Home Physical Sciences Crystal structure of 5-(adamantan-1-yl)-3-[(4-{[2-(trifluoromethyl)phenyl]-methyl}piperazin-1-yl)methyl]-1,3,4-oxadiazole-2(3H)-thione, C25H31F3N4OS
Article Open Access

Crystal structure of 5-(adamantan-1-yl)-3-[(4-{[2-(trifluoromethyl)phenyl]-methyl}piperazin-1-yl)methyl]-1,3,4-oxadiazole-2(3H)-thione, C25H31F3N4OS

  • Lamya H. Al-Wahaibi , Mohammed S. M. Abdelbaky , Santiago Garcia-Granda , Edward R. T. Tiekink ORCID logo and Ali A. El-Emam ORCID logo EMAIL logo
Published/Copyright: March 20, 2023

Abstract

C25H31F3N4OS, monoclinic, P21/c (no. 14), a = 6.7323(1) Å, b = 15.4999(2) Å, c = 23.7905(4) Å, β = 93.037(2)°, V = 2479.05(6) Å3, Z = 4, R gt(F) = 0.0473, wR ref(F 2) = 0.1394, T = 293 K.

CCDC no.: 2240574

Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Colourless prism
Size: 0.23 × 0.14 × 0.08 mm
Wavelength: Cu Kα radiation (1.54184 Å)
μ: 1.57 mm−1
Diffractometer, scan mode: Xcalibur, ω
θ max, completeness: 75.8°, >99%
N(hkl)measured, N(hkl)unique, R int: 24,330, 5166, 0.050
Criterion for I obs, N(hkl)gt: I obs > 2σ(I obs), 3136
N(param)refined: 307
Programs: CrysAlis PRO [1], Shelx [2, 3], WinGX/Ortep [4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
S1 −0.09578 (11) 0.16702 (5) 0.63594 (4) 0.0801 (2)
F1 0.8781 (3) 0.04924 (17) 0.25876 (10) 0.1340 (9)
F2 0.6426 (3) −0.03222 (12) 0.28323 (8) 0.1013 (6)
F3 0.7992 (3) 0.04584 (14) 0.34408 (8) 0.1031 (6)
O1 0.0216 (2) 0.33007 (10) 0.62257 (7) 0.0601 (4)
N1 0.2281 (3) 0.23816 (12) 0.59120 (8) 0.0559 (5)
N2 0.3088 (3) 0.31956 (12) 0.58235 (8) 0.0572 (5)
N3 0.3537 (3) 0.13038 (12) 0.52531 (7) 0.0537 (5)
N4 0.3135 (3) 0.10859 (12) 0.40671 (7) 0.0526 (5)
C1 0.0540 (3) 0.24310 (15) 0.61580 (10) 0.0572 (6)
C2 0.1811 (3) 0.37180 (15) 0.60157 (9) 0.0526 (5)
C3 0.1950 (3) 0.46720 (15) 0.60646 (9) 0.0520 (5)
C4 0.3496 (4) 0.50188 (18) 0.56737 (12) 0.0734 (7)
H4A 0.477369 0.475005 0.576506 0.088*
H4B 0.310019 0.487802 0.528653 0.088*
C5 −0.0062 (4) 0.51011 (18) 0.59247 (14) 0.0791 (8)
H5A −0.103612 0.489022 0.617747 0.095*
H5B −0.051896 0.495869 0.554241 0.095*
C6 0.2612 (5) 0.49029 (17) 0.66728 (10) 0.0700 (7)
H6A 0.164709 0.468720 0.692704 0.084*
H6B 0.388365 0.463426 0.677169 0.084*
C7 0.3680 (5) 0.59947 (19) 0.57391 (14) 0.0821 (9)
H7 0.467309 0.621228 0.548776 0.099*
C8 0.1678 (5) 0.6414 (2) 0.55883 (15) 0.0950 (10)
H8A 0.179591 0.703652 0.561842 0.114*
H8B 0.125268 0.627291 0.520335 0.114*
C9 0.0155 (5) 0.60895 (19) 0.59865 (17) 0.0908 (10)
H9 −0.113095 0.636503 0.589386 0.109*
C10 0.0819 (5) 0.6299 (2) 0.65882 (17) 0.0993 (11)
H10A 0.093329 0.691904 0.663425 0.119*
H10B −0.016020 0.609059 0.684033 0.119*
C11 0.2795 (5) 0.58811 (19) 0.67329 (13) 0.0844 (9)
H11 0.321910 0.602310 0.712238 0.101*
C12 0.4324 (5) 0.6210 (2) 0.63444 (15) 0.0898 (10)
H12A 0.560236 0.594554 0.644131 0.108*
H12B 0.446545 0.682957 0.638684 0.108*
C13 0.3461 (4) 0.15942 (15) 0.58170 (9) 0.0571 (6)
H13A 0.481342 0.169777 0.596263 0.069*
H13B 0.292698 0.113096 0.603780 0.069*
C14 0.1642 (4) 0.10507 (17) 0.49790 (10) 0.0633 (6)
H14A 0.085192 0.155964 0.488660 0.076*
H14B 0.090878 0.069363 0.523112 0.076*
C15 0.2020 (4) 0.05536 (17) 0.44479 (10) 0.0636 (6)
H15A 0.276738 0.003417 0.454313 0.076*
H15B 0.076148 0.038426 0.426267 0.076*
C16 0.4667 (4) 0.18368 (16) 0.48814 (9) 0.0600 (6)
H16A 0.593188 0.199348 0.506779 0.072*
H16B 0.393824 0.236267 0.479005 0.072*
C17 0.5015 (4) 0.13404 (16) 0.43491 (9) 0.0589 (6)
H17A 0.575578 0.169650 0.409826 0.071*
H17B 0.580129 0.083024 0.444084 0.071*
C18 0.3455 (4) 0.06163 (15) 0.35435 (9) 0.0553 (6)
H18A 0.224520 0.031546 0.342110 0.066*
H18B 0.449607 0.019021 0.361118 0.066*
C19 0.4045 (4) 0.12342 (15) 0.30845 (8) 0.0519 (5)
C20 0.5785 (4) 0.11742 (16) 0.27938 (9) 0.0584 (6)
C21 0.6175 (5) 0.1787 (2) 0.23836 (10) 0.0770 (8)
H21 0.734671 0.175288 0.219452 0.092*
C22 0.4857 (6) 0.2433 (2) 0.22579 (11) 0.0844 (9)
H22 0.513760 0.283883 0.198500 0.101*
C23 0.3129 (5) 0.24902 (19) 0.25294 (12) 0.0806 (9)
H23 0.222076 0.292656 0.243758 0.097*
C24 0.2737 (4) 0.19000 (17) 0.29391 (10) 0.0672 (7)
H24 0.156052 0.194746 0.312471 0.081*
C25 0.7233 (4) 0.0458 (2) 0.29104 (12) 0.0776 (8)

