Startseite The crystal structure of 1,12-diazaperylene, C18H10N2
Artikel Open Access

The crystal structure of 1,12-diazaperylene, C18H10N2

  • Matthias Kirste , Thomas Brietzke , Hans-Jürgen Holdt und Uwe Schilde ORCID logo EMAIL logo
Veröffentlicht/Copyright: 23. August 2019

Abstract

C18H10N2, monoclinic, P21/c (no. 14), a = 7.9297(9) Å, b = 11.4021(14) Å, c = 13.3572(15) Å, β = 105.363(8)°, V = 1164.5(2) Å3, Z = 4, Rgt(F) = 0.0325, wRref(F2) = 0.0774, T = 210(2) K.

CCDC no.: 1944261

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal:Yellow flat needle
Size:0.30 × 0.08 × 0.03 mm
Wavelength:Mo Kα radiation (0.71073 Å)
μ:0.09 mm−1
Diffractometer, scan mode:STOE StadiVari, ω scans
θmax, completeness:25.0°, >99%
N(hkl)measured, N(hkl)unique, Rint:20040, 2051, 0.055
Criterion for Iobs, N(hkl)gt:Iobs > 2 σ(Iobs), 1229
N(param)refined:192
Programs:SHELX [1], WinGX/ORTEP [2], PLATON [3]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyzUiso*/Ueq
C10.9113(2)1.03165(14)0.25918(12)0.0448(4)
H11.02661.05050.29570.045(4)*
C20.7818(2)1.10273(14)0.27236(11)0.0422(4)
H20.80811.16920.31530.053(5)*
C30.4638(2)1.14306(14)0.23109(11)0.0421(4)
H30.48271.21160.27170.054(5)*
C40.2987(2)1.10912(14)0.18233(12)0.0451(4)
H40.20371.15390.19060.051(5)*
C50.2670(2)1.00865(14)0.11996(11)0.0396(4)
H50.15090.98650.08830.050(5)*
C60.2102(2)0.80169(14)−0.02114(12)0.0428(4)
H60.11080.8418−0.01350.048(5)*
C70.1888(2)0.70620(15)−0.08899(13)0.0520(5)
H70.07570.6849−0.12750.054(5)*
C80.3279(2)0.64386(15)−0.10020(12)0.0507(5)
H80.31080.5797−0.14600.057(5)*
C90.6489(2)0.61343(14)−0.04973(13)0.0495(4)
H90.63920.5471−0.09270.060(5)*
C100.8073(2)0.65045(15)0.00631(12)0.0499(5)
H100.90550.60740.00070.054(5)*
C110.69583(18)0.80484(12)0.07775(10)0.0313(3)
C120.72404(17)0.90830(12)0.14686(10)0.0302(3)
C130.57669(17)0.97427(12)0.15639(10)0.0284(3)
C140.40181(17)0.94130(13)0.10382(10)0.0296(3)
C150.37367(18)0.83850(12)0.03483(10)0.0310(3)
C160.52216(18)0.77376(12)0.02340(10)0.0308(3)
C170.4982(2)0.67485(13)−0.04340(11)0.0390(4)
C180.60749(19)1.07544(13)0.22087(10)0.0338(4)
N10.88720(15)0.93566(12)0.19737(9)0.0406(3)
N20.83589(16)0.74497(11)0.07003(10)0.0419(3)

Source of materials

The title compound was synthesized by a reductive cyclization reaction of 1,1′-bisisoqulinoline [4], [5] in dimethoxyethane using potassium as reducing agent [6]. After synthesis, the residue was chromatographed on aluminium oxide with THF and concentrated under reduced pressure. For a further purification the product was dissolved in dichloromethane. This layer was washed by shaking with concentrated sodium hydroxide solution and additionally with sodium chloride brine. The clear yellow organic layer was dried with MgSO4, concentrated under reduced pressure and recrystallized from DMF. Yellow crystals (Mp 258–260 °C) suitable for single crystal X-ray diffraction were obtained by slow evaporation of DMF in an airstream within 3 days.

