Startseite The synthesis and crystal structure of bis(2-(benzo[d]thiazol-2-yl)-5-methylbenzen-1-ido-κ2C,N)-(N,N′-diethyldithiocarbamato-κ2S,S′)iridium(III), C33H30N3S4Ir
Artikel Open Access

The synthesis and crystal structure of bis(2-(benzo[d]thiazol-2-yl)-5-methylbenzen-1-ido-κ2C,N)-(N,N′-diethyldithiocarbamato-κ2S,S′)iridium(III), C33H30N3S4Ir

  • Lianqing Chen ORCID logo EMAIL logo , Zhongda Wu , Jing Yang und Shijuan Zhang
Veröffentlicht/Copyright: 18. Juli 2019

Abstract

C33H30N3S4Ir, monoclinic, P21/c (no. 14), a = 11.6429(10) Å, b = 10.9111(10) Å, c = 24.234(2) Å, β = 93.2890(10)°, V = 3073.6(5) Å3, Z = 4, Rgt(F) = 0.0198, wRref(F2) = 0.0507, T = 273(2) K.

CCDC no.: 1935444

The molecular structure is shown in the figure (hydrogen atoms are omitted for clarity). Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal:Orange block
Size:0.10 × 0.10 × 0.10 mm
Wavelength:Mo Kα radiation (0.71073 Å)
μ:4.64 mm−1
Diffractometer, scan mode:Bruker D8 Venture, φ and ω
θmax, completeness:27.5°, >99%
N(hkl)measured, N(hkl)unique, Rint:19387, 7049, 0.021
Criterion for Iobs, N(hkl)gt:Iobs > 2 σ(Iobs), 6244
N(param)refined:375
Programs:CrysAlisPRO [1], SHELX [2], [3], Diamond [4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyzUiso*/Ueq
Ir10.31248(2)0.48167(2)0.14851(2)0.03525(4)
S10.39058(7)0.75557(7)0.28405(3)0.05916(19)
S20.39424(7)0.28873(8)−0.00809(3)0.0609(2)
S40.28171(5)0.26045(5)0.17137(3)0.03985(13)
S50.11541(5)0.45445(6)0.17782(3)0.04539(15)
N10.05807(18)0.2185(2)0.18761(11)0.0533(6)
N20.34767(16)0.56380(19)0.22420(8)0.0385(4)
N30.29964(18)0.40841(19)0.06913(8)0.0412(5)
C10.1406(2)0.2993(2)0.18044(10)0.0402(5)
C20.4789(2)0.4803(2)0.13019(11)0.0380(5)
C30.5742(2)0.5318(2)0.15992(12)0.0430(6)
H30.5620360.5755340.1920140.052*
C40.6859(2)0.5201(2)0.14325(13)0.0494(7)
C50.7050(3)0.4549(3)0.09490(14)0.0601(8)
H50.7796320.4452550.0838190.072*
C70.4006(2)0.3781(2)0.05068(10)0.0439(6)
C90.2086(3)0.3627(2)0.03474(11)0.0490(6)
C110.3658(2)0.4002(3)0.29607(11)0.0491(6)
H110.3495060.3368860.2711570.059*
C120.3683(2)0.5206(2)0.27803(11)0.0416(6)
C130.3930(2)0.6146(3)0.31651(12)0.0505(7)
C140.3556(2)0.6843(2)0.22194(11)0.0445(6)
C150.5028(2)0.4198(2)0.08111(10)0.0440(6)
C160.6150(3)0.4053(3)0.06382(12)0.0552(7)
H160.6279320.3623900.0315940.066*
C170.2455(3)0.2931(3)−0.00920(11)0.0562(7)
C180.3045(2)0.6599(2)0.12602(11)0.0408(5)
C190.3316(2)0.7435(2)0.16965(12)0.0447(6)
C200.3302(2)0.8703(3)0.16122(14)0.0576(8)
H200.3482250.9235170.1904250.069*
C210.3018(3)0.9153(3)0.10934(15)0.0633(8)
H210.3008470.9995380.1034530.076*
C220.2746(3)0.8363(3)0.06543(13)0.0578(7)
C230.2761(2)0.7105(3)0.07438(12)0.0497(6)
H230.2574740.6584320.0448340.060*
C240.4151(3)0.5890(3)0.37243(13)0.0643(8)
H240.4318290.6517370.3975910.077*
C250.4119(3)0.4696(3)0.38958(13)0.0638(8)
H250.4257540.4511870.4268350.077*
C260.3880(3)0.3755(3)0.35184(12)0.0577(7)
H260.3868290.2948100.3641960.069*
C270.0749(3)0.0869(3)0.18116(14)0.0588(8)
H27A0.0392250.0438690.2107480.071*
H27B0.1565370.0686510.1839260.071*
C28−0.0548(3)0.2575(3)0.20509(18)0.0778(11)
H28A−0.1123090.1971110.1934530.093*
H28B−0.0758670.3347960.1874650.093*
C290.0929(3)0.3840(3)0.04026(13)0.0622(8)
H290.0679210.4318160.0689930.075*
C300.7863(2)0.5782(3)0.17733(14)0.0666(8)
H30A0.7583420.6149150.2099660.100*
H30B0.8216090.6398110.1556910.100*
H30C0.8419150.5161830.1877390.100*
C31−0.0528(3)0.2724(4)0.26679(19)0.0967(14)
H31A−0.1247050.3063540.2769640.145*
H31B0.0087780.3264310.2786860.145*
H31C−0.0413580.1939180.2841440.145*
C320.0241(4)0.0427(4)0.1268(2)0.1027(16)
H32A0.0575560.0870090.0974810.154*
H32B−0.0575560.0558480.1249580.154*
H32C0.039659−0.0431940.1229560.154*
C330.2434(4)0.8885(3)0.00814(15)0.0856(11)
H33A0.1722500.9327990.0087980.128*
H33B0.2351680.822772−0.0181010.128*
H33C0.3032280.942912−0.0023290.128*
C340.0154(3)0.3320(4)0.00172(14)0.0789(11)
H34−0.0630220.3443220.0049140.095*
C350.0522(4)0.2617(4)−0.04163(15)0.0833(11)
H35−0.0020050.227868−0.0668950.100*
C360.1662(4)0.2413(3)−0.04790(14)0.0744(10)
H360.1905400.194362−0.0770570.089*

