH cycle enzymes in the presence of Cd. Salt-sensitive cv. “Tamaroi” demonstrated the strongest Cd-induced decline in their activity and in the GSH:GSSG ratio. This cultivar accumulated also the highest amounts of Cd in the seeds compared with other genotypes under the study. We concluded that salt-sensitive “Tamaroi” was more susceptible, while moderately salt-tolerant SMH87 and salt-resistant BC5Nax2 were more tolerant to Cd contamination. The study showed that the inhibited activity of AsA–GSH cycle enzymes and a significant decrease in the GSH:GSSG ratio induced by Cd can be recognized as markers of durum wheat sensitivity to this metal. In the future, we plan to explore other mechanisms that block the accumulation of Cd in the seeds. First, we will study durum plants for the expression of genes located at Cdu1 locus in the presence of Cd.
Abbreviations
- APX
ascorbate peroxidase
- AsA
ascorbate
- DHA
dehydroascorbate
- DHAR
dehydroascorbate reductase
- DM
dry matter
- GSH
glutathione
- GSSG
oxidized glutathione
- GR
glutathione reductase
- MDHAR
monodehydroascorbate reductase
- NADH
nicotinamide adenine dinucleotide, reduced form
- NADPH
nicotinamide adenine dinucleotide phosphate, reduced form
Acknowledgments
This work was financed by the Polish Ministry of Science and Higher Education (BM 2124). We would like to thank Dr Richard A. James for durum wheat seeds of cv. ‘Tamaroi’ and line BC5Nax2, and Dr Jarosław Bojarczuk for durum wheat seeds of line SMH87.
Conflict of interest: The authors declare no conflict of interest.
References
[1] Oleson BT. World wheat production, utilization and trade. In: Bushuk W, Rasper VF, editors. Wheat: Production, Properties and Quality. Germany: Springer Sciences & Business Media; 1994.10.1007/978-1-4615-2672-8_1Search in Google Scholar
[2] Olmos S, Distelfeld A, Chicaiza O, Schlatter AR, Fahima T, Echenique V, et al. Precise mapping of a locus affecting grain protein content in durum wheat. Theor Appl Genet. 2003;107(7):1243–51. 10.1007/s00122-003-1377-y.Search in Google Scholar PubMed
[3] Rachoń L, Szumilo G, Stankowski S. Comparison of selected indicators of technological value of common wheat (Triticum aestivum ssp. vulgare), durum wheat (Triticum durum) and spelled (Triticum aestivum ssp. spelta). Fragment Agron. 2011;28(4):52–9 (In Polish).Search in Google Scholar
[4] James RA, Blake C, Zwart AB, Hare RA, Rathjen AJ, Munns R. Impact of ancestral wheat sodium exclusion genes Nax1 and Nax2 on grain yield of durum wheat on saline soils. Funct Plant Biol. 2012;39(7):609.10.1071/FP12121Search in Google Scholar PubMed
[5] Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol. 2008;59(1):651–81. 10.1146/annurev.arplant.59.032607.092911.Search in Google Scholar PubMed
[6] Cheli F, Campagnoli A, Ventura V, Brera C, Berdini C, Palmaccio E, et al. Effects of industrial processing on the distributions of deoxynivalenol, cadmium and lead in durum wheat milling fractions. LWT Food Sci Technol. 2010;43(7):1050–7. 10.1016/j.lwt.2010.01.024.Search in Google Scholar
[7] Commission of the European Communities. Setting maximum levels for certain contaminants in food stuffs. Commission Regulation (EC) No 466/2001 of 8 March 2001 [Internet]; [cited 2020May12]. Available from: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32001R0466.Search in Google Scholar
[8] Waalkes MP. Metals and disorders of cell accumulation: modulation of apoptosis and cell proliferation. Toxicol Sci. 2000;56(2):255–61. 10.1093/toxsci/56.2.255.Search in Google Scholar PubMed
[9] Godt J, Scheidig F, Grosse-Siestrup C, Esche V, Brandenburg P, Reich A, et al. The toxicity of cadmium and resulting hazards for human health. J Occupat Med Toxicol. 2006;1(1):22. 10.1186/1745-6673-1-22.Search in Google Scholar PubMed PubMed Central
[10] Rascio N, Vecchia F, Ferretti M, Merlo L, Ghisi R. Some effects of cadmium on maize plants. Arch Environ Contaminat Toxicol. 1993;25(2):244–9.10.1007/BF00212136Search in Google Scholar
[11] Greger M, Brammer E, Lindberg S, Larsson G, Idestam-Almquist J. Uptake and physiological effects of cadmium in sugar beet (Beta vulgaris) related to mineral provision. J Exp Bot. 1991;42(6):729–37. 10.1093/jxb/42.6.729.Search in Google Scholar
[12] Moral R, Gomez I, Pedreno J, Mataix J. Effects of cadmium on nutrient distribution, yield, and growth of tomato grown in soilless culture. J Plant Nutr. 1994;17(6):953–62. 10.1080/01904169409364780.Search in Google Scholar
[13] Molas J. Changes of chloroplast ultrastructure and total chlorophyll concentration in cabbage leaves caused by excess of organic Ni(ii) complexes. Environ Exp Bot. 2002;47(2):115–26. 10.1016/S0098-8472(01)00116-2.Search in Google Scholar
[14] Clemens S. Evolution and function of phytochelatin synthases. J Plant Physiol. 2006;163(3):319–32. 10.1016/j.jplph.2005.11.010.Search in Google Scholar PubMed
[15] Zook EG, Greene FE, Morris ER. Nutrient composition of selected wheats and wheat products. 6. Distribution of manganese, copper, nickel, zinc, magnesium, lead, tin, cadmium, chromium, and selenium as determined by atomic absorption spectroscopy and colorimetry. Cereal Chem. 1970:47:720–31.Search in Google Scholar
[16] Jalil A, Selles F, Clarke J. Effect of cadmium on growth and the uptake of cadmium and other elements by durum wheat. J Plant Nutr. 1994;17(11):1839–58. 10.1080/01904169409364851.Search in Google Scholar
[17] Zhang X, Lin L, Chen M, Zhu Z, Yang W, Chen B, et al. A nonpathogenic Fusarium oxysporum strain enhances phytoextraction of heavy metals by the hyperaccumulator Sedum alfredii Hance. J Hazard Mater. 2012;229–230:361–70. 10.1016/j.jhazmat.2012.06.013.Search in Google Scholar PubMed
[18] Penner G, Bezte L, Leisle D, Clarke J. Identification of RAPD markers linked to a gene governing cadmium uptake in durum wheat. Genome. 1995;38(3):543–7. 10.1139/g95-070.Search in Google Scholar PubMed
[19] Clarke J, Norvell W, Clarke F, Buckley W. Concentration of cadmium and other elements in the grain of near-isogenic durum lines. Canadian J Plant Sci. 2002;82(1):27–33. 10.4141/P01-083.Search in Google Scholar
[20] Wiebe K, Harris N, Faris J, Clarke J, Knox R, Taylor G, et al. Targeted mapping of Cdu1, a major locus regulating grain cadmium concentration in durum wheat (Triticum turgidum L. vardurum). Theor Appl Genet. 2010;121(6):1047–58. 10.1007/s00122-010-1370.Search in Google Scholar