Experimental details

The hydrogen atoms were calculated in their expected positions and refined as riding atoms with the exception of the temperature factors, which were free refined.

Comment

1,12-Diazaperylene (dap) is an established bidentate ligand. The complexes are characterized by π-π stacking interactions, which often generate supramolecular assemblies, like in iridium(III) complexes with dap and 2,11-dialkylated-dap [7]. Metalla-supramolecular assemblies with honeycomb structures supported by π–π stacking of octahedral Ni(II) and Fe(II) complexes with dap are formed, containing nanochannels [8]. Mononuclear ruthenium(II) complexes show optoelectronic properties and can bind to DNA through intercalation [9]. A further mononuclear Ru(II) complex is formed with dap and the tetradentate ligand N,N′-dimethyl-2,11-diaza-[3.3](2,6)-pyridinophane to complete the octahedral coordination sphere [10]. In contrast, dinuclear Ru(II) complexes are being observed with the bridging ligand 1,6,7,12-tetraazaperylene. Mononuclear ruthenium(II) complexes with several polypyridine-type ligands – including dap – were examined to act as catalysts for water oxidation [11]. Tetrahedral copper(I) complexes with 2,11-dialkylated dap exhibit low-energy MLCT transitions [12]. A dirhodium dap complex with bridging acetato groups was found to have the dual capability of intercalative and coordinative binding to DNA [13]. Formamidinat-bridged dirhodium complexes exhibit broad, strong absorption throughout the UV-visible range [14] well suited for photophysical applications. More recently, absorption and emission spectra of N-derivatives of perylene – including dap – were simulated using a time-dependent approach based on correlation functions determinated by density functional theory. The N-substitution can be used for fine-tuning the optical properties [15]. The complex formation of dap with transition metal ions (Fe, Co, Ni, Cu, Zn, Ru, Os, Re, Pd, Pt, Ag, Cd) in the gas phase has been studied by electrospray ionization mass spectrometry [16], [17]. Heteroleptic polymetallic Ag(I) and Cu(I) complexes were obtained and a multidentate ligand containing a large N,P,N,P,N core yielding interesting structures with π–π stacked columns or discrete sixfold stacks [18].

The title compound is closely related to 1,1′-bisisoquinoline. Both compounds only differ by one C—C bond, which is present in dap additionally and responsible to held the second quinoline unit in a fixed position. As a result a “large-surfaced” ligand is formed. The ring system is nearly full planar with a maximal deviation from the best plane of 0.0612(13) Å (C5). The C—C bond lengths ranges from 1.349(2) Å to 1.478(2) Å. The longest bonds occur between that carbon atoms, which connect both quinoline rings. In comparison with 1,1′-bisisoquinoline (biq) the bond between the carbon atoms, adjacent to the nitrogen atoms is longer (dap: 1.478(2) Å; biq: 1.496(2) Å), resulting from the full inclusion of all C atoms into the aromatic ring system. The distance between both donor N atoms is 2.742(2) Å. The crystal packing is characterized by a large number of π–π interactions. Furthermore, C—H⋯π interactions are observed [C9—H9⋯C1—C5/C12—C14/C18/N1 ring and C3—H3⋯Cg(multiple)].

Acknowledgements

We acknowledge the support of Deutsche Forschungsgemeinschaft (German Research Foundation) and Open Access Publication Fund of Potsdam University.