1 Source of material

To a solution of 5-(adamantan-1-yl)-1,3,4-oxadiazole-2(3H)-thione [5] (1.18 g, 5.0 mmol), in ethanol (10 mL), 1-[2-(trifluoromethyl)benzyl]piperazine (1.22 g, 5.0 mmol) and 37% formaldehyde solution (1.0 mL) were added. The resulting mixture was stirred at room temperature for 1 h and allowed to stand overnight. The precipitated product was filtered, washed with cold water, dried and recrystallised from its ethanol solution to yield 2.09 g (85%) of the title compound as colourless prisms. Melting point: 425–427 K (uncorrected). IR (cm−1): ν 3097 (Aromatic C–H), 2907, 2854 & 2813 (Aliphatic C–H), 1607 & 1440 (C=N), 1359 (C=S), 1312 (CF3) and 1244 (C–O–C). 1 H NMR (CDCl3, 250 MHz): δ 1.76 (q, 6H, adamantane-H), 2.02 (s, 6H, adamantane-H), 2.12 (s, 3H, adamantane-H), 2.52 (t, 4H, piperazine-CH2), 2.85 (t, 4H, piperazine-CH2), 3.67 (s, 2H, benzylic CH2), 4.99 (s, 2H, NCH2N), 7.32 (t, 1H, Ar–H), 7.50 (t, 1H, Ar–H), 7.62 (d, 1H, Ar–H), 7.75 (d, 1H, Ar–H). 13 C NMR (CDCl3, 62.9 MHz): d 27.48, 34.39, 36.11, 39.13 (adamantane-C), 50.31, 53.09 (piperazine-C), 58.12 (benzylic CH2), 70.08 (NCH2N), 123.35 (CF3), 125.52, 126.78, 127.70, 130.26, 131.72, 137.53 (Ar–C), 167.84 (C=N), 178.64 (C=S). EI–MS (m/z (Rel. Int.)): 492 (M+, 1), 257 (100), 236 (6), 214 (15), 176 (5), 159 (46), 135 (30), 98 (17), 91 (9), 70 (51).