[21] Köleli N, Eker S, Cakmak I. Effect of zinc fertilization on cadmium toxicity in durum and bread wheat grown in zinc-deficient soil. Environ Pollut. 2004;131(3):453–9. 10.1016/j.envpol.2004.02.012.Search in Google Scholar PubMed
[22] Hart J, Welch R, Norvell W, Sullivan L, Kochian L. Characterization of cadmium binding, uptake, and translocation in intact seedlings of bread and durum wheat cultivars. Plant Physiol. 1998;116(4):1413–20. 10.1104/pp.116.4.1413.Search in Google Scholar PubMed PubMed Central
[23] Dai Y, Nasir M, Zhang Y, Wu H, Guo H, Lv J. Comparison of DGT with traditional methods for assessing cadmium bioavailability to Brassica chinensis in different soils. Sci Rep. 2017;7(1):14206. 10.1038/s41598-017-13820-3.Search in Google Scholar PubMed PubMed Central
[24] Semane B, Cuypers A, Smeets K, Van Belleghem F, Horemans N, Schat H, et al. Cadmium responses in Arabidopsis thaliana: glutathione metabolism and antioxidative defence system. Physiol Plant. 2007;129(3):519–28. 10.1111/j.1399-3054.2006.00822.x.Search in Google Scholar
[25] Migocka M, Papierniak A, Kosieradzka A, Posyniak E, Maciaszczyk-Dziubinska E, Biskup R, et al. Cucumber metal tolerance protein CsMTP9 is a plasma membrane H-coupled antiporter involved in the Mn2+ and Cd2+ efflux from root cells. Plant J. 2015;84(6):1045–58. 10.1111/tpj.13056.Search in Google Scholar
[26] Cobbett C, Goldsbrough P. Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol. 2002;53(1):159–82. 10.1146/annurev.arplant.53.100301.135154.Search in Google Scholar
[27] Chmielowska-Bąk J, Gzyl J, Ruścińska-Sobkowiak R, Arasimowicz-Jelonek M, Deckert J. The new insights into cadmium sensing. Front Plant Sci. 2014;5:245. 10.3389/fpls.2014.00245.Search in Google Scholar
[28] Gallego SM, Benavídes MP, Tomaro ML. Effect of heavy metal ion excess on sunflower leaves: evidence for involvement of oxidative stress. Plant Sci. 1996;121(2):151–9. 10.1016/S0168-9452(96)04528-1.Search in Google Scholar
[29] Dorta DJ, Leite S, Demarco KC, Prado IM, Rodrigues T, Mingatto FE, et al. A proposed sequence of events for cadmium-induced mitochondrial impairment. J Inorg Biochem. 2003;97(3):251–7. 10.1016/s0162-0134(03)00314-3.Search in Google Scholar
[30] Cuypers A, Plusquin M, Remans T, Jozefczak M, Keunen E, Gielen H, et al. Cadmium stress: an oxidative challenge. BioMetals. 2010;23(5):927–40. 10.1007/s10534-010-9329-x.Search in Google Scholar PubMed
[31] Noctor G, Mhamdi A, Chaouch S, Han Y, Neukermans J, Marquez-Garcia B, et al. Glutathione in plants: an integrated overview. Plant Cell Environ. 2011;35(2):454–84. 10.1111/j.1365-3040.2011.02400.x.Search in Google Scholar PubMed
[32] Cagno RD, Guidi L, Gara LD, Soldatini GF. Combined cadmium and ozone treatments affect photosynthesis and ascorbate-dependent defences in sunflower. New Phytol. 2001;151(3):627–36. 10.1046/j.1469-8137.2001.00217.x.Search in Google Scholar PubMed
[33] Cheng F-Y, Burkey KO, Robinson JM, Booker FL. Leaf extracellular ascorbate in relation to O3 tolerance of two soybean cultivars. Environ Pollut. 2007;150(3):355–62. 10.1016/j.envpol.2007.01.022.Search in Google Scholar PubMed
[34] Hasanuzzaman M, Nahar K, Rahman A, Mahmud JA, Alharby HF, Fujita M. Exogenous glutathione attenuates lead-induced oxidative stress in wheat by improving antioxidant defense and physiological mechanisms. J Plant Interact. 2018;13(1):203–12. 10.1080/17429145.2018.1458913.Search in Google Scholar
[35] Szymańska R, Strzałka K. Reactive oxygen species in plants: production, deactivation and role in signal transduction [Internet]. PostępyBochemii. 2010 [cited 2020May12]. Available from: http://www.postepybiochemii.pl/pdf/2_2010/10_2_2010.pdf. Polish.Search in Google Scholar
[36] Baran A, Mierzwa-Hersztek M, Gondek K, Tarnawski M, Szara M, Gorczyca O, et al. The influence of the quantity and quality of sediment organic matter on the potential mobility and toxicity of trace elements in bottom sediment. Environ Geochem Health. 2019;41(6):2893–910. 10.1007/s10653-019-00359-7.Search in Google Scholar PubMed PubMed Central
[37] Tóth G, Hermann T, Szatmári G, Pásztor L. Maps of heavy metals in the soils of the European Union and proposed priority areas for detailed assessment. Sci Total Environ. 2016;565:1054–62. 10.1016/j.scitotenv.2016.05.115.Search in Google Scholar PubMed
[38] Płażek A, Tatrzańska M, Maciejewski M, Kościelniak J, Gondek K, Bojarczuk J, et al. Investigation of the salt tolerance of new Polish bread and durum wheat cultivars. Acta Physiol Plant. 2013;35(8):2513–23. 10.1007/s11738-013-1287-9.Search in Google Scholar
[39] Hoagland DR. The water-culture method for growing plants without soil. Berkeley: College of Agriculture, University of California; 1950.Search in Google Scholar
[40] Harrach BD, Fodor J, Pogány M, Preuss J, Barna B. Antioxidant, ethylene and membrane leakage responses to powdery mildew infection of near-isogenic barley lines with various types of resistance. Eur J Plant Pathol. 2007;121(1):21–33. 10.1007/s10658-007-9236-3.Search in Google Scholar
[41] Hossain MA, Nakano Y, Asada K. Monodehydroascorbate reductase in spinach chloroplasts and its participation in regeneration of ascorbate for scavenging hydrogen peroxide. Plant Cell Physiol. 1984;25:385–95. 10.1093/oxfordjournals.pcp.a076726Search in Google Scholar
[42] Foyer C, Rowell J, Walker D. Measurement of the ascorbate content of spinach leaf protoplasts and chloroplasts during illumination. Planta. 1983;157(3):239–44. 10.1007/BF00405188.Search in Google Scholar PubMed
[43] Law MY, Charles SA, Halliwell B. Glutathione and ascorbic acid in spinach (Spinacia oleracea) chloroplasts. The effect of hydrogen peroxide and of Paraquat. Biochem J. 1983;210(3):899–903. 10.1042/bj2100899.Search in Google Scholar PubMed PubMed Central
[44] Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 1981;22:867–80. 10.1093/oxfordjournals.pcp.a076232.Search in Google Scholar
[45] Klapheck S, Zimmer I, Cosse H. Scavenging of hydrogen peroxide in the endosperm of Ricinus communis by ascorbate peroxidase. Plant Cell Physiol. 1990;31;1005–13. 10.1093/oxfordjournals.pcp.a077996.Search in Google Scholar
[46] Ostrowska A, Gawliński S, Szczubiałka Z. Methods of analysis and estimation of soil and plant properties. Institute of Environmental Protection – National Research Institute. Warsaw, Poland: IOE Press; 1991. p. 334 (in Polish).Search in Google Scholar
