Startseite Crystal structure of 4-phenylpiperazin-1-ium (4-phenylpiperazin-1-yl)carbothioylsulfanide, [C10H15N2][C11H13N2S2]
Artikel Open Access

Crystal structure of 4-phenylpiperazin-1-ium (4-phenylpiperazin-1-yl)carbothioylsulfanide, [C10H15N2][C11H13N2S2]

  • Kong Mun Lo , See Mun Lee und Edward R.T. Tiekink ORCID logo EMAIL logo
Veröffentlicht/Copyright: 11. September 2019

Abstract

[C21H28N4S2], monoclinic, P21/c (no. 14), a = 16.1880(2) Å, b = 6.8168(1) Å, c = 19.7605(2) Å, β = 106.412(1)°, V = 2091.73(5) Å3, Z = 4, Rgt(F) = 0.0281, wRref(F2) = 0.0740, T = 100(2) K.

CCDC no.: 1948406

The molecular structures of the ions are shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal:Colourless prism
Size:0.12 × 0.06 × 0.03 mm
Wavelength:Cu Kα radiation (1.54178 Å)
μ:2.40 mm−1
Diffractometer, scan mode:XtaLAB Synergy, ω
θmax, completeness:67.1°, >99%
N(hkl)measured, N(hkl)unique, Rint:25933, 3726, 0.035
Criterion for Iobs, N(hkl)gt:Iobs > 2 σ(Iobs), 3406
N(param)refined:250
Programs:CrysAlisPRO [1], SHELX [2], [3], WinGX/ORTEP [4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyzUiso*/Ueq
S10.46765(2)0.26374(5)0.60297(2)0.01990(10)
S20.58043(2)0.61634(5)0.63185(2)0.01875(10)
N10.59362(7)0.31667(17)0.72131(6)0.0188(2)
N20.71913(7)0.10047(16)0.82654(6)0.0185(2)
N30.38889(8)0.63077(17)0.50114(6)0.0198(3)
H1N0.4234(9)0.567(2)0.5392(7)0.024*
H2N0.4078(10)0.598(2)0.4635(7)0.024*
N40.24784(7)0.88689(16)0.43912(6)0.0184(2)
C10.55113(8)0.39218(19)0.65839(7)0.0169(3)
C20.66356(9)0.4169(2)0.77322(7)0.0209(3)
H2A0.64360.45630.81420.025*
H2B0.67970.53710.75190.025*
C30.74192(9)0.2841(2)0.79802(7)0.0208(3)
H3C0.76540.25510.75790.025*
H3D0.78720.35220.83480.025*
C40.64930(9)0.0005(2)0.77370(7)0.0203(3)
H4A0.6333−0.12100.79440.024*
H4B0.6697−0.03690.73270.024*
C50.57100(9)0.1312(2)0.74914(7)0.0216(3)
H5A0.52620.06320.71200.026*
H5B0.54710.15820.78910.026*
C60.78829(9)−0.0211(2)0.86363(7)0.0193(3)
C70.87425(10)0.0325(2)0.87526(8)0.0269(3)
H70.88820.14850.85420.032*
C80.93976(10)−0.0823(3)0.91744(9)0.0342(4)
H80.9980−0.04310.92510.041*
C90.92162(10)−0.2521(2)0.94841(9)0.0311(4)
H90.9668−0.32850.97780.037*
C100.83629(10)−0.3096(2)0.93600(8)0.0246(3)
H100.8230−0.42700.95660.029*
C110.77049(9)−0.1967(2)0.89382(7)0.0206(3)
H110.7125−0.23880.88520.025*
C120.29823(9)0.5647(2)0.48794(8)0.0248(3)
H12A0.27870.58880.53040.030*
H12B0.29430.42210.47810.030*
C130.24121(9)0.6745(2)0.42592(8)0.0230(3)
H13A0.25860.64400.38290.028*
H13B0.18070.63220.41790.028*
C140.33664(9)0.9518(2)0.44995(8)0.0220(3)
H14A0.34051.09510.45850.026*
H14B0.35480.92470.40710.026*
C150.39576(9)0.8458(2)0.51244(8)0.0233(3)
H15A0.45600.88800.51870.028*
H15B0.37990.87990.55590.028*
C160.18218(9)1.0003(2)0.39213(7)0.0190(3)
C170.09633(9)0.9579(2)0.38733(8)0.0239(3)
H170.08330.85290.41420.029*
C180.02996(10)1.0662(2)0.34405(8)0.0280(3)
H18−0.02801.03400.34110.034*
C190.04749(10)1.2218(2)0.30483(8)0.0305(4)
H190.00201.29680.27530.037*
C200.13211(11)1.2654(2)0.30958(9)0.0302(3)
H200.14471.37160.28300.036*
C210.19972(10)1.1564(2)0.35278(8)0.0242(3)
H210.25761.18870.35530.029*