Source of material

In a representative experiment 2-aminothiophenol,p-methylbenzaldehyde, iridium trichloride hydrate, 2-ethoxyethanol and sodium N,N′-diethyldithiocarbamate were purchased and used without further purification.

The synthesis of the target compound involves three steps.

In the first step, 2-aminothiophenol (1.250 g, 10 mmol) and p-methyl benzaldehyde (1.500 g, 12 mmol) were dissolved to 25 mL of DMSO under argon atmosphere. The mixture was heated at 473.15 K for 2 h. After cooling, the solution was poured into ice water, and then adjusted the solution to pH 8-9 with saturated Na2CO3 solution. The precipitate was filtered, washed with a great deal of water several times. After dried under vacuum, the crude product was recrystallized from ethanol, and then obtained white crystalline 2-p-tolyl-benzothiazole, yield: 74%. 1H NMR (CDCl3, 400 MHz) δ [ppm]: 8.02 (d, J = 8.4 Hz, 1H), 7.95 (d, J = 8.4 Hz, 2H), 7.85 (d, J = 8.4 Hz, 1H), 7.45 (t, J = 7.6 Hz, 1H), 7.33 (t, J = 7.2 Hz, 1H), 7.26 (d, J = 8.4 Hz, 2H), 2.42 (s, 3H). m.p. = 367.15–369.15 K. Anal. Calcd. for C14H11NS: C, 74.63; H, 4.92; N, 6.22. Found: C, 74.55; H, 4.97; N, 6.26%. MS (FAB): m/e, 227 (M+).

In the second step, iridium trichloride hydrate (0.352 g, 1.0 mmol), combined with 2-p-tolyl-benzothiazole (0.676 g, 3 mmol), were dissolved in a mixture of 2-ethoxyethanol (30 mL) and water (10 mL), and then refluxed for 12 h. The solution was cooled to room temperature, and the resulting orange red precipitate was collected on by filtration and washed with water and ethanol. After dried under vacuum, the cyclometalated chlorido-bridged dimer was obtained and the crude product was directly used for next step without further purification.