[47] Fuentes A, Lloréns M, Sáez J, Aguilar MI, Ortuño JF, Meseguer VF. Phytotoxicity and heavy metals speciation of stabilised sewage sludges. J Hazard Mater. 2004;108(3):161–9. 10.1016/j.jhazmat.2004.02.014.Search in Google Scholar
[48] Mattson MP. Hormesis defined. Ageing Res Rev. 2008;7(1):1–7. 10.1016/j.arr.2007.08.007.Search in Google Scholar
[49] Poschenrieder C, Cabot C, Martos S, Gallego B, Barceló J. Do toxic ions induce hormesis in plants? Plant Sci. 2013;212:15–25. 10.1016/j.plantsci.2013.07.012.Search in Google Scholar
[50] Khan MIR, Iqbal N, Masood A, Mobin M, Anjum NA, Khan NA. Modulation and significance of nitrogen and sulfur metabolism in cadmium challenged plants. Plant Growth Regulat. 2015 Aug;78(1):1–11. 10.1007/s10725-015-0071-9.Search in Google Scholar
[51] Gill SS, Khan NA, Tuteja N. Cadmium at high dose perturbs growth, photosynthesis and nitrogen metabolism while at low dose it up regulates sulfur assimilation and antioxidant machinery in garden cress (Lepidium sativum L.). Plant Sci. 2012;182:112–20. 10.1016/j.plantsci.2011.04.018.Search in Google Scholar
[52] Bestwick CS, Brown IR, Mansfield JW. Localized changes in peroxidase activity accompany hydrogen peroxide generation during the development of a nonhost hypersensitive reaction in lettuce. Plant Physiol. 1998;118(3):1067–78. 10.1104/pp.118.3.1067.Search in Google Scholar
[53] Sarker U, Oba S. Drought stress enhances nutritional and bioactive compounds, phenolic acids and antioxidant capacity of Amaranthus leafy vegetable. BMC Plant Biol. 2018;18(1):258. 10.1007/s12010-018-2784-5.Search in Google Scholar
[54] Płażek A, Żur I. Cold-induced plant resistance to necrotrophic pathogens and antioxidant enzyme activities and cell membrane permeability. Plant Sci. 2003;164(6):1019–28. 10.1016/S0168-9452(03)00089-X.Search in Google Scholar
[55] Scandalios JG. Molecular biology of free radical scavenging systems, vol. 5. New York: Cold Spring Harbor Laboratory Press; 1992.Search in Google Scholar
[56] Lu Y, Wang Q-F, Li J, Xiong J, Zhou L-N, He S-L, et al. Effects of exogenous sulfur on alleviating cadmium stress in tartary buckwheat. Sci Rep. 2019;9(1):1–12. 10.1038/s41598-019-43901-4.Search in Google Scholar PubMed PubMed Central
© 2020 Jakub Pastuszak et al., published by De Gruyter
This work is licensed under the Creative Commons Attribution 4.0 International License.
Articles in the same Issue
- Regular Articles
- Electrochemical antioxidant screening and evaluation based on guanine and chitosan immobilized MoS2 nanosheet modified glassy carbon electrode (guanine/CS/MoS2/GCE)
- Kinetic models of the extraction of vanillic acid from pumpkin seeds
- On the maximum ABC index of bipartite graphs without pendent vertices
- Estimation of the total antioxidant potential in the meat samples using thin-layer chromatography
- Molecular dynamics simulation of sI methane hydrate under compression and tension
- Spatial distribution and potential ecological risk assessment of some trace elements in sediments and grey mangrove (Avicennia marina) along the Arabian Gulf coast, Saudi Arabia
- Amino-functionalized graphene oxide for Cr(VI), Cu(II), Pb(II) and Cd(II) removal from industrial wastewater
- Chemical composition and in vitro activity of Origanum vulgare L., Satureja hortensis L., Thymus serpyllum L. and Thymus vulgaris L. essential oils towards oral isolates of Candida albicans and Candida glabrata
- Effect of excess Fluoride consumption on Urine-Serum Fluorides, Dental state and Thyroid Hormones among children in “Talab Sarai” Punjab Pakistan
- Design, Synthesis and Characterization of Novel Isoxazole Tagged Indole Hybrid Compounds
- Comparison of kinetic and enzymatic properties of intracellular phosphoserine aminotransferases from alkaliphilic and neutralophilic bacteria
- Green Organic Solvent-Free Oxidation of Alkylarenes with tert-Butyl Hydroperoxide Catalyzed by Water-Soluble Copper Complex
- Ducrosia ismaelis Asch. essential oil: chemical composition profile and anticancer, antimicrobial and antioxidant potential assessment
- DFT calculations as an efficient tool for prediction of Raman and infra-red spectra and activities of newly synthesized cathinones
- Influence of Chemical Osmosis on Solute Transport and Fluid Velocity in Clay Soils
- A New fatty acid and some triterpenoids from propolis of Nkambe (North-West Region, Cameroon) and evaluation of the antiradical scavenging activity of their extracts
- Antiplasmodial Activity of Stigmastane Steroids from Dryobalanops oblongifolia Stem Bark
- Rapid identification of direct-acting pancreatic protectants from Cyclocarya paliurus leaves tea by the method of serum pharmacochemistry combined with target cell extraction
- Immobilization of Pseudomonas aeruginosa static biomass on eggshell powder for on-line preconcentration and determination of Cr (VI)
- Assessment of methyl 2-({[(4,6-dimethoxypyrimidin-2-yl)carbamoyl] sulfamoyl}methyl)benzoate through biotic and abiotic degradation modes
- Stability of natural polyphenol fisetin in eye drops Stability of fisetin in eye drops
- Production of a bioflocculant by using activated sludge and its application in Pb(II) removal from aqueous solution
- Molecular Properties of Carbon Crystal Cubic Structures
- Synthesis and characterization of calcium carbonate whisker from yellow phosphorus slag
- Study on the interaction between catechin and cholesterol by the density functional theory
- Analysis of some pharmaceuticals in the presence of their synthetic impurities by applying hybrid micelle liquid chromatography
- Two mixed-ligand coordination polymers based on 2,5-thiophenedicarboxylic acid and flexible N-donor ligands: the protective effect on periodontitis via reducing the release of IL-1β and TNF-α
- Incorporation of silver stearate nanoparticles in methacrylate polymeric monoliths for hemeprotein isolation
- Development of ultrasound-assisted dispersive solid-phase microextraction based on mesoporous carbon coated with silica@iron oxide nanocomposite for preconcentration of Te and Tl in natural water systems
- N,N′-Bis[2-hydroxynaphthylidene]/[2-methoxybenzylidene]amino]oxamides and their divalent manganese complexes: Isolation, spectral characterization, morphology, antibacterial and cytotoxicity against leukemia cells
- Determination of the content of selected trace elements in Polish commercial fruit juices and health risk assessment
- Diorganotin(iv) benzyldithiocarbamate complexes: synthesis, characterization, and thermal and cytotoxicity study