Source of material

All chemicals and solvents were used as purchased without purification. The melting point was determined using a Mel-temp II digital melting point apparatus and was uncorrected. The solid-state IR spectrum was obtained on a Bruker Vertex 70v FTIR Spectrometer from 4000 to 400 cm−1. The 1H and 13C{1H} NMR spectra were recorded at room temperature in CDCl3 solution on a Bruker Ascend 400 MHz NMR spectrometer with chemical shifts relative to tetramethylsilane.

The dithiocarbamate ligand was prepared in situ (methanol) from the reaction of CS2 (Merck, 0.25 mmol) with 1-phenylpiperazine (Aldrich, 0.25 mmol) and NaOH (0.02 mL; 50% w/v); CS2 was added dropwise into the methanol solution (10 mL). The resulting mixture solution was kept at 273 K for 1 h. The filtrate was evaporated until a beige precipitate was obtained. The precipitate was washed with n-hexane and recrystallised from a methanol-acetone solution to furnish colourless crystals. Yield: 0.010 g (10.0%). M.pt: 441–443 K. IR (cm−1) 1597 (m) ν(C—N), 1580 (m) ν(C—N), 1491 (m) ν(C—N), 1012 (s) ν(C—S), 756 (m) ν(C—S). 1H NMR (CDCl3, ppm): δ 3.16-3.29 (m, 8H, N-CH2), 4.45-4.60 (m, 8H, N-CH2), 6.86-6.94, 7.23-7.32 (m, 10H, Ph-H). 13C{1H} NMR (CDCl3, ppm): δ 45.7, 49.8 (N-CH2), 116.3, 120.1, 129.2, 150.1 (Ph-C), 193.7 (CS2).

Experimental details

The C-bound H atoms were geometrically placed (C—H =0.95–0.99 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The N-bound H-atoms were located in a difference Fourier map but were refined with a distance restraint N—H = 0.91 ± 0.01 Å, and with Uiso(H) set to 1.2Ueq(N).

Comment

The title salt of a dithiocarbamate ligand (S2CNRR’) became available during the course of methodical studies evaluating the structural chemistry of the homoleptic zinc-triad dithiocarbamates [5] and their adducts with bipyridyl-type ligands aimed for the construction of coordination polymers [6]. In this context, and underscoring the importance of systematic evaluations of closely related compounds, recent work on functionalised dithiocarbamates, i.e. homoleptic morpholinodithiocarbamates, revealed a hitherto unobserved structural motif for cadmium dithiocarbamates [7], namely a linear coordination polymer with hexa-coordinated cadmium centres, {Cd[S2CN(CH2CH2)2O]2}n, although the binuclear zinc(II) structure of the same ligand, {Zn[S2CN(CH2CH2)2O]2}2, adopted the usual structural motif [5]; precendents for the linear coordination polymer motif are evident in related xanthate (S2COR) structures [8]. The presence of substituents capable of hydrogen bonding interactions in the dithiocarbamate ligands are also thought important for enhancing the biological activity of metal compounds of this potentially important class of ligands [9]. Current work in this context focuses on the exciting anti-bacterial activity exhibited by gold(I) dithiocarbamates [10], [11]. Herein, the crystal and molecular structures of the title salt, [PhN(CH2CH2)2NH2][S2CN(CH2CH2)2NPh], are described.

The constituents of the title salt are shown in the figure (70% displacement ellipsoids); the asymmetric unit comprises a 4-phenylpiperazin-1-ium cation and a (4-phenylpiperazin-1-yl)dithiocarbamate anion. The confirmation for this formulation is revealed in the pattern of hydrogen bonding exhibited by the piperazin-1-ium-N—H atoms (see below). Further, the C—N3 bond lengths [C12—N3 = 1.4861(19) Å and C15—N3 = 1.4822(18) Å] are systematically longer than the C–N4 bonds [C13—N4 = 1.4694(18) Å and C14—N4 = 1.4609(18) Å]. The piperazin-1-ium ring has a chair conformation.