2 Experimental details

The C-bound H atoms were geometrically placed (C–H = 0.93–0.98 Å) and refined as riding with U iso(H) = 1.2U eq(C).

3 Comment

The adamantanyl residue was identified quite some time ago as a crucial building block for numerous chemotherapeutic agents [6, 7]. In addition, the 1,3,4-oxadiazole heterocycle represents an essential structural scaffold in a number of drugs [8, 9]. In the present study, the crystal structure of the title adamantane-oxadiazole hybrid molecule, which was reported to possess marked, broad-spectrum anti-bacterial activity [5], is described.

The molecular structure is shown in the upper image of the figure (35% probability ellipsoids). The 1,3,4-oxadiazole ring is strictly planar with the appended S1 [0.031(1) Å], C3 [0.087(2) Å] and C13 [0.189(2) Å] atoms all lying to one side of the plane. Nevertheless, the plane through the heterocyclic ring bisects the adamantanyl residue with three carbon atoms above and three below the plane. The substituted phenyl ring is folded to be directed towards the five-membered ring and forms a dihedral angle of 38.12(13)° with it.

There are two literature precedents for the title compound, hereafter (I). These are the terminal N-bound 4-CH2Ph [10] and 4-C(=O)OEt species [11]; hereafter (II) and (III). An overlay diagram of the three related molecules is shown in the lower view of the figure and shows (I)–(III) as the red, green and blue images, respectively; the molecules have been overlapped so the 1,3,4-oxadiazole rings are coincident. While the adamantanyl substituents are in approximately the same orientation, differences are evident in the relative orientations of the (piperazin-1-yl)methyl residues and, in particular, those of the terminal substituents. For the former, the pairs of Cmethylene–Npiperazin-1-ylCmethylene–Cmethylene torsion angles for (I)–(III) are 70.1(3)° & −62.5(3)°, 61.5(6)° & −66.5(6)° and 62.9(5)° & −67.1(5)°, respectively. For the terminal substituents, the different conformations are best highlighted in the dihedral angles between the least-squares planes through the piperazin-1-yl ring, all of which adopt chair conformations, and the phenyl/ethylacetate residues. Thus, the phenyl ring in (II) adopts a perpendicular orientation [dihedral angle = 89.52(16)°] compared with the equivalent angle in (I) of 82.31(7)°. For (III), it should be noted that the 4-C(=O)OEt residue is planar and adopts an all-trans conformation [torsion angles: N4–C18–O3–C19 = 176.9(5)° and C18–O3–C19–C20 = 177.5(6)°]. This residue forms a dihedral angle of 6.5(2)° with the least-squares plane through the piperazin-1-yl ring, indicating a close to co-planar relationship.

According to an analysis of the molecular packing of (I) employing Platon [12], there are no directional interactions in the crystal. Thus, an analysis of the molecular packing was conducted by calculating the Hirshfeld surfaces with CrystalExplorer [13] using standard procedures [14]. This analysis shows that 98.5% of all contacts involve H with these surface contacts being, in order of significance, H⋯H [55.3%], F⋯H/H⋯F [18.5%], S⋯H/H⋯S [10.0%], C⋯H/H⋯C [8.8%], O⋯H/H⋯O [3.5%] and N⋯H/H⋯N [2.4%]. The next most significant surface contacts are only 0.4%, being for each of the S⋯F/F⋯S and O⋯C/C⋯O contacts.


Corresponding author: Ali A. El-Emam, Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt, E-mail:

Acknowledgements

This research was funded by the Princess Nourah bint Abdulrahman University Researchers Supporting Project No. (PNURSP2023R3), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: Princess Nourah bint Abdulrahman University Researchers Supporting Project No. (PNURSP2023R3), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Rigaku Oxford Diffraction. CrysAlisPRO; Rigaku Corporation: Oxford, UK, 2015.Search in Google Scholar

2. Sheldrick, G. M. A short history of Shelx. Acta Crystallogr. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930.Search in Google Scholar PubMed

3. Sheldrick, G. M. Crystal structure refinement with Shelxl. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

4. Farrugia, L. J. WinGX and Ortep for Windows: an update. J. Appl. Crystallogr. 2012, 45, 849–854; https://doi.org/10.1107/s0021889812029111.Search in Google Scholar