- Keratin 17 is induced in prurigo nodularis lesions
- Anticancer, antioxidant, and acute toxicity studies of a Saudi polyherbal formulation, PHF5
- LaCoO3 perovskite-type catalysts in syngas conversion
- Comparative studies of two vegetal extracts from Stokesia laevis and Geranium pratense: polyphenol profile, cytotoxic effect and antiproliferative activity
- Fragmentation pattern of certain isatin–indole antiproliferative conjugates with application to identify their in vitro metabolic profiles in rat liver microsomes by liquid chromatography tandem mass spectrometry
- Investigation of polyphenol profile, antioxidant activity and hepatoprotective potential of Aconogonon alpinum (All.) Schur roots
- Lead discovery of a guanidinyl tryptophan derivative on amyloid cascade inhibition
- Physicochemical evaluation of the fruit pulp of Opuntia spp growing in the Mediterranean area under hard climate conditions
- Electronic structural properties of amino/hydroxyl functionalized imidazolium-based bromide ionic liquids
- New Schiff bases of 2-(quinolin-8-yloxy)acetohydrazide and their Cu(ii), and Zn(ii) metal complexes: their in vitro antimicrobial potentials and in silico physicochemical and pharmacokinetics properties
- Treatment of adhesions after Achilles tendon injury using focused ultrasound with targeted bFGF plasmid-loaded cationic microbubbles
- Synthesis of orotic acid derivatives and their effects on stem cell proliferation
- Chirality of β2-agonists. An overview of pharmacological activity, stereoselective analysis, and synthesis
- Fe3O4@urea/HITh-SO3H as an efficient and reusable catalyst for the solvent-free synthesis of 7-aryl-8H-benzo[h]indeno[1,2-b]quinoline-8-one and indeno[2′,1′:5,6]pyrido[2,3-d]pyrimidine derivatives
- Adsorption kinetic characteristics of molybdenum in yellow-brown soil in response to pH and phosphate
- Enhancement of thermal properties of bio-based microcapsules intended for textile applications
- Exploring the effect of khat (Catha edulis) chewing on the pharmacokinetics of the antiplatelet drug clopidogrel in rats using the newly developed LC-MS/MS technique
- A green strategy for obtaining anthraquinones from Rheum tanguticum by subcritical water
- Cadmium (Cd) chloride affects the nutrient uptake and Cd-resistant bacterium reduces the adsorption of Cd in muskmelon plants
- Removal of H2S by vermicompost biofilter and analysis on bacterial community
- Structural cytotoxicity relationship of 2-phenoxy(thiomethyl)pyridotriazolopyrimidines: Quantum chemical calculations and statistical analysis
- A self-breaking supramolecular plugging system as lost circulation material in oilfield
- Synthesis, characterization, and pharmacological evaluation of thiourea derivatives
- Application of drug–metal ion interaction principle in conductometric determination of imatinib, sorafenib, gefitinib and bosutinib
- Synthesis and characterization of a novel chitosan-grafted-polyorthoethylaniline biocomposite and utilization for dye removal from water
- Optimisation of urine sample preparation for shotgun proteomics
- DFT investigations on arylsulphonyl pyrazole derivatives as potential ligands of selected kinases
- Treatment of Parkinson’s disease using focused ultrasound with GDNF retrovirus-loaded microbubbles to open the blood–brain barrier
- New derivatives of a natural nordentatin
- Fluorescence biomarkers of malignant melanoma detectable in urine
- Study of the remediation effects of passivation materials on Pb-contaminated soil
- Saliva proteomic analysis reveals possible biomarkers of renal cell carcinoma
- Withania frutescens: Chemical characterization, analgesic, anti-inflammatory, and healing activities
- Design, synthesis and pharmacological profile of (−)-verbenone hydrazones
- Synthesis of magnesium carbonate hydrate from natural talc
- Stability-indicating HPLC-DAD assay for simultaneous quantification of hydrocortisone 21 acetate, dexamethasone, and fluocinolone acetonide in cosmetics
- A novel lactose biosensor based on electrochemically synthesized 3,4-ethylenedioxythiophene/thiophene (EDOT/Th) copolymer
- Citrullus colocynthis (L.) Schrad: Chemical characterization, scavenging and cytotoxic activities
- Development and validation of a high performance liquid chromatography/diode array detection method for estrogen determination: Application to residual analysis in meat products
- PCSK9 concentrations in different stages of subclinical atherosclerosis and their relationship with inflammation
- Development of trace analysis for alkyl methanesulfonates in the delgocitinib drug substance using GC-FID and liquid–liquid extraction with ionic liquid
- Electrochemical evaluation of the antioxidant capacity of natural compounds on glassy carbon electrode modified with guanine-, polythionine-, and nitrogen-doped graphene
- A Dy(iii)–organic framework as a fluorescent probe for highly selective detection of picric acid and treatment activity on human lung cancer cells
- A Zn(ii)–organic cage with semirigid ligand for solvent-free cyanosilylation and inhibitory effect on ovarian cancer cell migration and invasion ability via regulating mi-RNA16 expression
- Polyphenol content and antioxidant activities of Prunus padus L. and Prunus serotina L. leaves: Electrochemical and spectrophotometric approach and their antimicrobial properties
- The combined use of GC, PDSC and FT-IR techniques to characterize fat extracted from commercial complete dry pet food for adult cats
- MALDI-TOF MS profiling in the discovery and identification of salivary proteomic patterns of temporomandibular joint disorders
- Concentrations of dioxins, furans and dioxin-like PCBs in natural animal feed additives
- Structure and some physicochemical and functional properties of water treated under ammonia with low-temperature low-pressure glow plasma of low frequency
- Mesoscale nanoparticles encapsulated with emodin for targeting antifibrosis in animal models
- Amine-functionalized magnetic activated carbon as an adsorbent for preconcentration and determination of acidic drugs in environmental water samples using HPLC-DAD
- Antioxidant activity as a response to cadmium pollution in three durum wheat genotypes differing in salt-tolerance
- A promising naphthoquinone [8-hydroxy-2-(2-thienylcarbonyl)naphtho[2,3-b]thiophene-4,9-dione] exerts anti-colorectal cancer activity through ferroptosis and inhibition of MAPK signaling pathway based on RNA sequencing
