Home The crystal structure of 1-(2-chlorophenyl)-3-cycloheptylurea, C14H19ClN2O
Article Open Access

The crystal structure of 1-(2-chlorophenyl)-3-cycloheptylurea, C14H19ClN2O

  • Yuanci Li , Zhiqiang Feng and Hongjuan Tong ORCID logo EMAIL logo
Published/Copyright: March 30, 2023

Abstract

C14H19ClN2O, orthorhombic, P212121 (no. 19), a = 8.9579(3) Å, b = 12.2172(4) Å, c = 12.5669(5) Å, V = 1375.33(8) Å3, Z = 4, R gt(F) = 0.0541, wR ref (F 2) = 0.1449, T = 193 K.

CCDC no.: 2248515

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Colorless block
Size 0.57 × 0.48 × 0.41 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 0.27 mm−1
Diffractometer, scan mode: Bruker D8 Discover, φ and ω
θ max, completeness: 29.3°, 99%
N(hkl)measured, N(hkl)unique, R int: 14,926, 3749, 0.054
Criterion for I obs, N(hkl)gt: I obs > 2 σ(I obs), 3022
N(param)refined: 163
Programs: CrysAlisPRO [1], Olex2 [2], SHELX [3, 4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
C1 0.6087 (4) 0.0331 (3) 0.3092 (3) 0.0417 (8)
C2 0.6462 (4) −0.0709 (3) 0.2741 (4) 0.0542 (10)
H2A 0.627276 −0.091697 0.202505 0.065*
C3 0.7108 (5) −0.1435 (3) 0.3431 (4) 0.0663 (13)
H3 0.736201 −0.214952 0.319557 0.080*
C4 0.7390 (5) −0.1129 (3) 0.4474 (4) 0.0579 (10)
H4 0.786016 −0.162825 0.494690 0.069*
C5 0.6988 (4) −0.0094 (3) 0.4828 (3) 0.0448 (8)
H5 0.717223 0.010683 0.554672 0.054*
C6 0.6324 (3) 0.0647 (3) 0.4146 (3) 0.0350 (7)
C7 0.6605 (3) 0.2344 (2) 0.5182 (2) 0.0302 (6)
C8 0.6455 (4) 0.4074 (2) 0.6182 (3) 0.0341 (6)
H8 0.737524 0.376941 0.652107 0.041*
C9 0.5373 (4) 0.4343 (3) 0.7075 (3) 0.0459 (8)
H9A 0.450436 0.473370 0.676989 0.055*
H9B 0.500233 0.364915 0.738511 0.055*
C10 0.6026 (6) 0.5032 (4) 0.7954 (3) 0.0681 (13)
H10A 0.542887 0.490450 0.860527 0.082*
H10B 0.704873 0.476323 0.809831 0.082*
C11 0.6107 (9) 0.6213 (4) 0.7775 (5) 0.099 (2)
H11A 0.685074 0.651143 0.827981 0.119*
H11B 0.512727 0.652617 0.797490 0.119*
C12 0.6497 (6) 0.6651 (3) 0.6674 (4) 0.0704 (13)
H12A 0.556303 0.670449 0.625637 0.084*
H12B 0.689225 0.740258 0.675842 0.084*
C13 0.7598 (5) 0.6006 (3) 0.6041 (5) 0.0757 (16)
H13A 0.841249 0.576414 0.651921 0.091*
H13B 0.804188 0.648841 0.549364 0.091*
C14 0.6937 (6) 0.5005 (3) 0.5495 (4) 0.0642 (12)
H14A 0.606149 0.524849 0.507632 0.077*
H14B 0.768557 0.472473 0.498405 0.077*
Cl1 0.52770 (12) 0.12470 (9) 0.22082 (7) 0.0576 (3)
N1 0.5842 (3) 0.1682 (2) 0.4493 (2) 0.0371 (6)
H1 0.498270 0.192273 0.424702 0.045*
N2 0.5828 (3) 0.3211 (2) 0.5522 (2) 0.0394 (6)
H2 0.488357 0.326145 0.533656 0.047*
O1 0.7912 (2) 0.21490 (17) 0.54628 (17) 0.0347 (5)