References

1. Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112–122.10.1107/S0108767307043930Suche in Google Scholar PubMed

2. Farrugia, L. J.: WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr. 45 (2012) 849–854.10.1107/S0021889812029111Suche in Google Scholar

3. Spek, A. L.: PLATON – a multipurpose crystallographic tool. Acta Crystallogr. D65 (2011) 148–155.10.1107/S090744490804362XSuche in Google Scholar PubMed PubMed Central

4. Case, F. H.: The preparation of 1,1′- and 3,3′-bisisoquinoline. J. Org. Chem. 17 (1952) 471–472.10.1021/jo01137a021Suche in Google Scholar

5. Grunwald, N.; Kelling, A.; Holdt, H.-J.; Schilde, U.: The crystal structure of 1,1′-bisisoquinoline, C18H12N2. Z. Kristallogr. NCS 232 (2017) 839–841.10.1515/ncrs-2017-0088Suche in Google Scholar

6. Schmelz, O.; Mews, A.; Basché, T.; Herrmann, A.; Müllen, K.: Supramolecular complexes from CdSe nanocrystals and organic fluorophors. Langmuir 17 (2001) 2861–2865.10.1021/la0016367Suche in Google Scholar

7. Kammer, S.; Starke, I.; Pietrucha, A.; Kelling, A.; Mickler, W.; Schilde, U.; Dosche, C.; Kleinpeter, E.; Holdt, H.-J.: 1,12-Diazaperylene and 2,11-dialkylated-1,12-diazaperylene iridium(III) complexes [Ir(C^N)2(N^N)]PF6: new supramolecular assemblies. Dalton Trans. 41 (2012) 10219–10227.10.1039/c2dt30412kSuche in Google Scholar PubMed

8. Kammer, S.; Müller, H.; Grunwald, N.; Bellin, A.; Kelling, A.; Schilde, U.; Mickler, W.; Dosche, C.; Holdt, H.-J.: Supramolecular assemblies with honeycomb structures by π-π stacking of octahedral metal complexes of 1,12-diazaperylene. Eur. J. Inorg. Chem. 2006 (2006) 1547–1551.10.1002/ejic.200600092Suche in Google Scholar

9. Chouai, A.; Wicke, S. E.; Turro, C.; Bacsa, J.; Dunbar, K. R.; Wang, D.; Thummel, R. P.: Ruthenium(II) complexes of 1,12-diazaperylene and their interactions with DNA. Inorg. Chem. 44 (2005) 5996–6003.10.1021/ic0485965Suche in Google Scholar PubMed

10. Brietzke, T.; Mickler, W.; Kelling, A.; Schilde, U.; Krüger, H.-J.; Holdt, H.-J.: Mono- and dinuclear ruthenium(II)-1,6,7,12-tetraazaperylene complexes of N,N′-dimethyl-2,11-diaza[3.3](2,6)-pyridinophane. Eur. J. Inorg. Chem. 2012 (2012) 4632–4643.10.1002/ejic.201200667Suche in Google Scholar

11. Tseng, H.-W.; Zong, R.; Muckerman, J. T.; Thummel, R.: Mononuclear ruthenium(II) complexes that catalyze water oxidation. Inorg. Chem. 47 (2008) 11763–11773.10.1021/ic8014817Suche in Google Scholar PubMed

12. Kammer, S.; Kelling, A.; Baier, H.; Mickler, W.; Dosche, C.; Rurack, K.; Kapp, A.; Lisdat, F.; Holdt, H.-J.: 2,11-Dialkylated 1,12-diazaperylene copper(I) complexes: first supramolecular column assemblies by π-π stacking between homoleptic tetrahedral metal complexes, exhibiting low-energy MLCT transitions. Eur. J. Inorg. Chem. 2009 (2009) 4648–4659.10.1002/ejic.200900695Suche in Google Scholar

13. Kang, M.; Chouai, A.; Chifotides, H. T.; Dunbar, K. R.: 2D NMR spectroscopic evidence for unprecedented interactions of cis-[Rh2(dap)(μ-O2CCH3)21-O2CCH3)(CH3OH)] (O2CCH3) with a DNA oligonucleotide: combination of intercalative and coordinative binding. Angew. Chem. Int. Ed. 45 (2006) 6148–6151.10.1002/anie.200600938Suche in Google Scholar PubMed