In the third step, 1.0 mmol of chlorido-bridged dimer, 3.0 mmol of sodium N,N′-diethyldithiocarbamate and 10.0 mmol anhydrous sodium carbonate were dissolved in 2-ethoxyethanol. The solution was refluxed under argon for 20 h. After cooling to room temperature, small quantity water was added. The resulting orange precipitate was collected by filtration, washed with water, ethanol and hexane, and dried in vacuum. The crude product was purified by column chromatography on silica gel with CH2Cl2/petroleum ether (1:3) as eluent. The target compound were orange powders, yield: 78%. IR (KBr, cm−1): 3030, 2987, 1720, 1604, 1503, 852. 1H NMR (CDCl3, 400 MHz): δ (ppm) 8.02 (m, 2H), 7.86 (m, 2H), 7.54 (d, J = 7.2 Hz, 2H), 7.39 (m, J = 4.4 Hz, 4H), 6.65 (d, J = 7.6 Hz, 2H), 6.20 (s, 4H), 5.09 (s, 4H), 1.26 (m, 4H), O.92 (s, 6H). Anal. Calcd. for C33H30N3S4Ir: C, 50.23; H, 3.83; N, 5.33. Found: C, 50.26; H, 3.88; N, 5.27%. MS (FAB): m/e, 788 (M+).

Experimental details

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances in the range 0.93–0.98 Å, and with Uiso(H) = 1.2 Ueq for aryl H atoms and 1.5 Ueq for the methyl H atoms. Methyl H atoms were allowed to rotate to best fit the experimental electron density.

Comment

Most recently, heavy metal complexes in OLEDs have attracted much attention as efficient phosphors because they can harvest both singlet and triplet excited states, and thus the OLEDs internal efficiency can theoretically reach 100% [5]. Especially iridium(III) complexes with cyclometalated ligands show intense phosphorescence at room temperature and this behavior makes them very promising phosphor dyes in OLEDs [6]. Generally, both the luminescent efficiency and emission wavelength of iridium complexes are greatly affected by the heterocyclic ligands [7]. The emission frequency of the iridium complexes can usually be tuned by the introduction of different heterocyclic ligands [8]. Surprisingly, there is very little work to study iridium (III) complexes with thiazole-based heterocyclic ligands [9]. Also, metal complexes containing dithiolato ligands have been extensively studied. However, only relatively few iridium(III) dithiolato complexes have been described.

In the crystal structure of the target compound, the Ir center resides in a distorted octahedral environment. The nitrogen donors of the two chelating 2-(benzo[d]thiazol-2-yl)-5-methylbenzen-1-ido ligands are in trans posistion to each other, the two carbon atoms are in a cis configuration, which is in accord with the literature [10]. The Ir—C bonds (2.013(3), 2.021(2) Å) are slightly shorter than the Ir—N bond distances (2.0612(19), 2.081(2)) Å). These values are very similar to those in the analogous complexes reported, such as (ppy)2Ir(acac)(ppy: 2-(pyridin-2-yl)benzen-1-ido; acac: acetylacetonato)(Ir—C: 2.020(2) Å; Ir—N: 2.090(10) Å) [11]. The similarity of S—C bond lengths (2.5068(7), 2.4585(7)) Å) indicate that the charge of the N,N′-diethyldithiocarbamate (Et2dtc) ligand is equally delocalized over both sulfur atoms [12]. The C(2)—Ir(1)—C(18) angle for the complex is 88.71(9)° and the N(2)—Ir(1)—N(3) angle is 171.82(8)°, which are almost equal to the idealized value and well accorded with their cis—C—C and trans—N—N dispositions, respectively. The Et2dtc chelate results in an S(5)—Ir(1)—S(4) bond angle of 70.87(2)°, appreciably deviating from the idealized 90° value [13], [14]. The benzothiazole and phenyl moieties in the same cyclometalated ligand are approximately coplanar. The N(2)—Ir(1)—S(5) bond angle of 86.36(5)° indicates that N,N′-diethyldithiocarbamato and 2-(benzo[d]thiazol-2-yl)-5-methylbenzen-1-ido are almost perpendicular to each other.