1 Source of materials

In a 3-neck round bottom flask, 1-chloro-2-isocyanatobenzene (0.15 g 1 mmol), cycloheptanamine (0.11 g 1 mmol), and dichloromethane (15 mL) were added and stirred under reflux for 5 h. The reaction mixture was cooled to room temperature and then concentrated under reduced pressure to give the crude product. Single crystals suitable for X-ray diffraction were obtained by slow evaporation technique. A solution of the pure compound in ethanol was prepared by slowly adding the crude product (50 mg) to a mixture of ethanol and dichloromethane (10 mL, 1:1 v/v) at room temperature and stirring overnight. The crystal of the title compound was obtained after three days with solution evaporation in the capless bottle.

2 Experimental details

The crystal structure was refined using the SHELXT package [3] in OLEX2 software [4].

3 Comment

Phenylurea herbicides are widely utilized in agriculture for the control of broadleaf weeds in cereal crops [5]. The molecular structure and intermolecular interaction, especially the hydrogen bonds, were the important factors affecting the properties of phenylurea herbicides. This highlights the need for further research on these herbicides. Many phenylurea derivative structures [6], [7], [8], [9], [10], [11], [12], [13], [14] and synthetic methods [15], [16], [17], [18] were reported. In this paper, we show a phenylurea crystal structure named 1-(2-chlorophenyl)-3-cycloheptylurea.

It’s also worth mentioning that crystal structures of other urea derivatives such as 1-[3-(hydroxymethyl) phenyl]-3-phenylurea [15], 1,1′-(propane-1,3-diyl)bis(3-phenylurea) [16], and N, N′–diphenylureas [9] have been reported. The molecular structure of 1-(2-chlorophenyl)-3-cycloheptylurea consists of a cycloheptylurea moiety and a 2-chloroaniline moiety linked through a C–N single bond. The cycloheptyl ring adopts a chair conformation. The 2-chloroaniline moiety is planar, and the N–H bond is involved in hydrogen bonding interactions in the crystal.

The crystal structure of 1-(2-chlorophenyl)-3-cycloheptylurea is made up of a three-dimensional network of hydrogen bonds involving the carbonyl oxygen and the amide nitrogen atoms. The crystal structure can be described as layers of molecules stacked along the a-axis, with the layers held together by N–H⋯O hydrogen bonds (N2–H2⋯O1 and N1–H1⋯O1). The crystal structure of 1-(2-chlorophenyl)-3-cycloheptylurea is similar to other crystal structures of cycloheptylurea derivatives, where the same type of hydrogen bonding interactions is observed [19]. These comparisons can provide insight into the structural features that are important for the formation and stability of the crystal structure [20].


Corresponding author: Hongjuan Tong, Collaborative Innovation Center of Green Manufacturing Technology for Traditional Chinese Medicine in Shaanxi Province, School of Pharmacy, Shaanxi Institute of International Trade & Commerce, Xi’an, China, E-mail:

Funding source: Natural Science Foundation of Shannxi Province

Award Identifier / Grant number: 2019JQ-924

Award Identifier / Grant number: 2021JQ-883

Funding source: Collaborative Innovation Center of Green Manufacturing Technology

Award Identifier / Grant number: 2019XT-1–03

Funding source: Shaanxi University Association for Science and Technology Young Talent Support Program Project

Award Identifier / Grant number: 20210313

Funding source: Key Laboratory of Molecular Imaging and Drug Synthesis of Xianyang City

Award Identifier / Grant number: 2021QXNL-PT-0008

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: Natural Science Foundation of Shannxi Province (2019JQ-924, 2021JQ-883), Key breeding program by Collaborative Innovation Center of Green Manufacturing Technology for Traditional Chinese Medicine in Shaanxi Province (2019XT-1–03), Shaanxi University Association for Science and Technology Young Talent Support Program Project (20210313) and Key Laboratory of Molecular Imaging and Drug Synthesis of Xianyang City (2021QXNL-PT-0008).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Rigaku, O. D. CrysAlisPRO; Rigaku Oxford Diffraction Ltd: Yarnton, Oxfordshire, England, 2017.Search in Google Scholar

2. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

3. Sheldrick, G. M. Crystal structure refinement with Shelxl. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

4. Sheldrick, G. M. SHELXTL – integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8.10.1107/S2053273314026370Search in Google Scholar PubMed PubMed Central

5. Hussain, S., Arshad, M., Springael, D., SøRensen, S. R., Bending, G. D., Devers-Lamrani, M., Maqbool, Z., Martin-Laurent, F. Abiotic and biotic processes governing the fate of phenylurea herbicides in soils: a review. Crit. Rev. Environ. Sci. Technol. 2015, 45, 1947–1998; https://doi.org/10.1080/10643389.2014.1001141.Search in Google Scholar

6. Lefranc, J., Tetlow, D. J., Donnard, M., Minassi, A., Gálvez, E., Clayden, J. Geometry-selective synthesis of E or Z N-vinyl ureas (N-carbamoyl enamines). Org. Lett. 2011, 13, 296–299; https://doi.org/10.1021/ol1027442.Search in Google Scholar PubMed

7. Koshti, V. S., Thorat, S. H., Gote, R. P., Chikkali, S. H., Gonnade, R. G. The impact of modular substitution on crystal packing: the tale of two ureas. CrystEngComm 2016, 18, 7078–7094; https://doi.org/10.1039/c6ce01324d.Search in Google Scholar

8. Wróbel, T. M., Kiełbus, M., Kaczor, A. A., Kryštof, V., Karczmarzyk, Z., Wysocki, W., Fruziński, A., Król, S. K., Grabarska, A., Stepulak, A., Matosiuk, D. Discovery of nitroaryl urea derivatives with antiproliferative properties. J. Enzym. Inhib. Med. Chem. 2016, 31, 608–618; https://doi.org/10.3109/14756366.2015.1057716.Search in Google Scholar PubMed

9. Yamasaki, R., Iida, M., Ito, A., Fukuda, K., Tanatani, A., Kagechika, H., Masu, H., Okamoto, I. Crystal engineering of N, N′-diphenylurea compounds featuring phenyl-perfluorophenyl interaction. Cryst. Growth Des. 2017, 17, 5858–5866; https://doi.org/10.1021/acs.cgd.7b00951.Search in Google Scholar

10. Legrand, Y.-M., Michau, M., van der Lee, A., Barboiu, M. Homomeric and heteromeric self-assembly of hybrid ureido-imidazole compounds. CrystEngComm 2008, 10, 490–492; https://doi.org/10.1039/b717015g.Search in Google Scholar

11. Kasatkina, S. O., Geyl, K. K., Baykov, S. V., Novikov, M. S., Boyarskiy, V. P. “Urea to urea” approach: access to unsymmetrical ureas bearing pyridyl substituents. Adv. Synth. Catal. 2022, 364, 1295–1304; https://doi.org/10.1002/adsc.202101490.Search in Google Scholar

12. Regueiro-Figueroa, M., Djanashvili, K., Esteban–Gómez, D., de Blas, A., Platas-Iglesias, C., Rodríguez-Blas, T. Towards selective recognition of sialic acid through simultaneous binding to its cis-diol and carboxylate functions. Eur. J. Org. Chem. 2010, 2010, 3237–3248; https://doi.org/10.1002/ejoc.201000186.Search in Google Scholar

13. Kang, G., Kim, J., Kwon, E., Kim, T. H. Crystal structure of pencycuron. Acta Crystallogr. 2015, E71, o532; https://doi.org/10.1107/s2056989015012414.Search in Google Scholar

14. Guo, W., Gónzalez-Fabra, J., Bandeira, N. A. G., Bo, C., Kleij, A. W. A metal-free synthesis of N-aryl carbamates under ambient conditions. Angew. Chem. Int. Ed. 2015, 54, 11686–11690; https://doi.org/10.1002/ange.201504956.Search in Google Scholar