14. White, T. A.; Duunbar, K. R.; Thummel, R. P.; Turro, C.: Electronic influences of bridging and chelating diimine ligand coordination in formamidinate-bridged Rh2(II,II) dimers. Polyhedron 103 (2016) 172–177.10.1016/j.poly.2015.10.015Suche in Google Scholar

15. Xiong, T.; Wlodarczyk, R.; Saalfrank, P.: Vibrationally resolved absorption and fluorescence spectra of perylene and N-substituted derivatives from autocorrelation function approaches. Chem. Phys. 515 (2018) 728–736.10.1016/j.chemphys.2018.06.011Suche in Google Scholar

16. Starke, I.; Kammer, S.; Grunwald, N.; Schilde, U.; Holdt, H.-J.; Kleinpeter, E.: Complexation of diazaperylene and bisisoquinoline with transition metal ions in the gas phase studied by electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 22 (2008) 665–671.10.1002/rcm.3412Suche in Google Scholar PubMed

17. Starke, I.; Koch, A.; Kammer, S.; Holdt, H.-J.; Möller, H. M.: Electrospray mass spectrometry and molecular modeling study of formation and stability of silver complexes with diazaperylene and bisisoquinoline. J. Mass Spectrom. 53 (2018) 408–418.10.1002/jms.4071Suche in Google Scholar PubMed

18. Attenberger, B.; El Sayed Moussa, M.; Brietzke, T.; Vreshch, V.; Holdt, H.-J.; Lescop, C.; Scheer, M.: Discrete polymetallic arrangements of AgI and CuI ions based on multiple bridging phosphane ligands and π-π interactions. Eur. J. Inorg. Chem. 2015 (2015) 2934–2938.10.1002/ejic.201500445Suche in Google Scholar

Received: 2019-06-03
Accepted: 2019-07-30
Published Online: 2019-08-23
Published in Print: 2019-11-26

©2019 Matthias Kirste et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 Public License.