In the anion, the piperazin-1-yl ring also has a chair conformation. Further support for the formation of a salt is seen in the experimental equivalence of the C1—S1, S2 bond lengths [C1—S1 = 1.7192(14) Å and C1—S2 = 1.7249(14) Å]. As anticipated, the C1—N1 bond length [1.3419(18) Å] is considerably shorter than the C2—N1 [1.4643(17) Å] and C5—N1 [1.4660(17) Å] bond lengths, an observation consistent with a significant contribution of the 2−S2C=N+(CH2CH2)2NPh canonical form to the overall electronic structure of the S2CN chromophore in the anion. Reflecting the equivalence of the C—S bonds, the S1—C1—N1 and S2—C1—N2 bond angles are equivalent [119.98(10) and 120.57(10)°, respectively] with S1—C1—S2 angle being very similar [119.45(8)°], observations consistent with a regular trigonal geometry about the C1 atom. This regular geometry contrasts the observations in the recently reported dithiocarbamate ester, MeSC(=S)N(Me)Ph [12], whereby the bond angles involving the thione-sulphur atom were approximately 10° wider [i.e. 123.47(11) and 123.32(13)°] than the angle involving the singly-bound sulphur atom and nitrogen [113.21(13)°].

The only prominent supramolecular contacts in the molecular packing are charge-assisted 4-phenylpiperazin-1-ium-N—H⋯S(dithiocarbamate) hydrogen bonds disposed about a centre of inversion [N3—H1n⋯S1: H1n⋯S1 = 2.422(14) Å, N3⋯S1 = 3.2380(12) Å with angle at H1n = 149.3(12)° and N3—H2n⋯S2i: H2n⋯S2i = 2.434(14) Å, N3⋯S2i = 3.2753(12) Å with angle at H2n = 154.1(13)° for symmetry operation (i) 1 = x, 1 = y, 1 = z]. As shown in the lower view of the figure, these interactions lead to a four-ion aggregate sustained by a 12-membered {⋯HNH⋯SCS}2 synthon with a distinctive kinked conformation. The relatively large deviations from linearity of the N—H⋯S hydrogen bonds are readily explained by transannular interactions within the aggregate as seen in the H1n⋯S2 and H2n⋯S1i separations of 2.701(14) and 2.859(16) Å, respectively.

To analyse the molecular packing of the four-molecule aggregates in more detail, Crystal Explorer 17 [13] was utilised to calculate the Hirshfeld surface, following standard procedures [14]; herein, the Hirshfeld surfaces as well as the overall and delineated two-dimensional fingerprint plots were evaluated. The most dominant contacts contributing to the surface are H⋯H contacts, at 61.4%, entirely consistent with the lack of directional interactions connecting the four-molecule aggregates. The next most prominent contacts are of the type C⋯H/H⋯C [20.6%], S⋯H/H⋯S [14.2%] and N⋯H/H⋯N [3.0%].

Acknowledgements

Sunway University Sdn Bhd is thanked for financial support of this work through Grant no. STR-RCTR-RCCM-001-2019.

References

1. Rigaku Oxford Diffraction: CrysAlisPRO. Rigaku Corporation, Oxford, UK (2018).Suche in Google Scholar

2. Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112–122.10.1107/S0108767307043930Suche in Google Scholar PubMed

3. Sheldrick, G. M.: Crystal structure refinement with SHELXL. Acta Crystallogr. C71 (2015) 3–8.10.1107/S2053229614024218Suche in Google Scholar PubMed PubMed Central

4. Farrugia, L. J.: WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr. 45 (2012) 849–854.10.1107/S0021889812029111Suche in Google Scholar

5. Tiekink, E. R. T.: Exploring the topological landscape exhibited by binary zinc-triad 1,1-dithiolates. Crystals 8 (2018) 292.10.3390/cryst8070292Suche in Google Scholar

6. Tiekink, E. R. T.: Perplexing coordination behaviour of potentially bridging bipyridyl-type ligands in the coordination chemistry of zinc and cadmium 1,1-dithiolate compounds. Crystals 8 (2018) 18.10.3390/cryst8010018Suche in Google Scholar