15. Choi, H., Shim, Y. S., Han, B. H., Kang, S. K., Sung, C. K. 1-[3-(Hydroxymethyl)phenyl]-3-phenylurea. Acta Crystallogr. 2011, E67, o2094; https://doi.org/10.1107/s1600536811028315.Search in Google Scholar PubMed PubMed Central

16. Pansuriya, P., Naidu, H., Friedrich, H. B., Maguire, G. E. M. 1,1′-(Propane-1,3-diyl)bis(3-phenylurea). Acta Crystallogr. 2011, E67, o2552; https://doi.org/10.1107/s1600536811035343.Search in Google Scholar

17. Gooch, A., McGhee, A. M., Renton, L. C., Plante, J. P., Lindsay, C. I., Wilson, A. J. Design, synthesis and binding properties of conformer-independent linear ADA hydrogen-bonding arrays. Supramol. Chem. 2009, 21, 12–17; https://doi.org/10.1080/10610270802468397.Search in Google Scholar

18. Rajnikant, Dinesh, Deshmukh, M. B., Kamni. Synthesis, x-ray structure and N–H, O interactions in 1,3-d iphenyl-urea. Bull. Mater. Sci. 2006, 29, 239–242; https://doi.org/10.1007/bf02706491.Search in Google Scholar

19. Gao, K., Zha, S.-E., Liu, C.-Y., Wang, Q.-J., Wang, E.-Q. The crystal structure of 1-(4-bromophenyl)-3-cycloheptylurea, C14H19BrN2O. Z. Kristallogr. N. Cryst. Struct. 2023, 238, 117–118; https://doi.org/10.1515/ncrs-2022-0486.Search in Google Scholar

20. Zhu, J.-L., Liu, X.-H. The crystal structure of 2-chloro-N-((2-chlorophenyl)carbamoyl)nicotinamide, C13H9Cl2N3O2. Z. Kristallogr. N. Cryst. Struct. 2022, 237, 787–788; https://doi.org/10.1515/ncrs-2022-0255.Search in Google Scholar

Received: 2023-02-21
Accepted: 2023-03-14
Published Online: 2023-03-30
Published in Print: 2023-06-27