Artikel in diesem Heft

  1. Frontmatter
  2. Crystal structure of [aqua[2,2′-(1,2-phenylene)bis(1H-imidazole-4-carboxylato-5-carboxy)-κ4N3,N3,O4,O4] zinc(II)] monohydrate, C16H10N4O9Zn⋅H2O
  3. Crystal structure of ethyl 3-(4-methoxyphenyl)-5-methylcarbamoyl-1H-pyrazole-4-carboxylate, C15H17N3O4
  4. 7-(4-Fluorobenzylidene)-3-(4-fluorophenyl)-N-phenyl-3,3a,4,5,6,7-hexahydro-2H-indazole-2-carbothioamide–dimethylformamide (2/1), C27H23F2N3S, 0.5(C3H7NO)
  5. Crystal structure of 4,4′-(hydrazonomethylene)diphenol dihydrate, C13H16N2O4
  6. Crystal structure of 4-methoxyphenyl-3-phenylpropiolate, C16H12O3
  7. Crystal Structure of tris(tetrakis{1-vinyl-1H-imidazole-κN}copper(II)) bis[tri-μ2-bromido-tetrabromido-bis(1-vinyl-1H-imidazole-κN)tetracopper(I)], C80H96N32Cu11Br14
  8. Crystal structure of (E)-2-(3,6-bis(diethylamino)-9H-xanthen-9-yl)-N′-(quinoxalin-2-ylmethylene)benzohydrazide, C37H36N6O2
  9. Crystal structure of 4-(1-phenylimidazo[1,5-a]pyridin-3-yl)benzoic acid (C20H14N2O2)
  10. Crystal structure of 3-fluoro-3-methyl-1-((2-nitrophenyl)sulfonyl)-5,5-diphenylpiperidine, C24H23FN2O4S
  11. Crystal structure of dimethyl 3,12-dibenzyl-6,10-diphenyl-3,12-diazapentacyclo [6.3.1.02.7.04.11.05.9]-dodecane-7,11-dicarboxylate — acetone (2/1), C40H38N2O2 ⋅ 0.5C3H6O
  12. Crystal structure of poly[(μ2-2-(1H-1,2,4-triazol-1-yl)benzoato-κ4O:O′:N:N′)silver(I)] monohydrate, C9H8AgO3N3
  13. Crystal structure of poly[(μ2-9H-carbazole-3,6-dicarboxylate-κ4O1,O2:O3,O4)(μ2-1,3-di(pyridin-4-yl)propane-κ2N:N)cadmium(II)]monohydrate, C27H23N3O5Cd
  14. The synthesis and crystal structure of bis(2-(benzo[d]thiazol-2-yl)-5-methylbenzen-1-ido-κ2C,N)-(N,N′-diethyldithiocarbamato-κ2S,S′)iridium(III), C33H30N3S4Ir
  15. The crystal structure of 5-amino-1-(2,6-dichloro-4-(trifluoromethyl)phenyl)-4-(trifluoromethylsulfonyl)-1H-pyrazole-3-carboxamide, C12H6N4Cl2F6O3S
  16. Synthesis and crystal structure of poly[(μ2-nitrato-κ4O,O′:O′,O′′)-nitrato-κO-(μ2-1,4-bis((1H-imidazol-1-yl)methyl)benzene-κ2N:N′)cadmium(II)], C14H14N6O6Cd
  17. Crystal structure of ethyl (Z)-(4-oxo-4-phenylbut-2-en-2-yl)glycinate, C14H17NO3
  18. Halogen bonds in the crystal structure of 5-bromo-3,4′-bipyridine – 1,4-diiodotetrafluorobenzene (2/1), C26H14Br2F4I2N4
  19. Crystal structure of bis(2,2′-bipyridine-κ2N,N′)-tetrakis(μ2-3-(phenylsulfonamido)propanoato-κ2O:O′)-bis(3-(phenylsulfonamido)propanoato-κ2O,O′)digadolinium(III) – 2,2′-bipyridine (1/1), C84H84Gd2N12O24S6
  20. Crystal structure of poly[aqua(μ2-2-amino-1,4-benzenedisulfonato-κ2O:O′)bis(μ2-pyrazin-κ2N:N′)silver(I)], C14H16Ag2N5O8S2
  21. The crystal structure of 1,6-di-tert-butyl-1,1,3,3,4,4,6,6-octamethyl-2,2,5,5-tetrakis (trimethylsilyl)hexasilane, C28H78Si10
  22. Crystal structure of discandium triruthenium tetrasilicide, Sc2Ru3Si4
  23. Crystal structure of poly[(μ2-4-amino-1,5-naphthalenedisulfonato-κ4O,N:O′, N′)bis(μ2-hexamethylenetetramino-κ2N;N′)silver(I)], {C22H30Ag2N9O6S2}n