7. Ahmad, J.; How, F. N.-F.; Halim, S. N. A.; Jotani, M. M.; Lee, S. M.; Tiekink, E. R. T.: A new structural motif for cadmium dithiocarbamates: crystal structures and Hirshfeld surface analyses of homoleptic zinc and cadmium morpholine dithiocarbamates. Z. Kristallogr. – Cryst. Mater. 234 (2019) 341–349.10.1515/zkri-2018-2141Suche in Google Scholar

8. Tiekink, E. R. T.; Haiduc, I.: Stereochemical aspects of metal xanthate complexes: molecular structures and supramolecular self-assembly. Prog. Inorg. Chem. 54 (2005) 127–319.10.1002/0471725560.ch3Suche in Google Scholar

9. Hogarth, G.: Metal-dithiocarbamate complexes: chemistry and biological activity. Mini Rev. Med. Chem. 12 (2012) 1202–1215.10.2174/138955712802762095Suche in Google Scholar PubMed

10. Chen, B.-J.; Jamaludin, N. S.; Khoo, C.-H.; See, T.-H.; Sim, J.-H.; Cheah, Y.-K.; Halim, S. N. A.; Seng, H.-L.; Tiekink, E. R. T.: In vitro antibacterial and time kill evaluation of mononuclear phosphanegold(I) dithiocarbamates. J. Inorg. Biochem. 163 (2016) 68–80.10.1016/j.jinorgbio.2016.08.002Suche in Google Scholar PubMed

11. Tan, Y. J.; Tan, Y. S.; Yeo, C. I.; Chew, J.; Tiekink, E. R. T.: In vitro anti-bacterial and time kill evaluation of binuclear tricyclohexylphosphanesilver(I) dithiocarbamates, {Cy3PAg(S2CNRR’)}2. J. Inorg. Biochem. 192 (2019) 107–118.10.1016/j.jinorgbio.2018.12.017Suche in Google Scholar PubMed

12. Lo, K. M.; Lee, S. M.; Tiekink, E. R. T.: Crystal structure of N-methyl-N-phenyl(methylsulfanyl) carbothioamide, C9H11NS2. Z. Kristallogr. NCS 234 (2019) nrcs-2019-5011.10.1515/ncrs-2019-0511Suche in Google Scholar

13. Turner, M. J.; McKinnon, J. J.; Wolff, S. K.; Grimwood, D. J.; Spackman, P. R.; Jayatilaka, D.; Spackman, M. A.: Crystal Explorer v17. The University of Western Australia, Australia (2017).Suche in Google Scholar

14. Tan, S. L.; Jotani, M. M.; Tiekink, E. R. T.: Utilizing Hirshfeld surface calculations, non-covalent interaction (NCI) plots and the calculation of interaction energies in the analysis of molecular packing. Acta Crystallogr. E75 (2019) 308–318.10.1107/S2056989019001129Suche in Google Scholar PubMed PubMed Central

Received: 2019-07-19
Accepted: 2019-08-21
Published Online: 2019-09-11
Published in Print: 2019-11-26

©2019 Kong Mun Lo et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 Public License.