The packing of the target compound exhibit π⋯π stacking interactions between aromatic rings in neighboring molecules. There are no classical intermolecular hydrogen bonds and intramolecular hydrogen bonds in the structure. In detail, two molecules form a dimer by the aromatic rings in neighboring molecule and these dimers are connected by π⋯π stacking interactions along the a axis of the unit cell, with the face-to-face distances of ca. 3.27 Å, constructing a zigzag chain. Zigzag chains are interacted by π⋯π stacking interactions along the b axis, with the face-to-face distances of ca. 3.32 Å, building up a two-dimensional structure.

The absorption and photoluminescence spectra of the title compound in CH2Cl2 solution were investigated. Intense absorptions between 270 and 360 nm can be assigned to the spin allowed π–π* transitions from cyclometalated ligands. The weaker absorption bands in the range of 325–435 nm can likely be assigned to metal-to-ligand charge transfer (1MLCT) and π–π* transition [15]. The complex displays a broad emission at 508 nm, which has good fluorescence quantum yield, and large Stoke’s shifts (73 nm). The vibronic fine structures in the PL spectrum imply that the emissions predominantly result from ligand-based π–π* transition [16].

Award Identifier / Grant number: 2013CFA034

Award Identifier / Grant number: 20702064

Award Identifier / Grant number: 21177161

Award Identifier / Grant number: 31402137

Funding source: Program for Excellent Talents in Hubei Province

Award Identifier / Grant number: RCJH15001

Funding source: Opening Project of Key Laboratory of Green Catalysis of Sichuan Institutes of High Education

Award Identifier / Grant number: LYZ1107

Award Identifier / Grant number: CZP17077

Funding statement: The authors thank the Natural Science Foundation of Hubei province for Distinguished Yong Scholars (No. 2013CFA034); National Natural Science Foundation of China (Grant Nos. 20702064, 21177161 and 31402137); the Program for Excellent Talents in Hubei Province (RCJH15001); the Opening Project of Key Laboratory of Green Catalysis of Sichuan Institutes of High Education (LYZ1107) and the Fundamental Research Funds for the Central University, South-Central University for Nationalities (CZP17077).

References

1. Oxford Diffraction Ltd. CrysAlisPRO, Abingdon, Oxfordshire, England (2006).Suche in Google Scholar

2. Sheldrick, G. M.: SHELXT – Integrated space-group and crystal-structure determination. Acta Crystallogr. A71 (2015) 3–8.10.1107/S2053273314026370Suche in Google Scholar PubMed PubMed Central

3. Sheldrick, G. M.: Crystal structure refinement with SHELXL. Acta Crystallogr. C71 (2015) 3–8.10.1107/S2053229614024218Suche in Google Scholar PubMed PubMed Central

4. Brandenburg, K.: DIAMOND. Visual Crystal Structure Information System. Ver. 4.0. Crystal Impact, Bonn, Germany (2015).Suche in Google Scholar

5. Wang, Y.; Herron, N.; Grushin, V. V.; Lecloux, D.; Petrov, V.: Highly efficient electroluminescent materials based on fluorinated organometallic iridium compounds. Appl. Phys. Lett. 79 (2001) 449–451.10.1063/1.1384903Suche in Google Scholar

6. Nazeeruddin, M. K.; Humphrybaker, R.; Berner, D.; Rivier, S.; Zuppiroli, L.; Graetzel, M.: Highly phosphorescence iridium complexes and their application in organic light-emitting devices. J. Am. Chem. Soc. 125 (2003) 8790–8797.10.1021/ja021413ySuche in Google Scholar PubMed

7. Si, Y.; Zhang, S.; Gahungu, G.; Yang, J.; Wu, Z.: Modification of the emission colour and quantum efficiency for oxazoline- and thiazoline-containing iridium complexes via different N-O ligands. RSC Adv. 5 (2015) 18464–18470.10.1039/C4RA16269BSuche in Google Scholar

8. Tavasli, M.; Moore, T. N.; Zheng, Y.; Bryce, M. R.; Fox, M. A.; Griffiths, G. C.: Colour tuning from green to red by substituent effects in phosphorescent tris-cyclometalated iridium(iii) complexes of carbazole-based ligands: synthetic, photophysical, computational and high efficiency oled studies. J. Mater. Chem. 22 (2012) 6419–6428.10.1039/c2jm15049bSuche in Google Scholar