5. El-Emam, A. A., Al-Deeb, O. A., Al-Omar, M., Lehmann, J. Synthesis, antimicrobial, and anti-HIV-1 activity of certain 5-(1-adamantyl)-2-substituted thio-1,3,4-oxadiazoles and 5-(1-adamantyl)-3-substituted aminomethyl-1,3,4-oxadiazoline-2-thiones. Bioorg. Med. Chem. 2004, 12, 5107–5113; https://doi.org/10.1016/j.bmc.2004.07.033.Search in Google Scholar PubMed

6. Spilovska, K., Zemek, F., Korabecny, J., Nepovimova, E., Soukup, O., Windisch, M., Kuca, K. Adamantane – a lead structure for drugs in clinical practice. Curr. Med. Chem. 2016, 23, 3245–3266; https://doi.org/10.2174/0929867323666160525114026.Search in Google Scholar PubMed

7. Wanka, L., Iqbal, K., Schreiner, P. R. The lipophilic bullet hits the targets: medicinal chemistry of adamantane derivatives. Chem. Rev. 2013, 113, 3516–3604; https://doi.org/10.1021/cr100264t.Search in Google Scholar PubMed PubMed Central

8. Rana, K., Salahuddin, Sahu, J. K. Significance of 1,3,4-oxadiazole containing compounds in new drug development. Curr. Drug Res. Rev. 2021, 13, 90–100; https://doi.org/10.2174/2589977512666201221162627.Search in Google Scholar PubMed

9. Vaidya, A., Pathak, D., Shah, K. 1,3,4-Oxadiazole and its derivatives: a review on recent progress in anticancer activities. Chem. Biol. Drug Des. 2021, 97, 572–591; https://doi.org/10.1111/cbdd.13795.Search in Google Scholar PubMed

10. El–Emam, A. A., El–Brollosy, N. R., Attia, M. I., Said-Abdelbaky, M., Garcia-Granda, S. 5-(Adamantan-1-yl)-3-[(4-benzylpiperazin-1-yl)methyl]-1,3,4-oxadiazole-2(3H)-thione. Acta Crystallogr. 2012, E68, o2172–o2173; https://doi.org/10.1107/s1600536812027249.Search in Google Scholar

11. Al-Sanea, M. M., Abdelbaky, M. S. M., Mohamed, A. A. B., Garcia-Granda, S., Tiekink, E. R. T., El-Emam, A. A. Crystal structure of ethyl 4-{[5-(adamantan-1-yl)-2-sulfanylidene-2,3-dihydro-1,3,4-oxadiazol-3-yl]methyl}piperazine-1-carboxylate, C20H30N4O3S. Z. Kristallogr. N. Cryst. Struct. 2023, 238, 403–405; https://doi.org/10.1515/ncrs-2022-0536.Search in Google Scholar

12. Spek, A. L. checkCIF validation alerts: what they mean and how to respond. Acta Crystallogr. 2020, E76, 1–11; https://doi.org/10.1107/s2056989019016244.Search in Google Scholar

13. Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D., Spackman, M. A. CrystalExplorer: a program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J. Appl. Crystallogr. 2021, 54, 1006–1011; https://doi.org/10.1107/s1600576721002910.Search in Google Scholar PubMed PubMed Central

14. Tan, S. L., Jotani, M. M., Tiekink, E. R. T. Utilizing Hirshfeld surface calculations, non-covalent interaction (NCI) plots and the calculation of interaction energies in the analysis of molecular packing. Acta Crystallogr. 2019, E75, 308–318; https://doi.org/10.1107/s2056989019001129.Search in Google Scholar

Received: 2023-02-16
Accepted: 2023-03-09
Published Online: 2023-03-20
Published in Print: 2023-06-27