Artikel in diesem Heft

  1. Frontmatter
  2. Crystal structure of [aqua[2,2′-(1,2-phenylene)bis(1H-imidazole-4-carboxylato-5-carboxy)-κ4N3,N3,O4,O4] zinc(II)] monohydrate, C16H10N4O9Zn⋅H2O
  3. Crystal structure of ethyl 3-(4-methoxyphenyl)-5-methylcarbamoyl-1H-pyrazole-4-carboxylate, C15H17N3O4
  4. 7-(4-Fluorobenzylidene)-3-(4-fluorophenyl)-N-phenyl-3,3a,4,5,6,7-hexahydro-2H-indazole-2-carbothioamide–dimethylformamide (2/1), C27H23F2N3S, 0.5(C3H7NO)
  5. Crystal structure of 4,4′-(hydrazonomethylene)diphenol dihydrate, C13H16N2O4
  6. Crystal structure of 4-methoxyphenyl-3-phenylpropiolate, C16H12O3
  7. Crystal Structure of tris(tetrakis{1-vinyl-1H-imidazole-κN}copper(II)) bis[tri-μ2-bromido-tetrabromido-bis(1-vinyl-1H-imidazole-κN)tetracopper(I)], C80H96N32Cu11Br14
  8. Crystal structure of (E)-2-(3,6-bis(diethylamino)-9H-xanthen-9-yl)-N′-(quinoxalin-2-ylmethylene)benzohydrazide, C37H36N6O2
  9. Crystal structure of 4-(1-phenylimidazo[1,5-a]pyridin-3-yl)benzoic acid (C20H14N2O2)
  10. Crystal structure of 3-fluoro-3-methyl-1-((2-nitrophenyl)sulfonyl)-5,5-diphenylpiperidine, C24H23FN2O4S
  11. Crystal structure of dimethyl 3,12-dibenzyl-6,10-diphenyl-3,12-diazapentacyclo [6.3.1.02.7.04.11.05.9]-dodecane-7,11-dicarboxylate — acetone (2/1), C40H38N2O2 ⋅ 0.5C3H6O
  12. Crystal structure of poly[(μ2-2-(1H-1,2,4-triazol-1-yl)benzoato-κ4O:O′:N:N′)silver(I)] monohydrate, C9H8AgO3N3
  13. Crystal structure of poly[(μ2-9H-carbazole-3,6-dicarboxylate-κ4O1,O2:O3,O4)(μ2-1,3-di(pyridin-4-yl)propane-κ2N:N)cadmium(II)]monohydrate, C27H23N3O5Cd
  14. The synthesis and crystal structure of bis(2-(benzo[d]thiazol-2-yl)-5-methylbenzen-1-ido-κ2C,N)-(N,N′-diethyldithiocarbamato-κ2S,S′)iridium(III), C33H30N3S4Ir
  15. The crystal structure of 5-amino-1-(2,6-dichloro-4-(trifluoromethyl)phenyl)-4-(trifluoromethylsulfonyl)-1H-pyrazole-3-carboxamide, C12H6N4Cl2F6O3S
  16. Synthesis and crystal structure of poly[(μ2-nitrato-κ4O,O′:O′,O′′)-nitrato-κO-(μ2-1,4-bis((1H-imidazol-1-yl)methyl)benzene-κ2N:N′)cadmium(II)], C14H14N6O6Cd
  17. Crystal structure of ethyl (Z)-(4-oxo-4-phenylbut-2-en-2-yl)glycinate, C14H17NO3
  18. Halogen bonds in the crystal structure of 5-bromo-3,4′-bipyridine – 1,4-diiodotetrafluorobenzene (2/1), C26H14Br2F4I2N4
  19. Crystal structure of bis(2,2′-bipyridine-κ2N,N′)-tetrakis(μ2-3-(phenylsulfonamido)propanoato-κ2O:O′)-bis(3-(phenylsulfonamido)propanoato-κ2O,O′)digadolinium(III) – 2,2′-bipyridine (1/1), C84H84Gd2N12O24S6
  20. Crystal structure of poly[aqua(μ2-2-amino-1,4-benzenedisulfonato-κ2O:O′)bis(μ2-pyrazin-κ2N:N′)silver(I)], C14H16Ag2N5O8S2
  21. The crystal structure of 1,6-di-tert-butyl-1,1,3,3,4,4,6,6-octamethyl-2,2,5,5-tetrakis (trimethylsilyl)hexasilane, C28H78Si10
  22. Crystal structure of discandium triruthenium tetrasilicide, Sc2Ru3Si4
  23. Crystal structure of poly[(μ2-4-amino-1,5-naphthalenedisulfonato-κ4O,N:O′, N′)bis(μ2-hexamethylenetetramino-κ2N;N′)silver(I)], {C22H30Ag2N9O6S2}n