© 2023 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of phenyl(3,3-dichloro-1,3-dihydro-2H-pyrrolo[2,3-b]pyridin-2-one)methanone, C7H4Cl2N2O
  4. Crystal structure of poly[diaqua-bis(μ 2-1,4-diaminobutane-N:N′)cobalt(II)] dichloride, C8H28Cl2CoN4O2
  5. Synthesis and crystal structure of (4aR,7S)-7-hydroxy-7-isopropyl-1,1-dimethyldecahydro-2H,6H-8a,4a-(epoxymethano)phenanthren-12-one, C20H32O3
  6. The crystal structure of 1-(2-chlorobenzyl)-3-(3,5-dichlorophenyl)urea, C14H11Cl3N2O
  7. Crystal structure of tetrapropylammonium-1,3,5-thiadiazole-5-amido-2-carbamate – 1,2,4-thiadiazole-3,5-diamine – water (1/1/1), C17H37N9O3S2
  8. Tetrabutylammonium 1,3,5-thiadiazole-5-amido-2-carbamate—1,2,4-thiadiazole-3,5-diamine— water (1/1/1), C21H45N9O3S2
  9. The crystal structure of ((E)-2,4-dichloro-6-(((2-hydroxy-5-nitrophenyl)imino)methyl)phenolato-κ 3 N,O,O′)tris(pyridine-κN)manganese(II), C28H21Cl2MnN5O4
  10. The crystal structure of aqua-bis{2-bromo-6-((2-(2-phenylacetyl)hydrazineylidene)methyl)phenolato-κ3 N,O,O′}-dimethylformamide-κ1 O-erbium(III) chloride – dimethylformamide – water (1/2/1), C39H49N7O9Br2ClEr
  11. Crystal structure of (diaqua-bis(phenanthroline-K 2 N,N′)-tetrakis(m 2-3,4,5,6-tetrafluorophthalato-K 4 O,O:O′:O″;K 2 O:O′)dierbium (III) phenanthroline (1/2), C80H38Er2F16N8O18
  12. Crystal structure of (E)-7-methoxy-2-(4-methoxy-2-(trifluoromethyl)benzylidene)-3,4-dihydronaphthalen-1(2H)-one, C20H17F3O3
  13. The crystal structure of 4–(4,4,5,5–tetramethyl–1,3,2–dioxaborolan–2–yl)morpholine, C10H20BNO3
  14. The crystal structure of catena–poly[aqua(1-naphthoato-κ 2 O,O′)-(μ-1-naphthoato-κ 4 O:O,O′:O′)lead(II)], C22H16O5Pb
  15. The crystal structure of 1-(4-chlorophenyl)-3-cycloheptylurea, C14H19ClN2O
  16. The crystal structure of 4-(pyren-1-yl)butyl-4-nitrobenzoate, C27H21NO4
  17. Crystal structure of cyclo-(bis(µ2-3,3′-(1H-imidazole-3-ium-1,3-diyl)dipropionato-κ4 O,O′:O″,O″′)-dinitrato-κ2 O,O′-tetraoxido-diuranium(VI) C18H22N6O18U2
  18. The crystal structure of catena-[nitrato-κ 2 O,O′-(μ 3-3-iodobenzene-1,2-dicarboxylato-κ 4 O:O′:O″,O‴)-(2,2′:6′,2″-terpyridine-κ 3 N,N′,N″)lanthanum(III)], C23H14IN4O7La
  19. Redetermination of crystal structure of [bis(pyridin-2-ylmethyl)amine-κ 3 N,,]chloridopalladium(II) chloride monohydrate
  20. Crystal structure of catena-poly[triaqua-[bis(m2-4-(1H-1,2,4-triazol-1-yl)benzoato-k2O:O')-(4-(1H-1,2,4-triazol-1-yl)benzoato-k1O)-praseodymium (III) monohydrate], C27H26N9O10Pr
  21. Crystal structure of trans-diaqua-bis(methyl methylcarbamohydrazonothioato-κ2 N,N′) nickel(II) iodide semihydrate, C6H22N6O2NiS2I2·0.5H2O
  22. The crystal structure of 2-(2-fluoro-4-methyl-5-((2,2,2-trifluoroethyl)thio)phenyl)isoindolin-1-one, C17H13F4NOS
  23. The crystal structure of di-μ-1-naphthylacetato-κ 3 O,O′:O;κ 3 O:O,O′-bis[(1-naphthylacetato-κ 2 O,O′)(2,2′-bipyridine-κ 2 N,N′)lead(II)] monohydrate, C68H54N4O9Pb2
  24. Crystal structure of tetrapropylammonium guanidinium 4,4′-sulfonyldibenzoate monohydrate, C27H44N4O7S
  25. Crystal structure of bis(tetrapropylammonium) terephthalate – 1-(diaminomethylene)thiourea – water (1/2/4) C18H40N5O4S
  26. Crystal structure of (E)-7-fluoro-2-(4-morpholinobenzylidene)-3,4-dihydronaphthalen-1(2H)-one, C21H20FNO2