© 2023 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of phenyl(3,3-dichloro-1,3-dihydro-2H-pyrrolo[2,3-b]pyridin-2-one)methanone, C7H4Cl2N2O
  4. Crystal structure of poly[diaqua-bis(μ 2-1,4-diaminobutane-N:N′)cobalt(II)] dichloride, C8H28Cl2CoN4O2
  5. Synthesis and crystal structure of (4aR,7S)-7-hydroxy-7-isopropyl-1,1-dimethyldecahydro-2H,6H-8a,4a-(epoxymethano)phenanthren-12-one, C20H32O3
  6. The crystal structure of 1-(2-chlorobenzyl)-3-(3,5-dichlorophenyl)urea, C14H11Cl3N2O
  7. Crystal structure of tetrapropylammonium-1,3,5-thiadiazole-5-amido-2-carbamate – 1,2,4-thiadiazole-3,5-diamine – water (1/1/1), C17H37N9O3S2
  8. Tetrabutylammonium 1,3,5-thiadiazole-5-amido-2-carbamate—1,2,4-thiadiazole-3,5-diamine— water (1/1/1), C21H45N9O3S2
  9. The crystal structure of ((E)-2,4-dichloro-6-(((2-hydroxy-5-nitrophenyl)imino)methyl)phenolato-κ 3 N,O,O′)tris(pyridine-κN)manganese(II), C28H21Cl2MnN5O4
  10. The crystal structure of aqua-bis{2-bromo-6-((2-(2-phenylacetyl)hydrazineylidene)methyl)phenolato-κ3 N,O,O′}-dimethylformamide-κ1 O-erbium(III) chloride – dimethylformamide – water (1/2/1), C39H49N7O9Br2ClEr
  11. Crystal structure of (diaqua-bis(phenanthroline-K 2 N,N′)-tetrakis(m 2-3,4,5,6-tetrafluorophthalato-K 4 O,O:O′:O″;K 2 O:O′)dierbium (III) phenanthroline (1/2), C80H38Er2F16N8O18
  12. Crystal structure of (E)-7-methoxy-2-(4-methoxy-2-(trifluoromethyl)benzylidene)-3,4-dihydronaphthalen-1(2H)-one, C20H17F3O3
  13. The crystal structure of 4–(4,4,5,5–tetramethyl–1,3,2–dioxaborolan–2–yl)morpholine, C10H20BNO3
  14. The crystal structure of catena–poly[aqua(1-naphthoato-κ 2 O,O′)-(μ-1-naphthoato-κ 4 O:O,O′:O′)lead(II)], C22H16O5Pb
  15. The crystal structure of 1-(4-chlorophenyl)-3-cycloheptylurea, C14H19ClN2O
  16. The crystal structure of 4-(pyren-1-yl)butyl-4-nitrobenzoate, C27H21NO4
  17. Crystal structure of cyclo-(bis(µ2-3,3′-(1H-imidazole-3-ium-1,3-diyl)dipropionato-κ4 O,O′:O″,O″′)-dinitrato-κ2 O,O′-tetraoxido-diuranium(VI) C18H22N6O18U2
  18. The crystal structure of catena-[nitrato-κ 2 O,O′-(μ 3-3-iodobenzene-1,2-dicarboxylato-κ 4 O:O′:O″,O‴)-(2,2′:6′,2″-terpyridine-κ 3 N,N′,N″)lanthanum(III)], C23H14IN4O7La
  19. Redetermination of crystal structure of [bis(pyridin-2-ylmethyl)amine-κ 3 N,,]chloridopalladium(II) chloride monohydrate
  20. Crystal structure of catena-poly[triaqua-[bis(m2-4-(1H-1,2,4-triazol-1-yl)benzoato-k2O:O')-(4-(1H-1,2,4-triazol-1-yl)benzoato-k1O)-praseodymium (III) monohydrate], C27H26N9O10Pr
  21. Crystal structure of trans-diaqua-bis(methyl methylcarbamohydrazonothioato-κ2 N,N′) nickel(II) iodide semihydrate, C6H22N6O2NiS2I2·0.5H2O
  22. The crystal structure of 2-(2-fluoro-4-methyl-5-((2,2,2-trifluoroethyl)thio)phenyl)isoindolin-1-one, C17H13F4NOS
  23. The crystal structure of di-μ-1-naphthylacetato-κ 3 O,O′:O;κ 3 O:O,O′-bis[(1-naphthylacetato-κ 2 O,O′)(2,2′-bipyridine-κ 2 N,N′)lead(II)] monohydrate, C68H54N4O9Pb2
  24. Crystal structure of tetrapropylammonium guanidinium 4,4′-sulfonyldibenzoate monohydrate, C27H44N4O7S
  25. Crystal structure of bis(tetrapropylammonium) terephthalate – 1-(diaminomethylene)thiourea – water (1/2/4) C18H40N5O4S
  26. Crystal structure of (E)-7-fluoro-2-(4-morpholinobenzylidene)-3,4-dihydronaphthalen-1(2H)-one, C21H20FNO2