9. Chen, L.; Yang, C.; Qin, J.; Jia, G.; Han, Y.; Ma, D.: Synthesis, structure, electrochemistry, photophysics and electroluminescence of 1,3,4-oxadiazole-based ortho-metalated iridium(iii) complexes. J. Organomet. Chem. 691 (2006) 3519–3530.10.1016/j.jorganchem.2006.05.003Suche in Google Scholar

10. Chen, L. Q.; Qu, X. Y.: Synthesis, characterization and crystal structure of iridium(III)bis(2-p-tolyl-benzothiazolato-N,C2) (acetylacetonate). J. Chem. Crystallogr. 39 (2009) 241–245.10.1007/s10870-008-9452-5Suche in Google Scholar

11. Flamigni, L.; Barbieri, A.; Sabatini, C.; Ventura, B.; Barigelletti, F.: Photochemistry and photophysics of coordination compounds: iridium. In: Photochemistry and photophysics of coord ination compounds II. Topics in Current Chemstry, vol 281. (Eds. Balzani, V.; Campagna, S.): Springer, Berlin, Heidelberg (2007).10.1007/128_2007_131Suche in Google Scholar

12. Chen, L. Q.: (N,N-Diethyldithiocarbamato-k2S,S)-bis[2-(2-pyridyl)phenyl-k2C1,N]-iridium(III). Acta Crystallogr. E63 (2007) m2078.10.1107/S1600536807032126Suche in Google Scholar

13. Chen, L. Q.; Wu, Z. D.: Crystal structure of the phosphorescent complex diethyldithiophosphonato-κ2S,S′-bis(2-phenylpyridinato-κ2C,N)iridium(III), C26H26N2O2PS2Ir. Z. Kristallogr. NCS 234 (2019) 669–671.10.1515/ncrs-2019-0020Suche in Google Scholar

14. Katlenok, E. A.; Zolotarev, A. A.; Ivanov, A. Y.; Smirnov, S. N.; Baichurin, R. I.; Balashev, K. P.: Complexes of Ir(III) and Pt(II) with cyclometallated 2-phenylbenzothiazole and chelating diethyldithiocarbamate and O-ethyldithiocarbonate ions: structures and optical and electrochemical properties. Koord. Khim. 42 (2016) 178–186.10.1134/S1070328416030039Suche in Google Scholar

15. Sajoto, T.; Djurovich, P. I.; Tamayo, A.; Yousufuddin, M.; Bau, R.; Thompson, M. E.: Blue and near-UV phosphorescence from iridium complexes with cyclometalated pyrazolyl or N-heterocyclic carbene ligands. Inorg. Chem. 44 (2005) 7992–8003.10.1021/ic051296iSuche in Google Scholar PubMed

16. Lepeltier, M.; Morlet-Savary, F.; Graff, B.; Lalevée, J.; Gigmes, D.; Dumur, F.: Efficient blue green organic light-emitting devices based on a monofluorinated heteroleptic iridium(iii) complex. Synthetic Met. 199 (2015) 139–146.10.1016/j.synthmet.2014.11.025Suche in Google Scholar

Received: 2019-04-29
Accepted: 2019-06-20
Published Online: 2019-07-18
Published in Print: 2019-11-26

©2019 Lianqing Chen et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 Public License.