- Synthesis and efficacy of herbicidal ionic liquids with chlorsulfuron as the anion
- Effect of isovalent substitution on the crystal structure and properties of two-slab indates BaLa2−xSmxIn2O7
- Synthesis, spectral and thermo-kinetics explorations of Schiff-base derived metal complexes
- An improved reduction method for phase stability testing in the single-phase region
- Comparative analysis of chemical composition of some commercially important fishes with an emphasis on various Malaysian diets
- Development of a solventless stir bar sorptive extraction/thermal desorption large volume injection capillary gas chromatographic-mass spectrometric method for ultra-trace determination of pyrethroids pesticides in river and tap water samples
- A turbidity sensor development based on NL-PI observers: Experimental application to the control of a Sinaloa’s River Spirulina maxima cultivation
- Deep desulfurization of sintering flue gas in iron and steel works based on low-temperature oxidation
- Investigations of metallic elements and phenolics in Chinese medicinal plants
- Influence of site-classification approach on geochemical background values
- Effects of ageing on the surface characteristics and Cu(ii) adsorption behaviour of rice husk biochar in soil
- Adsorption and sugarcane-bagasse-derived activated carbon-based mitigation of 1-[2-(2-chloroethoxy)phenyl]sulfonyl-3-(4-methoxy-6-methyl-1,3,5-triazin-2-yl) urea-contaminated soils
- Antimicrobial and antifungal activities of bifunctional cooper(ii) complexes with non-steroidal anti-inflammatory drugs, flufenamic, mefenamic and tolfenamic acids and 1,10-phenanthroline
- Application of selenium and silicon to alleviate short-term drought stress in French marigold (Tagetes patula L.) as a model plant species
- Screening and analysis of xanthine oxidase inhibitors in jute leaves and their protective effects against hydrogen peroxide-induced oxidative stress in cells
- Synthesis and physicochemical studies of a series of mixed-ligand transition metal complexes and their molecular docking investigations against Coronavirus main protease
- A study of in vitro metabolism and cytotoxicity of mephedrone and methoxetamine in human and pig liver models using GC/MS and LC/MS analyses
- A new phenyl alkyl ester and a new combretin triterpene derivative from Combretum fragrans F. Hoffm (Combretaceae) and antiproliferative activity
- Erratum
- Erratum to: A one-step incubation ELISA kit for rapid determination of dibutyl phthalate in water, beverage and liquor
- Review Articles
- Sinoporphyrin sodium, a novel sensitizer for photodynamic and sonodynamic therapy
- Natural products isolated from Casimiroa
- Plant description, phytochemical constituents and bioactivities of Syzygium genus: A review
- Evaluation of elastomeric heat shielding materials as insulators for solid propellant rocket motors: A short review
- Special Issue on Applied Biochemistry and Biotechnology 2019
- An overview of Monascus fermentation processes for monacolin K production
- Study on online soft sensor method of total sugar content in chlorotetracycline fermentation tank
- Studies on the Anti-Gouty Arthritis and Anti-hyperuricemia Properties of Astilbin in Animal Models
- Effects of organic fertilizer on water use, photosynthetic characteristics, and fruit quality of pear jujube in northern Shaanxi
- Characteristics of the root exudate release system of typical plants in plateau lakeside wetland under phosphorus stress conditions
- Characterization of soil water by the means of hydrogen and oxygen isotope ratio at dry-wet season under different soil layers in the dry-hot valley of Jinsha River
- Composition and diurnal variation of floral scent emission in Rosa rugosa Thunb. and Tulipa gesneriana L.
- Preparation of a novel ginkgolide B niosomal composite drug
- The degradation, biodegradability and toxicity evaluation of sulfamethazine antibiotics by gamma radiation
- Special issue on Monitoring, Risk Assessment and Sustainable Management for the Exposure to Environmental Toxins
- Insight into the cadmium and zinc binding potential of humic acids derived from composts by EEM spectra combined with PARAFAC analysis
- Source apportionment of soil contamination based on multivariate receptor and robust geostatistics in a typical rural–urban area, Wuhan city, middle China
- Special Issue on 13th JCC 2018
- The Role of H2C2O4 and Na2CO3 as Precipitating Agents on The Physichochemical Properties and Photocatalytic Activity of Bismuth Oxide
- Preparation of magnetite-silica–cetyltrimethylammonium for phenol removal based on adsolubilization
- Topical Issue on Agriculture
- Size-dependent growth kinetics of struvite crystals in wastewater with calcium ions
- The effect of silica-calcite sedimentary rock contained in the chicken broiler diet on the overall quality of chicken muscles
- Physicochemical properties of selected herbicidal products containing nicosulfuron as an active ingredient
- Lycopene in tomatoes and tomato products
- Fluorescence in the assessment of the share of a key component in the mixing of feed
- Sulfur application alleviates chromium stress in maize and wheat
- Effectiveness of removal of sulphur compounds from the air after 3 years of biofiltration with a mixture of compost soil, peat, coconut fibre and oak bark
- Special Issue on the 4th Green Chemistry 2018
- Study and fire test of banana fibre reinforced composites with flame retardance properties
- Special Issue on the International conference CosCI 2018
- Disintegration, In vitro Dissolution, and Drug Release Kinetics Profiles of k-Carrageenan-based Nutraceutical Hard-shell Capsules Containing Salicylamide
- Synthesis of amorphous aluminosilicate from impure Indonesian kaolin
- Special Issue on the International Conf on Science, Applied Science, Teaching and Education 2019
- Functionalization of Congo red dye as a light harvester on solar cell
- The effect of nitrite food preservatives added to se’i meat on the expression of wild-type p53 protein
- Biocompatibility and osteoconductivity of scaffold porous composite collagen–hydroxyapatite based coral for bone regeneration
- Special Issue on the Joint Science Congress of Materials and Polymers (ISCMP 2019)
- Effect of natural boron mineral use on the essential oil ratio and components of Musk Sage (Salvia sclarea L.)