  27. The crystal structure of poly[diaqua-bis(μ 3-5-bromobenzene-1,3-dicarboxylato-κ 3 O,O,O′)-(μ 2-1,3-bis-(4-pyridyl)-propane-κ 2 N,N′)-dizinc(II))] – 5-bromobenzene-1,3-dicarboxylic acid [2/1], C37H29Br3N2O14Zn2
  28. The crystal structure of 2-bromo-1,3-phenylene bis(4-methylbenzenesulfonate), C20H17BrO6S2
  29. Crystal structure of europium dichromium icosaaluminum, EuCr2Al20
  30. The crystal structure of N1,N3-di((E)-benzylidene) isophthalohydrazide dihydrate, C 22 H 22 N 4 O 4
  31. Crystal structure of 7α,11α-dihydroxy-15-oxo-ent-kauran-16-en-19,6β-olide, C20H26O5
  32. Crystal structure of 4-chloro-N′-[(1E)-pyridin-3-ylmethylidene]benzohydrazide, C13H10ClN3O
  33. The crystal structure of (Z)-3-(1-(2-((E)-4-isopropylbenzylidene)hydrazinyl)ethylidene) chroman-2,4-dione, C21H20N2O3
  34. Crystal structure of E-7-fluoro-2-(2-(trifluoromethyl)benzylidene)-3,4-dihydronaphthalen-1(2H)-one, C18H12F4O
  35. Crystal structure of bis(6-aminopyridine-2-carboxylato–k2O,N)-bis(N,N-dimethylformamide-k1 O)zinc(II), C18H24N6O6Zn
  36. Crystal structure of 5-(adamantan-1-yl)-3-[(4-{[2-(trifluoromethyl)phenyl]-methyl}piperazin-1-yl)methyl]-1,3,4-oxadiazole-2(3H)-thione, C25H31F3N4OS
  37. Crystal structure of tetrapropylammonium bicarbonate–1-(diaminomethylene)thiourea – water (2/2/1), C30H72N10O7S2
  38. Crystal structure of tris(2,2′-bipyridine-κ2 N,N′)iron(II) triiodide – dichloromethane (2/1), C61H50Cl2Fe2I12N12
  39. Crystal structure of 2-amino-3-[2-(1,3,3-trimethyl-1,3-dihydro-indol-2-ylidene)-ethylideneamino]-but-2-enedinitrile, C17H17N5
  40. The crystal structure of 1-(2-chlorophenyl)-3-cycloheptylurea, C14H19ClN2O
  41. Crystal structure of potassium bis(pentaselenido-κ 2 Se 1,Se 5)palladate(II), K2[Pd(Se5)2]
  42. The crystal structure of 5,10-bis(2-methoxyethyl)-5,10-dihydro-[1,2,3,4]tetrathiocino[5,6-b:8, 7-b′]diindole, C22H22N2O2S4
  43. The crystal structure of 4-(4-iodophenyl)-5H-1,2,3-dithiazole-5-thione, C8H4INS3
  44. Crystal structure of bis{μ2-(4-acetyl-phenoxy)acetato-κ2 O:O′}-bis{μ2-(4-acetyl-phenoxy)acetato-κ3 O,O′:O)- bis{(4-acetyl-phenoxy)acetato-κ2 O,O′}-bis(phenanthrolin-κ2 N,N′)didysprosium(III) tetrahydrate, C84H78N4O28Dy2
  45. Crystal structure of Eu2Pd3.37(1)Zn13.63(1)
  46. Crystal structure of 2-methoxy-4-(methoxy-carbonyl)phenyl 2-chloro-4-fluorobenzoate, C16H12ClFO5
  47. Crystal structure of catena-poly[bis(μ2-dicyanamide-κ2 N:N′)-bis(4-vinylpyridine-κN)-copper(II)], C18H14CuN8
  48. The crystal structure of iguratimod-dimethylformamide (1/1), C17H14N2O6S·C3H7NO
  49. Synthesis and crystal structure of 1-((3R,10S,13S,17S)-10,13-dimethyl-3-(m-tolylamino)hexadecahydro-1H-cyclopenta[α]phenanthren-17-yl)ethan-1-one, C28H41NO
  50. The crystal structure of diaqua-bis(4-bromo-2-formylphenoxy)zinc(II), C14H12Br2O6Zn
  51. The crystal structure of tetra(1-ethylimidazole-κ 1 N)-[μ 4-imidazole-4,5-dicarboxylato-κ 4 O, N, O′, N′]-trioxido-divanadium, C25H33N10O7V2
  52. The crystal structure of (E)-N′-(1-(4-fluorophenyl)propylidene)-2-hydroxybenzohydrazide, C16H15FN2O2
Downloaded on 13.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2023-0070/html?lang=en&srsltid=AfmBOoqo7VDzoELdkus1Qrdf2CWW9SkH2xt1kismz8EPBBrOI7RJQ4Hw
Scroll to top button