Artikel in diesem Heft

  1. Frontmatter
  2. Crystal structure of [aqua[2,2′-(1,2-phenylene)bis(1H-imidazole-4-carboxylato-5-carboxy)-κ4N3,N3,O4,O4] zinc(II)] monohydrate, C16H10N4O9Zn⋅H2O
  3. Crystal structure of ethyl 3-(4-methoxyphenyl)-5-methylcarbamoyl-1H-pyrazole-4-carboxylate, C15H17N3O4
  4. 7-(4-Fluorobenzylidene)-3-(4-fluorophenyl)-N-phenyl-3,3a,4,5,6,7-hexahydro-2H-indazole-2-carbothioamide–dimethylformamide (2/1), C27H23F2N3S, 0.5(C3H7NO)
  5. Crystal structure of 4,4′-(hydrazonomethylene)diphenol dihydrate, C13H16N2O4
  6. Crystal structure of 4-methoxyphenyl-3-phenylpropiolate, C16H12O3
  7. Crystal Structure of tris(tetrakis{1-vinyl-1H-imidazole-κN}copper(II)) bis[tri-μ2-bromido-tetrabromido-bis(1-vinyl-1H-imidazole-κN)tetracopper(I)], C80H96N32Cu11Br14
  8. Crystal structure of (E)-2-(3,6-bis(diethylamino)-9H-xanthen-9-yl)-N′-(quinoxalin-2-ylmethylene)benzohydrazide, C37H36N6O2
  9. Crystal structure of 4-(1-phenylimidazo[1,5-a]pyridin-3-yl)benzoic acid (C20H14N2O2)
  10. Crystal structure of 3-fluoro-3-methyl-1-((2-nitrophenyl)sulfonyl)-5,5-diphenylpiperidine, C24H23FN2O4S
  11. Crystal structure of dimethyl 3,12-dibenzyl-6,10-diphenyl-3,12-diazapentacyclo [6.3.1.02.7.04.11.05.9]-dodecane-7,11-dicarboxylate — acetone (2/1), C40H38N2O2 ⋅ 0.5C3H6O
  12. Crystal structure of poly[(μ2-2-(1H-1,2,4-triazol-1-yl)benzoato-κ4O:O′:N:N′)silver(I)] monohydrate, C9H8AgO3N3
  13. Crystal structure of poly[(μ2-9H-carbazole-3,6-dicarboxylate-κ4O1,O2:O3,O4)(μ2-1,3-di(pyridin-4-yl)propane-κ2N:N)cadmium(II)]monohydrate, C27H23N3O5Cd
  14. The synthesis and crystal structure of bis(2-(benzo[d]thiazol-2-yl)-5-methylbenzen-1-ido-κ2C,N)-(N,N′-diethyldithiocarbamato-κ2S,S′)iridium(III), C33H30N3S4Ir
  15. The crystal structure of 5-amino-1-(2,6-dichloro-4-(trifluoromethyl)phenyl)-4-(trifluoromethylsulfonyl)-1H-pyrazole-3-carboxamide, C12H6N4Cl2F6O3S
  16. Synthesis and crystal structure of poly[(μ2-nitrato-κ4O,O′:O′,O′′)-nitrato-κO-(μ2-1,4-bis((1H-imidazol-1-yl)methyl)benzene-κ2N:N′)cadmium(II)], C14H14N6O6Cd
  17. Crystal structure of ethyl (Z)-(4-oxo-4-phenylbut-2-en-2-yl)glycinate, C14H17NO3
  18. Halogen bonds in the crystal structure of 5-bromo-3,4′-bipyridine – 1,4-diiodotetrafluorobenzene (2/1), C26H14Br2F4I2N4
  19. Crystal structure of bis(2,2′-bipyridine-κ2N,N′)-tetrakis(μ2-3-(phenylsulfonamido)propanoato-κ2O:O′)-bis(3-(phenylsulfonamido)propanoato-κ2O,O′)digadolinium(III) – 2,2′-bipyridine (1/1), C84H84Gd2N12O24S6
  20. Crystal structure of poly[aqua(μ2-2-amino-1,4-benzenedisulfonato-κ2O:O′)bis(μ2-pyrazin-κ2N:N′)silver(I)], C14H16Ag2N5O8S2
  21. The crystal structure of 1,6-di-tert-butyl-1,1,3,3,4,4,6,6-octamethyl-2,2,5,5-tetrakis (trimethylsilyl)hexasilane, C28H78Si10
  22. Crystal structure of discandium triruthenium tetrasilicide, Sc2Ru3Si4
  23. Crystal structure of poly[(μ2-4-amino-1,5-naphthalenedisulfonato-κ4O,N:O′, N′)bis(μ2-hexamethylenetetramino-κ2N;N′)silver(I)], {C22H30Ag2N9O6S2}n