  24. Crystal structure of diaqua[5,5′-dicarboxy-2,2′-(propane-1,3-diyl)bis(1H-imidazole-4-carboxylato-κ4O,O′,N,N′)]zinc(II) dihydrate, C13H18N4O12Zn
  25. The crystal structure of poly [(μ3-N1,N4-bis(pyridin-3-yl)cyclohexane-1,4-dicarboxamide-κ3-O:N:N′)-(p-toluenesulfonato-κ2O,O′)silver(I)], C25H27Ag1N4O5S
  26. The crystal structure of 1,2-bis(3-bromophenoxy) ethane, C14H12Br2O2
  27. The crystal structure of 4-(pyren-1-yl)butyl-3-nitrobenzoate, C27H21NO4
  28. Crystal structure of bis[(2-(4-chlorophenyl)-5-methyl-1,3-dioxane-5-carboxylato-κ1O) (5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane-κ4N,N′,N′′,N′′′)]nickel(II), C40H60Cl2N4NiO8
  29. The crystal structure of 1,5-dinitro-2,3,4-trichlorobenzene, C6H1Cl3N2O4
  30. The crystal structure of the solid solution of 3,5-dinitropyrazole and 4-chlorine-3,5-dinitropyrazole, C3H1.24Cl0.76N4O4
  31. The cocrystal structure of 4-nitropyrazole — acetic acid (1/1), C5H7N3O4
  32. The crystal structure of propan-2-one O-(2,4,6-trinitrophenyl) oxime, C9H8N4O7
  33. The crystal structure of ethyl 2-(3-(2-ethoxy-2-oxoethyl)benzo[d] thiazol-2(3H)-ylidene)acetate, C15H17NO4S
  34. Crystal structure of (acetic acid-κ1O)-bis(μ2-2-chlorobenzoato-κ2O:O′)-(2-chlorobenzoato-κ1O)-(μ2-hydroxy-κ2O:O)-bis(1,10-phenanthroline-κ2N,N′)dimanganese(II) — methanol (1/1), C48H37Cl3Mn2N4O10
  35. Crystal structure of 3-methyl-2-phenyl-1,8-naphthyridine, C15H12N2
  36. Crystal structure of chlorido-(5-acetyl-2-(5-methylpyridin-2-yl)benzen-1-ido-κ2C,N)-pyridine-κN-palladium(II), C19H17ClN2OPd
  37. Crystal structure of (4-methyl-benzoato-κ2O,O′)-(5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane-κ4N,N′,N′′,N′′′)nickel(II) perchlorate monohydrate, C24H45ClN4NiO7
  38. Crystal structure of (1,4,7,10,13,16-hexaoxacyclooctadecane-κ6O6) 1,2,3,4,5-pentamethyl-cyclopenta-2,4-dien-1-yl(potassium, rubidium) — ammonia (1/2), [K0.3Rb0.7(18-crown-6)]Cp*⋅2 NH3, C22H45K0.3N2O6Rb0.7
  39. Crystal structure of (3E,5E)-1-((4-fluorophenyl)sulfonyl)-3,5-bis(3-nitrobenzylidene)piperidin-4-one — dichloromethane (2/1), C51H38Cl2F2N6O14S2
  40. Crystal structure of (E)-N′-((1,6-dihydropyren-1-yl)methylene)isonicotinohydrazide — methanol (1/1), C24H19N3O2
  41. Crystal structure of poly[aqua(μ2-2-amino-1,4-benzenedisulfonato-κ3N,O:O′)-(μ4-hexamethylenetetramino-κ4N:N′:N′′:N′′′)disilver(I)] monohydrate, C12H21Ag2N5O8S2
  42. Crystal structure of bis(acridin-10-ium) 2,5-dihydroxyterephthalate — 2,5-dihydroxyterephthalic acid (1/1), C21H15NO6
  43. The crystal structure of 1,12-diazaperylene, C18H10N2
  44. Crystal structure of 1-(5-(4-chlorophenyl)-3-(2-fluorophenyl)-4,5-dihydro-1H-pyrazol-1-yl)ethan-1-one, C17H14N2OFCl
  45. Crystal structure of (4aR,6aR,6bR,10S,12aR)-10-acetoxy-1,2,3,4, 4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a, 12b,13,14b-icosahydro-2,2,4a,6b,9,9,12a-heptamethylpicene-6a-carboxylic acid, C32H50O4
  46. The crystal structure of tetrachlorido-bis{1,3-bis(2,6-diisopropylphenyl)-1H-3λ4-imidazol-2-yl}-(μ2-pyrimidine-κ2N:N′)dipalladium(IV) — dichloromethane (1/2), C60H80Cl8N6Pd2