  27. The crystal structure of poly[diaqua-bis(μ 3-5-bromobenzene-1,3-dicarboxylato-κ 3 O,O,O′)-(μ 2-1,3-bis-(4-pyridyl)-propane-κ 2 N,N′)-dizinc(II))] – 5-bromobenzene-1,3-dicarboxylic acid [2/1], C37H29Br3N2O14Zn2
  28. The crystal structure of 2-bromo-1,3-phenylene bis(4-methylbenzenesulfonate), C20H17BrO6S2
  29. Crystal structure of europium dichromium icosaaluminum, EuCr2Al20
  30. The crystal structure of N1,N3-di((E)-benzylidene) isophthalohydrazide dihydrate, C 22 H 22 N 4 O 4
  31. Crystal structure of 7α,11α-dihydroxy-15-oxo-ent-kauran-16-en-19,6β-olide, C20H26O5
  32. Crystal structure of 4-chloro-N′-[(1E)-pyridin-3-ylmethylidene]benzohydrazide, C13H10ClN3O
  33. The crystal structure of (Z)-3-(1-(2-((E)-4-isopropylbenzylidene)hydrazinyl)ethylidene) chroman-2,4-dione, C21H20N2O3
  34. Crystal structure of E-7-fluoro-2-(2-(trifluoromethyl)benzylidene)-3,4-dihydronaphthalen-1(2H)-one, C18H12F4O
  35. Crystal structure of bis(6-aminopyridine-2-carboxylato–k2O,N)-bis(N,N-dimethylformamide-k1 O)zinc(II), C18H24N6O6Zn
  36. Crystal structure of 5-(adamantan-1-yl)-3-[(4-{[2-(trifluoromethyl)phenyl]-methyl}piperazin-1-yl)methyl]-1,3,4-oxadiazole-2(3H)-thione, C25H31F3N4OS
  37. Crystal structure of tetrapropylammonium bicarbonate–1-(diaminomethylene)thiourea – water (2/2/1), C30H72N10O7S2
  38. Crystal structure of tris(2,2′-bipyridine-κ2 N,N′)iron(II) triiodide – dichloromethane (2/1), C61H50Cl2Fe2I12N12
  39. Crystal structure of 2-amino-3-[2-(1,3,3-trimethyl-1,3-dihydro-indol-2-ylidene)-ethylideneamino]-but-2-enedinitrile, C17H17N5
  40. The crystal structure of 1-(2-chlorophenyl)-3-cycloheptylurea, C14H19ClN2O
  41. Crystal structure of potassium bis(pentaselenido-κ 2 Se 1,Se 5)palladate(II), K2[Pd(Se5)2]
  42. The crystal structure of 5,10-bis(2-methoxyethyl)-5,10-dihydro-[1,2,3,4]tetrathiocino[5,6-b:8, 7-b′]diindole, C22H22N2O2S4
  43. The crystal structure of 4-(4-iodophenyl)-5H-1,2,3-dithiazole-5-thione, C8H4INS3
  44. Crystal structure of bis{μ2-(4-acetyl-phenoxy)acetato-κ2 O:O′}-bis{μ2-(4-acetyl-phenoxy)acetato-κ3 O,O′:O)- bis{(4-acetyl-phenoxy)acetato-κ2 O,O′}-bis(phenanthrolin-κ2 N,N′)didysprosium(III) tetrahydrate, C84H78N4O28Dy2
  45. Crystal structure of Eu2Pd3.37(1)Zn13.63(1)
  46. Crystal structure of 2-methoxy-4-(methoxy-carbonyl)phenyl 2-chloro-4-fluorobenzoate, C16H12ClFO5
  47. Crystal structure of catena-poly[bis(μ2-dicyanamide-κ2 N:N′)-bis(4-vinylpyridine-κN)-copper(II)], C18H14CuN8
  48. The crystal structure of iguratimod-dimethylformamide (1/1), C17H14N2O6S·C3H7NO
  49. Synthesis and crystal structure of 1-((3R,10S,13S,17S)-10,13-dimethyl-3-(m-tolylamino)hexadecahydro-1H-cyclopenta[α]phenanthren-17-yl)ethan-1-one, C28H41NO
  50. The crystal structure of diaqua-bis(4-bromo-2-formylphenoxy)zinc(II), C14H12Br2O6Zn
  51. The crystal structure of tetra(1-ethylimidazole-κ 1 N)-[μ 4-imidazole-4,5-dicarboxylato-κ 4 O, N, O′, N′]-trioxido-divanadium, C25H33N10O7V2
  52. The crystal structure of (E)-N′-(1-(4-fluorophenyl)propylidene)-2-hydroxybenzohydrazide, C16H15FN2O2
Downloaded on 15.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2023-0080/html
Scroll to top button