- A theoretical and experimental study of the adsorptive removal of hexavalent chromium ions using graphene oxide as an adsorbent
- A study on the bacterial adhesion of Streptococcus mutans in various dental ceramics: In vitro study
- Corrosion study of copper in aqueous sulfuric acid solution in the presence of (2E,5E)-2,5-dibenzylidenecyclopentanone and (2E,5E)-bis[(4-dimethylamino)benzylidene]cyclopentanone: Experimental and theoretical study
- Special Issue on Chemistry Today for Tomorrow 2019
- Diabetes mellitus type 2: Exploratory data analysis based on clinical reading
- Multivariate analysis for the classification of copper–lead and copper–zinc glasses
- Special Issue on Advances in Chemistry and Polymers
- The spatial and temporal distribution of cationic and anionic radicals in early embryo implantation
- Special Issue on 3rd IC3PE 2020
- Magnetic iron oxide/clay nanocomposites for adsorption and catalytic oxidation in water treatment applications
- Special Issue on IC3PE 2018/2019 Conference
- Exergy analysis of conventional and hydrothermal liquefaction–esterification processes of microalgae for biodiesel production
- Advancing biodiesel production from microalgae Spirulina sp. by a simultaneous extraction–transesterification process using palm oil as a co-solvent of methanol
- Topical Issue on Applications of Mathematics in Chemistry
- Omega and the related counting polynomials of some chemical structures
- M-polynomial and topological indices of zigzag edge coronoid fused by starphene
Articles in the same Issue
- Regular Articles
- Electrochemical antioxidant screening and evaluation based on guanine and chitosan immobilized MoS2 nanosheet modified glassy carbon electrode (guanine/CS/MoS2/GCE)
- Kinetic models of the extraction of vanillic acid from pumpkin seeds
- On the maximum ABC index of bipartite graphs without pendent vertices
- Estimation of the total antioxidant potential in the meat samples using thin-layer chromatography
- Molecular dynamics simulation of sI methane hydrate under compression and tension
- Spatial distribution and potential ecological risk assessment of some trace elements in sediments and grey mangrove (Avicennia marina) along the Arabian Gulf coast, Saudi Arabia
- Amino-functionalized graphene oxide for Cr(VI), Cu(II), Pb(II) and Cd(II) removal from industrial wastewater
- Chemical composition and in vitro activity of Origanum vulgare L., Satureja hortensis L., Thymus serpyllum L. and Thymus vulgaris L. essential oils towards oral isolates of Candida albicans and Candida glabrata
- Effect of excess Fluoride consumption on Urine-Serum Fluorides, Dental state and Thyroid Hormones among children in “Talab Sarai” Punjab Pakistan
- Design, Synthesis and Characterization of Novel Isoxazole Tagged Indole Hybrid Compounds
- Comparison of kinetic and enzymatic properties of intracellular phosphoserine aminotransferases from alkaliphilic and neutralophilic bacteria
- Green Organic Solvent-Free Oxidation of Alkylarenes with tert-Butyl Hydroperoxide Catalyzed by Water-Soluble Copper Complex
- Ducrosia ismaelis Asch. essential oil: chemical composition profile and anticancer, antimicrobial and antioxidant potential assessment
- DFT calculations as an efficient tool for prediction of Raman and infra-red spectra and activities of newly synthesized cathinones
- Influence of Chemical Osmosis on Solute Transport and Fluid Velocity in Clay Soils
- A New fatty acid and some triterpenoids from propolis of Nkambe (North-West Region, Cameroon) and evaluation of the antiradical scavenging activity of their extracts
- Antiplasmodial Activity of Stigmastane Steroids from Dryobalanops oblongifolia Stem Bark
- Rapid identification of direct-acting pancreatic protectants from Cyclocarya paliurus leaves tea by the method of serum pharmacochemistry combined with target cell extraction
- Immobilization of Pseudomonas aeruginosa static biomass on eggshell powder for on-line preconcentration and determination of Cr (VI)
- Assessment of methyl 2-({[(4,6-dimethoxypyrimidin-2-yl)carbamoyl] sulfamoyl}methyl)benzoate through biotic and abiotic degradation modes
- Stability of natural polyphenol fisetin in eye drops Stability of fisetin in eye drops
- Production of a bioflocculant by using activated sludge and its application in Pb(II) removal from aqueous solution
- Molecular Properties of Carbon Crystal Cubic Structures
- Synthesis and characterization of calcium carbonate whisker from yellow phosphorus slag
- Study on the interaction between catechin and cholesterol by the density functional theory
- Analysis of some pharmaceuticals in the presence of their synthetic impurities by applying hybrid micelle liquid chromatography
- Two mixed-ligand coordination polymers based on 2,5-thiophenedicarboxylic acid and flexible N-donor ligands: the protective effect on periodontitis via reducing the release of IL-1β and TNF-α
- Incorporation of silver stearate nanoparticles in methacrylate polymeric monoliths for hemeprotein isolation
- Development of ultrasound-assisted dispersive solid-phase microextraction based on mesoporous carbon coated with silica@iron oxide nanocomposite for preconcentration of Te and Tl in natural water systems
- N,N′-Bis[2-hydroxynaphthylidene]/[2-methoxybenzylidene]amino]oxamides and their divalent manganese complexes: Isolation, spectral characterization, morphology, antibacterial and cytotoxicity against leukemia cells
- Determination of the content of selected trace elements in Polish commercial fruit juices and health risk assessment
- Diorganotin(iv) benzyldithiocarbamate complexes: synthesis, characterization, and thermal and cytotoxicity study
- Keratin 17 is induced in prurigo nodularis lesions
- Anticancer, antioxidant, and acute toxicity studies of a Saudi polyherbal formulation, PHF5
- LaCoO3 perovskite-type catalysts in syngas conversion
- Comparative studies of two vegetal extracts from Stokesia laevis and Geranium pratense: polyphenol profile, cytotoxic effect and antiproliferative activity
- Fragmentation pattern of certain isatin–indole antiproliferative conjugates with application to identify their in vitro metabolic profiles in rat liver microsomes by liquid chromatography tandem mass spectrometry
- Investigation of polyphenol profile, antioxidant activity and hepatoprotective potential of Aconogonon alpinum (All.) Schur roots
- Lead discovery of a guanidinyl tryptophan derivative on amyloid cascade inhibition
- Physicochemical evaluation of the fruit pulp of Opuntia spp growing in the Mediterranean area under hard climate conditions
- Electronic structural properties of amino/hydroxyl functionalized imidazolium-based bromide ionic liquids