  24. Crystal structure of diaqua[5,5′-dicarboxy-2,2′-(propane-1,3-diyl)bis(1H-imidazole-4-carboxylato-κ4O,O′,N,N′)]zinc(II) dihydrate, C13H18N4O12Zn
  25. The crystal structure of poly [(μ3-N1,N4-bis(pyridin-3-yl)cyclohexane-1,4-dicarboxamide-κ3-O:N:N′)-(p-toluenesulfonato-κ2O,O′)silver(I)], C25H27Ag1N4O5S
  26. The crystal structure of 1,2-bis(3-bromophenoxy) ethane, C14H12Br2O2
  27. The crystal structure of 4-(pyren-1-yl)butyl-3-nitrobenzoate, C27H21NO4
  28. Crystal structure of bis[(2-(4-chlorophenyl)-5-methyl-1,3-dioxane-5-carboxylato-κ1O) (5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane-κ4N,N′,N′′,N′′′)]nickel(II), C40H60Cl2N4NiO8
  29. The crystal structure of 1,5-dinitro-2,3,4-trichlorobenzene, C6H1Cl3N2O4
  30. The crystal structure of the solid solution of 3,5-dinitropyrazole and 4-chlorine-3,5-dinitropyrazole, C3H1.24Cl0.76N4O4
  31. The cocrystal structure of 4-nitropyrazole — acetic acid (1/1), C5H7N3O4
  32. The crystal structure of propan-2-one O-(2,4,6-trinitrophenyl) oxime, C9H8N4O7
  33. The crystal structure of ethyl 2-(3-(2-ethoxy-2-oxoethyl)benzo[d] thiazol-2(3H)-ylidene)acetate, C15H17NO4S
  34. Crystal structure of (acetic acid-κ1O)-bis(μ2-2-chlorobenzoato-κ2O:O′)-(2-chlorobenzoato-κ1O)-(μ2-hydroxy-κ2O:O)-bis(1,10-phenanthroline-κ2N,N′)dimanganese(II) — methanol (1/1), C48H37Cl3Mn2N4O10
  35. Crystal structure of 3-methyl-2-phenyl-1,8-naphthyridine, C15H12N2
  36. Crystal structure of chlorido-(5-acetyl-2-(5-methylpyridin-2-yl)benzen-1-ido-κ2C,N)-pyridine-κN-palladium(II), C19H17ClN2OPd
  37. Crystal structure of (4-methyl-benzoato-κ2O,O′)-(5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane-κ4N,N′,N′′,N′′′)nickel(II) perchlorate monohydrate, C24H45ClN4NiO7
  38. Crystal structure of (1,4,7,10,13,16-hexaoxacyclooctadecane-κ6O6) 1,2,3,4,5-pentamethyl-cyclopenta-2,4-dien-1-yl(potassium, rubidium) — ammonia (1/2), [K0.3Rb0.7(18-crown-6)]Cp*⋅2 NH3, C22H45K0.3N2O6Rb0.7
  39. Crystal structure of (3E,5E)-1-((4-fluorophenyl)sulfonyl)-3,5-bis(3-nitrobenzylidene)piperidin-4-one — dichloromethane (2/1), C51H38Cl2F2N6O14S2
  40. Crystal structure of (E)-N′-((1,6-dihydropyren-1-yl)methylene)isonicotinohydrazide — methanol (1/1), C24H19N3O2
  41. Crystal structure of poly[aqua(μ2-2-amino-1,4-benzenedisulfonato-κ3N,O:O′)-(μ4-hexamethylenetetramino-κ4N:N′:N′′:N′′′)disilver(I)] monohydrate, C12H21Ag2N5O8S2
  42. Crystal structure of bis(acridin-10-ium) 2,5-dihydroxyterephthalate — 2,5-dihydroxyterephthalic acid (1/1), C21H15NO6
  43. The crystal structure of 1,12-diazaperylene, C18H10N2
  44. Crystal structure of 1-(5-(4-chlorophenyl)-3-(2-fluorophenyl)-4,5-dihydro-1H-pyrazol-1-yl)ethan-1-one, C17H14N2OFCl
  45. Crystal structure of (4aR,6aR,6bR,10S,12aR)-10-acetoxy-1,2,3,4, 4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a, 12b,13,14b-icosahydro-2,2,4a,6b,9,9,12a-heptamethylpicene-6a-carboxylic acid, C32H50O4
  46. The crystal structure of tetrachlorido-bis{1,3-bis(2,6-diisopropylphenyl)-1H-3λ4-imidazol-2-yl}-(μ2-pyrimidine-κ2N:N′)dipalladium(IV) — dichloromethane (1/2), C60H80Cl8N6Pd2