  24. Crystal structure of diaqua[5,5′-dicarboxy-2,2′-(propane-1,3-diyl)bis(1H-imidazole-4-carboxylato-κ4O,O′,N,N′)]zinc(II) dihydrate, C13H18N4O12Zn
  25. The crystal structure of poly [(μ3-N1,N4-bis(pyridin-3-yl)cyclohexane-1,4-dicarboxamide-κ3-O:N:N′)-(p-toluenesulfonato-κ2O,O′)silver(I)], C25H27Ag1N4O5S
  26. The crystal structure of 1,2-bis(3-bromophenoxy) ethane, C14H12Br2O2
  27. The crystal structure of 4-(pyren-1-yl)butyl-3-nitrobenzoate, C27H21NO4
  28. Crystal structure of bis[(2-(4-chlorophenyl)-5-methyl-1,3-dioxane-5-carboxylato-κ1O) (5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane-κ4N,N′,N′′,N′′′)]nickel(II), C40H60Cl2N4NiO8
  29. The crystal structure of 1,5-dinitro-2,3,4-trichlorobenzene, C6H1Cl3N2O4
  30. The crystal structure of the solid solution of 3,5-dinitropyrazole and 4-chlorine-3,5-dinitropyrazole, C3H1.24Cl0.76N4O4
  31. The cocrystal structure of 4-nitropyrazole — acetic acid (1/1), C5H7N3O4
  32. The crystal structure of propan-2-one O-(2,4,6-trinitrophenyl) oxime, C9H8N4O7
  33. The crystal structure of ethyl 2-(3-(2-ethoxy-2-oxoethyl)benzo[d] thiazol-2(3H)-ylidene)acetate, C15H17NO4S
  34. Crystal structure of (acetic acid-κ1O)-bis(μ2-2-chlorobenzoato-κ2O:O′)-(2-chlorobenzoato-κ1O)-(μ2-hydroxy-κ2O:O)-bis(1,10-phenanthroline-κ2N,N′)dimanganese(II) — methanol (1/1), C48H37Cl3Mn2N4O10
  35. Crystal structure of 3-methyl-2-phenyl-1,8-naphthyridine, C15H12N2
  36. Crystal structure of chlorido-(5-acetyl-2-(5-methylpyridin-2-yl)benzen-1-ido-κ2C,N)-pyridine-κN-palladium(II), C19H17ClN2OPd
  37. Crystal structure of (4-methyl-benzoato-κ2O,O′)-(5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane-κ4N,N′,N′′,N′′′)nickel(II) perchlorate monohydrate, C24H45ClN4NiO7
  38. Crystal structure of (1,4,7,10,13,16-hexaoxacyclooctadecane-κ6O6) 1,2,3,4,5-pentamethyl-cyclopenta-2,4-dien-1-yl(potassium, rubidium) — ammonia (1/2), [K0.3Rb0.7(18-crown-6)]Cp*⋅2 NH3, C22H45K0.3N2O6Rb0.7
  39. Crystal structure of (3E,5E)-1-((4-fluorophenyl)sulfonyl)-3,5-bis(3-nitrobenzylidene)piperidin-4-one — dichloromethane (2/1), C51H38Cl2F2N6O14S2
  40. Crystal structure of (E)-N′-((1,6-dihydropyren-1-yl)methylene)isonicotinohydrazide — methanol (1/1), C24H19N3O2
  41. Crystal structure of poly[aqua(μ2-2-amino-1,4-benzenedisulfonato-κ3N,O:O′)-(μ4-hexamethylenetetramino-κ4N:N′:N′′:N′′′)disilver(I)] monohydrate, C12H21Ag2N5O8S2
  42. Crystal structure of bis(acridin-10-ium) 2,5-dihydroxyterephthalate — 2,5-dihydroxyterephthalic acid (1/1), C21H15NO6
  43. The crystal structure of 1,12-diazaperylene, C18H10N2
  44. Crystal structure of 1-(5-(4-chlorophenyl)-3-(2-fluorophenyl)-4,5-dihydro-1H-pyrazol-1-yl)ethan-1-one, C17H14N2OFCl
  45. Crystal structure of (4aR,6aR,6bR,10S,12aR)-10-acetoxy-1,2,3,4, 4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a, 12b,13,14b-icosahydro-2,2,4a,6b,9,9,12a-heptamethylpicene-6a-carboxylic acid, C32H50O4
  46. The crystal structure of tetrachlorido-bis{1,3-bis(2,6-diisopropylphenyl)-1H-3λ4-imidazol-2-yl}-(μ2-pyrimidine-κ2N:N′)dipalladium(IV) — dichloromethane (1/2), C60H80Cl8N6Pd2