  47. The crystal structure of (E)-4-(7-methoxy-2-oxo-2H-chromen-8-yl)-2-methylbut-2-en-1-yl 4-nitrobenzoate, C22H19NO7
  48. Crystal structure of 3-methyl-N-(pyrimidin-5-ylmethyl)pyridin-2-amine, C11H12N4
  49. The crystal structure of 2,5-dichloroterephthalic acid dihydrate, C8H8Cl2O6
  50. The crystal structure of 2,4,6-tris[4-(1H-imidazol-1-yl)phenyl]-1,3,5-triazine — dimethylformamide (1/1), C33H28N10O
  51. Crystal structure of N-(adamantan-1-yl)-5-(dimethylamino)naphthalene-1-sulfonamide, C22H28N2O2S
  52. Crystal structure of poly[diaqua-(μ4-4-(3,5-dicarboxy-κ1O-phenoxy)phthalato-κ3O:O′:O′)cadmium(II)], C16H12CdO11
  53. Crystal structure of poly[diaqua-bis(μ2-3-((1H-imidazol-1-yl)methyl)benzoato-κ2N:O)manganese(II)], C22H22MnN4O6
  54. Crystal structure of 9-(3-phenoxyphenyl)-3,4,6,7,9,10-hexahydroacridine-1,8(2H,5H)-dione, C25H23NO3
  55. The crystal structure of poly[(μ3-2,4,6-tris[4-(1H-imidazol-1-yl)phenyl]-1,3,5-triazine-k3N:N′:N′′)-(nitrato-k2O,O)-(nitrato-k1O)zinc(II)] - N,N-dimethylacetamide (1/2), C38H39N13O8Zn
  56. Crystal structure of poly[(μ7-4-(3,5-dicarboxylatophenoxy)phthalato)-(1,10-phenanthroline-κ2N,N′)dizinc(II)], C28H14N2O9Zn2
  57. The crystal structure of methyl 2-(benzylamino)-5-(benzyloxy)benzoate, C22H21NO3
  58. Crystal structure of (1,4,8,11-tetraazacyclotetradecane)palladium(II) tetracyanoplatinate(II), C14H24N8PdPt
  59. Crystal structure of (pyridine-2-carboxylato-κ2N,O)-[2-(2-pyridyl)phenyl-κ2N,C1]palladium(II), C17H12N2O2Pd
  60. Crystal structure of (cyclohexane-1,4-diammonium) 4-[(4-carboxylatophenyl)disulfanyl]benzoate dimethylsulphoxide hydrate (1/1/1/1), [C6H16N2]2+[C14H8O4S2]2−⋅C2H6OS⋅H2O
  61. Crystal structure of the 2:1 co-crystal 2-[(2-carboxyphenyl)disulfanyl]benzoic acid – 3-bromobenzoic acid, 2(C14H10O4S2)⋅C7H5BrO2
  62. Crystal structure of chlorido-dimethyl-(phenylpiperazine-1-carbodithioato-κ2S,S′)tin(IV), C13H19ClN2S2Sn
  63. Crystal structure of (N-n-butyl, N-methyl-dithiocarbamato-κ2 S,S′)-chlorido-dimethyl-tin(IV), C8H18ClNS2Sn
  64. Crystal structure of (2,2′-bipyridyl)bis(4-bromobenzyl)dibromidotin(IV), C24H20Br4N2Sn
  65. Crystal structure of (2,2′-bipyridyl)bis(4-chlorobenzyl)dichloridotin(IV), C24H20Cl4N2Sn
  66. Crystal structure of N-methyl-N-phenyl(methylsulfanyl)carbothioamide, C9H11NS2
  67. Crystal structure of 4-phenylpiperazin-1-ium (4-phenylpiperazin-1-yl)carbothioylsulfanide, [C10H15N2][C11H13N2S2]
  68. Crystal structure of catena-{di-aqua-sodium [n-butyl(methyl)carbamothioyl]sulfanide}n, [C6H16NNaO2S2]n
  69. Crystal structure of (2-([1,1-bis(hydroxymethyl)-2-oxyethyl]iminomethyl)-5-(n-decyl)phenolato)-dimethyl-tin(IV), C23H39NO5Sn
  70. Crystal structure of 4-chloro-N′-[(1E)-(3-ethoxy-2-hydroxyphenyl)methylidene]benzohydrazide – a Z′ = 3 structure, C16H15ClN2O3
Heruntergeladen am 21.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2019-0512/html
Button zum nach oben scrollen