- New Schiff bases of 2-(quinolin-8-yloxy)acetohydrazide and their Cu(ii), and Zn(ii) metal complexes: their in vitro antimicrobial potentials and in silico physicochemical and pharmacokinetics properties
- Treatment of adhesions after Achilles tendon injury using focused ultrasound with targeted bFGF plasmid-loaded cationic microbubbles
- Synthesis of orotic acid derivatives and their effects on stem cell proliferation
- Chirality of β2-agonists. An overview of pharmacological activity, stereoselective analysis, and synthesis
- Fe3O4@urea/HITh-SO3H as an efficient and reusable catalyst for the solvent-free synthesis of 7-aryl-8H-benzo[h]indeno[1,2-b]quinoline-8-one and indeno[2′,1′:5,6]pyrido[2,3-d]pyrimidine derivatives
- Adsorption kinetic characteristics of molybdenum in yellow-brown soil in response to pH and phosphate
- Enhancement of thermal properties of bio-based microcapsules intended for textile applications
- Exploring the effect of khat (Catha edulis) chewing on the pharmacokinetics of the antiplatelet drug clopidogrel in rats using the newly developed LC-MS/MS technique
- A green strategy for obtaining anthraquinones from Rheum tanguticum by subcritical water
- Cadmium (Cd) chloride affects the nutrient uptake and Cd-resistant bacterium reduces the adsorption of Cd in muskmelon plants
- Removal of H2S by vermicompost biofilter and analysis on bacterial community
- Structural cytotoxicity relationship of 2-phenoxy(thiomethyl)pyridotriazolopyrimidines: Quantum chemical calculations and statistical analysis
- A self-breaking supramolecular plugging system as lost circulation material in oilfield
- Synthesis, characterization, and pharmacological evaluation of thiourea derivatives
- Application of drug–metal ion interaction principle in conductometric determination of imatinib, sorafenib, gefitinib and bosutinib
- Synthesis and characterization of a novel chitosan-grafted-polyorthoethylaniline biocomposite and utilization for dye removal from water
- Optimisation of urine sample preparation for shotgun proteomics
- DFT investigations on arylsulphonyl pyrazole derivatives as potential ligands of selected kinases
- Treatment of Parkinson’s disease using focused ultrasound with GDNF retrovirus-loaded microbubbles to open the blood–brain barrier
- New derivatives of a natural nordentatin
- Fluorescence biomarkers of malignant melanoma detectable in urine
- Study of the remediation effects of passivation materials on Pb-contaminated soil
- Saliva proteomic analysis reveals possible biomarkers of renal cell carcinoma
- Withania frutescens: Chemical characterization, analgesic, anti-inflammatory, and healing activities
- Design, synthesis and pharmacological profile of (−)-verbenone hydrazones
- Synthesis of magnesium carbonate hydrate from natural talc
- Stability-indicating HPLC-DAD assay for simultaneous quantification of hydrocortisone 21 acetate, dexamethasone, and fluocinolone acetonide in cosmetics
- A novel lactose biosensor based on electrochemically synthesized 3,4-ethylenedioxythiophene/thiophene (EDOT/Th) copolymer
- Citrullus colocynthis (L.) Schrad: Chemical characterization, scavenging and cytotoxic activities
- Development and validation of a high performance liquid chromatography/diode array detection method for estrogen determination: Application to residual analysis in meat products
- PCSK9 concentrations in different stages of subclinical atherosclerosis and their relationship with inflammation
- Development of trace analysis for alkyl methanesulfonates in the delgocitinib drug substance using GC-FID and liquid–liquid extraction with ionic liquid
- Electrochemical evaluation of the antioxidant capacity of natural compounds on glassy carbon electrode modified with guanine-, polythionine-, and nitrogen-doped graphene
- A Dy(iii)–organic framework as a fluorescent probe for highly selective detection of picric acid and treatment activity on human lung cancer cells
- A Zn(ii)–organic cage with semirigid ligand for solvent-free cyanosilylation and inhibitory effect on ovarian cancer cell migration and invasion ability via regulating mi-RNA16 expression
- Polyphenol content and antioxidant activities of Prunus padus L. and Prunus serotina L. leaves: Electrochemical and spectrophotometric approach and their antimicrobial properties
- The combined use of GC, PDSC and FT-IR techniques to characterize fat extracted from commercial complete dry pet food for adult cats
- MALDI-TOF MS profiling in the discovery and identification of salivary proteomic patterns of temporomandibular joint disorders
- Concentrations of dioxins, furans and dioxin-like PCBs in natural animal feed additives
- Structure and some physicochemical and functional properties of water treated under ammonia with low-temperature low-pressure glow plasma of low frequency
- Mesoscale nanoparticles encapsulated with emodin for targeting antifibrosis in animal models
- Amine-functionalized magnetic activated carbon as an adsorbent for preconcentration and determination of acidic drugs in environmental water samples using HPLC-DAD
- Antioxidant activity as a response to cadmium pollution in three durum wheat genotypes differing in salt-tolerance
- A promising naphthoquinone [8-hydroxy-2-(2-thienylcarbonyl)naphtho[2,3-b]thiophene-4,9-dione] exerts anti-colorectal cancer activity through ferroptosis and inhibition of MAPK signaling pathway based on RNA sequencing
- Synthesis and efficacy of herbicidal ionic liquids with chlorsulfuron as the anion
- Effect of isovalent substitution on the crystal structure and properties of two-slab indates BaLa2−xSmxIn2O7
- Synthesis, spectral and thermo-kinetics explorations of Schiff-base derived metal complexes
- An improved reduction method for phase stability testing in the single-phase region
- Comparative analysis of chemical composition of some commercially important fishes with an emphasis on various Malaysian diets
- Development of a solventless stir bar sorptive extraction/thermal desorption large volume injection capillary gas chromatographic-mass spectrometric method for ultra-trace determination of pyrethroids pesticides in river and tap water samples
- A turbidity sensor development based on NL-PI observers: Experimental application to the control of a Sinaloa’s River Spirulina maxima cultivation
- Deep desulfurization of sintering flue gas in iron and steel works based on low-temperature oxidation
- Investigations of metallic elements and phenolics in Chinese medicinal plants
- Influence of site-classification approach on geochemical background values