  47. The crystal structure of (E)-4-(7-methoxy-2-oxo-2H-chromen-8-yl)-2-methylbut-2-en-1-yl 4-nitrobenzoate, C22H19NO7
  48. Crystal structure of 3-methyl-N-(pyrimidin-5-ylmethyl)pyridin-2-amine, C11H12N4
  49. The crystal structure of 2,5-dichloroterephthalic acid dihydrate, C8H8Cl2O6
  50. The crystal structure of 2,4,6-tris[4-(1H-imidazol-1-yl)phenyl]-1,3,5-triazine — dimethylformamide (1/1), C33H28N10O
  51. Crystal structure of N-(adamantan-1-yl)-5-(dimethylamino)naphthalene-1-sulfonamide, C22H28N2O2S
  52. Crystal structure of poly[diaqua-(μ4-4-(3,5-dicarboxy-κ1O-phenoxy)phthalato-κ3O:O′:O′)cadmium(II)], C16H12CdO11
  53. Crystal structure of poly[diaqua-bis(μ2-3-((1H-imidazol-1-yl)methyl)benzoato-κ2N:O)manganese(II)], C22H22MnN4O6
  54. Crystal structure of 9-(3-phenoxyphenyl)-3,4,6,7,9,10-hexahydroacridine-1,8(2H,5H)-dione, C25H23NO3
  55. The crystal structure of poly[(μ3-2,4,6-tris[4-(1H-imidazol-1-yl)phenyl]-1,3,5-triazine-k3N:N′:N′′)-(nitrato-k2O,O)-(nitrato-k1O)zinc(II)] - N,N-dimethylacetamide (1/2), C38H39N13O8Zn
  56. Crystal structure of poly[(μ7-4-(3,5-dicarboxylatophenoxy)phthalato)-(1,10-phenanthroline-κ2N,N′)dizinc(II)], C28H14N2O9Zn2
  57. The crystal structure of methyl 2-(benzylamino)-5-(benzyloxy)benzoate, C22H21NO3
  58. Crystal structure of (1,4,8,11-tetraazacyclotetradecane)palladium(II) tetracyanoplatinate(II), C14H24N8PdPt
  59. Crystal structure of (pyridine-2-carboxylato-κ2N,O)-[2-(2-pyridyl)phenyl-κ2N,C1]palladium(II), C17H12N2O2Pd
  60. Crystal structure of (cyclohexane-1,4-diammonium) 4-[(4-carboxylatophenyl)disulfanyl]benzoate dimethylsulphoxide hydrate (1/1/1/1), [C6H16N2]2+[C14H8O4S2]2−⋅C2H6OS⋅H2O
  61. Crystal structure of the 2:1 co-crystal 2-[(2-carboxyphenyl)disulfanyl]benzoic acid – 3-bromobenzoic acid, 2(C14H10O4S2)⋅C7H5BrO2
  62. Crystal structure of chlorido-dimethyl-(phenylpiperazine-1-carbodithioato-κ2S,S′)tin(IV), C13H19ClN2S2Sn
  63. Crystal structure of (N-n-butyl, N-methyl-dithiocarbamato-κ2 S,S′)-chlorido-dimethyl-tin(IV), C8H18ClNS2Sn
  64. Crystal structure of (2,2′-bipyridyl)bis(4-bromobenzyl)dibromidotin(IV), C24H20Br4N2Sn
  65. Crystal structure of (2,2′-bipyridyl)bis(4-chlorobenzyl)dichloridotin(IV), C24H20Cl4N2Sn
  66. Crystal structure of N-methyl-N-phenyl(methylsulfanyl)carbothioamide, C9H11NS2
  67. Crystal structure of 4-phenylpiperazin-1-ium (4-phenylpiperazin-1-yl)carbothioylsulfanide, [C10H15N2][C11H13N2S2]
  68. Crystal structure of catena-{di-aqua-sodium [n-butyl(methyl)carbamothioyl]sulfanide}n, [C6H16NNaO2S2]n
  69. Crystal structure of (2-([1,1-bis(hydroxymethyl)-2-oxyethyl]iminomethyl)-5-(n-decyl)phenolato)-dimethyl-tin(IV), C23H39NO5Sn
  70. Crystal structure of 4-chloro-N′-[(1E)-(3-ethoxy-2-hydroxyphenyl)methylidene]benzohydrazide – a Z′ = 3 structure, C16H15ClN2O3
Heruntergeladen am 17.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2019-0308/html
Button zum nach oben scrollen