  47. The crystal structure of (E)-4-(7-methoxy-2-oxo-2H-chromen-8-yl)-2-methylbut-2-en-1-yl 4-nitrobenzoate, C22H19NO7
  48. Crystal structure of 3-methyl-N-(pyrimidin-5-ylmethyl)pyridin-2-amine, C11H12N4
  49. The crystal structure of 2,5-dichloroterephthalic acid dihydrate, C8H8Cl2O6
  50. The crystal structure of 2,4,6-tris[4-(1H-imidazol-1-yl)phenyl]-1,3,5-triazine — dimethylformamide (1/1), C33H28N10O
  51. Crystal structure of N-(adamantan-1-yl)-5-(dimethylamino)naphthalene-1-sulfonamide, C22H28N2O2S
  52. Crystal structure of poly[diaqua-(μ4-4-(3,5-dicarboxy-κ1O-phenoxy)phthalato-κ3O:O′:O′)cadmium(II)], C16H12CdO11
  53. Crystal structure of poly[diaqua-bis(μ2-3-((1H-imidazol-1-yl)methyl)benzoato-κ2N:O)manganese(II)], C22H22MnN4O6
  54. Crystal structure of 9-(3-phenoxyphenyl)-3,4,6,7,9,10-hexahydroacridine-1,8(2H,5H)-dione, C25H23NO3
  55. The crystal structure of poly[(μ3-2,4,6-tris[4-(1H-imidazol-1-yl)phenyl]-1,3,5-triazine-k3N:N′:N′′)-(nitrato-k2O,O)-(nitrato-k1O)zinc(II)] - N,N-dimethylacetamide (1/2), C38H39N13O8Zn
  56. Crystal structure of poly[(μ7-4-(3,5-dicarboxylatophenoxy)phthalato)-(1,10-phenanthroline-κ2N,N′)dizinc(II)], C28H14N2O9Zn2
  57. The crystal structure of methyl 2-(benzylamino)-5-(benzyloxy)benzoate, C22H21NO3
  58. Crystal structure of (1,4,8,11-tetraazacyclotetradecane)palladium(II) tetracyanoplatinate(II), C14H24N8PdPt
  59. Crystal structure of (pyridine-2-carboxylato-κ2N,O)-[2-(2-pyridyl)phenyl-κ2N,C1]palladium(II), C17H12N2O2Pd
  60. Crystal structure of (cyclohexane-1,4-diammonium) 4-[(4-carboxylatophenyl)disulfanyl]benzoate dimethylsulphoxide hydrate (1/1/1/1), [C6H16N2]2+[C14H8O4S2]2−⋅C2H6OS⋅H2O
  61. Crystal structure of the 2:1 co-crystal 2-[(2-carboxyphenyl)disulfanyl]benzoic acid – 3-bromobenzoic acid, 2(C14H10O4S2)⋅C7H5BrO2
  62. Crystal structure of chlorido-dimethyl-(phenylpiperazine-1-carbodithioato-κ2S,S′)tin(IV), C13H19ClN2S2Sn
  63. Crystal structure of (N-n-butyl, N-methyl-dithiocarbamato-κ2 S,S′)-chlorido-dimethyl-tin(IV), C8H18ClNS2Sn
  64. Crystal structure of (2,2′-bipyridyl)bis(4-bromobenzyl)dibromidotin(IV), C24H20Br4N2Sn
  65. Crystal structure of (2,2′-bipyridyl)bis(4-chlorobenzyl)dichloridotin(IV), C24H20Cl4N2Sn
  66. Crystal structure of N-methyl-N-phenyl(methylsulfanyl)carbothioamide, C9H11NS2
  67. Crystal structure of 4-phenylpiperazin-1-ium (4-phenylpiperazin-1-yl)carbothioylsulfanide, [C10H15N2][C11H13N2S2]
  68. Crystal structure of catena-{di-aqua-sodium [n-butyl(methyl)carbamothioyl]sulfanide}n, [C6H16NNaO2S2]n
  69. Crystal structure of (2-([1,1-bis(hydroxymethyl)-2-oxyethyl]iminomethyl)-5-(n-decyl)phenolato)-dimethyl-tin(IV), C23H39NO5Sn
  70. Crystal structure of 4-chloro-N′-[(1E)-(3-ethoxy-2-hydroxyphenyl)methylidene]benzohydrazide – a Z′ = 3 structure, C16H15ClN2O3
Heruntergeladen am 17.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2019-0385/html?lang=de
Button zum nach oben scrollen