- Effects of ageing on the surface characteristics and Cu(ii) adsorption behaviour of rice husk biochar in soil
- Adsorption and sugarcane-bagasse-derived activated carbon-based mitigation of 1-[2-(2-chloroethoxy)phenyl]sulfonyl-3-(4-methoxy-6-methyl-1,3,5-triazin-2-yl) urea-contaminated soils
- Antimicrobial and antifungal activities of bifunctional cooper(ii) complexes with non-steroidal anti-inflammatory drugs, flufenamic, mefenamic and tolfenamic acids and 1,10-phenanthroline
- Application of selenium and silicon to alleviate short-term drought stress in French marigold (Tagetes patula L.) as a model plant species
- Screening and analysis of xanthine oxidase inhibitors in jute leaves and their protective effects against hydrogen peroxide-induced oxidative stress in cells
- Synthesis and physicochemical studies of a series of mixed-ligand transition metal complexes and their molecular docking investigations against Coronavirus main protease
- A study of in vitro metabolism and cytotoxicity of mephedrone and methoxetamine in human and pig liver models using GC/MS and LC/MS analyses
- A new phenyl alkyl ester and a new combretin triterpene derivative from Combretum fragrans F. Hoffm (Combretaceae) and antiproliferative activity
- Erratum
- Erratum to: A one-step incubation ELISA kit for rapid determination of dibutyl phthalate in water, beverage and liquor
- Review Articles
- Sinoporphyrin sodium, a novel sensitizer for photodynamic and sonodynamic therapy
- Natural products isolated from Casimiroa
- Plant description, phytochemical constituents and bioactivities of Syzygium genus: A review
- Evaluation of elastomeric heat shielding materials as insulators for solid propellant rocket motors: A short review
- Special Issue on Applied Biochemistry and Biotechnology 2019
- An overview of Monascus fermentation processes for monacolin K production
- Study on online soft sensor method of total sugar content in chlorotetracycline fermentation tank
- Studies on the Anti-Gouty Arthritis and Anti-hyperuricemia Properties of Astilbin in Animal Models
- Effects of organic fertilizer on water use, photosynthetic characteristics, and fruit quality of pear jujube in northern Shaanxi
- Characteristics of the root exudate release system of typical plants in plateau lakeside wetland under phosphorus stress conditions
- Characterization of soil water by the means of hydrogen and oxygen isotope ratio at dry-wet season under different soil layers in the dry-hot valley of Jinsha River
- Composition and diurnal variation of floral scent emission in Rosa rugosa Thunb. and Tulipa gesneriana L.
- Preparation of a novel ginkgolide B niosomal composite drug
- The degradation, biodegradability and toxicity evaluation of sulfamethazine antibiotics by gamma radiation
- Special issue on Monitoring, Risk Assessment and Sustainable Management for the Exposure to Environmental Toxins
- Insight into the cadmium and zinc binding potential of humic acids derived from composts by EEM spectra combined with PARAFAC analysis
- Source apportionment of soil contamination based on multivariate receptor and robust geostatistics in a typical rural–urban area, Wuhan city, middle China
- Special Issue on 13th JCC 2018
- The Role of H2C2O4 and Na2CO3 as Precipitating Agents on The Physichochemical Properties and Photocatalytic Activity of Bismuth Oxide
- Preparation of magnetite-silica–cetyltrimethylammonium for phenol removal based on adsolubilization
- Topical Issue on Agriculture
- Size-dependent growth kinetics of struvite crystals in wastewater with calcium ions
- The effect of silica-calcite sedimentary rock contained in the chicken broiler diet on the overall quality of chicken muscles
- Physicochemical properties of selected herbicidal products containing nicosulfuron as an active ingredient
- Lycopene in tomatoes and tomato products
- Fluorescence in the assessment of the share of a key component in the mixing of feed
- Sulfur application alleviates chromium stress in maize and wheat
- Effectiveness of removal of sulphur compounds from the air after 3 years of biofiltration with a mixture of compost soil, peat, coconut fibre and oak bark
- Special Issue on the 4th Green Chemistry 2018
- Study and fire test of banana fibre reinforced composites with flame retardance properties
- Special Issue on the International conference CosCI 2018
- Disintegration, In vitro Dissolution, and Drug Release Kinetics Profiles of k-Carrageenan-based Nutraceutical Hard-shell Capsules Containing Salicylamide
- Synthesis of amorphous aluminosilicate from impure Indonesian kaolin
- Special Issue on the International Conf on Science, Applied Science, Teaching and Education 2019
- Functionalization of Congo red dye as a light harvester on solar cell
- The effect of nitrite food preservatives added to se’i meat on the expression of wild-type p53 protein
- Biocompatibility and osteoconductivity of scaffold porous composite collagen–hydroxyapatite based coral for bone regeneration
- Special Issue on the Joint Science Congress of Materials and Polymers (ISCMP 2019)
- Effect of natural boron mineral use on the essential oil ratio and components of Musk Sage (Salvia sclarea L.)
- A theoretical and experimental study of the adsorptive removal of hexavalent chromium ions using graphene oxide as an adsorbent
- A study on the bacterial adhesion of Streptococcus mutans in various dental ceramics: In vitro study
- Corrosion study of copper in aqueous sulfuric acid solution in the presence of (2E,5E)-2,5-dibenzylidenecyclopentanone and (2E,5E)-bis[(4-dimethylamino)benzylidene]cyclopentanone: Experimental and theoretical study
- Special Issue on Chemistry Today for Tomorrow 2019
- Diabetes mellitus type 2: Exploratory data analysis based on clinical reading
- Multivariate analysis for the classification of copper–lead and copper–zinc glasses
- Special Issue on Advances in Chemistry and Polymers
- The spatial and temporal distribution of cationic and anionic radicals in early embryo implantation
- Special Issue on 3rd IC3PE 2020
- Magnetic iron oxide/clay nanocomposites for adsorption and catalytic oxidation in water treatment applications
- Special Issue on IC3PE 2018/2019 Conference
- Exergy analysis of conventional and hydrothermal liquefaction–esterification processes of microalgae for biodiesel production
- Advancing biodiesel production from microalgae Spirulina sp. by a simultaneous extraction–transesterification process using palm oil as a co-solvent of methanol
- Topical Issue on Applications of Mathematics in Chemistry
- Omega and the related counting polynomials of some chemical structures
- M-polynomial and topological indices of zigzag edge coronoid fused by starphene