Home The crystal structure of 4-(4-iodophenyl)-5H-1,2,3-dithiazole-5-thione, C8H4INS3
Article Open Access

The crystal structure of 4-(4-iodophenyl)-5H-1,2,3-dithiazole-5-thione, C8H4INS3

  • Huiyang Liao and Penghui Ni ORCID logo EMAIL logo
Published/Copyright: March 23, 2023

Abstract

C8H4INS3, monoclinic, P21/c (no. 14), a = 11.8060(19) Å, b = 7.8961(14) Å, c = 11.972(2) Å, β =  110.981 ( 2 ) ° , V = 1042.1(3) Å3, Z = 4, R gt (F) = 0.0279, wR ref (F 2) = 0.0739, T = 296(2) K.

CCDC no.: 2243717

Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Brown block
Size: 0.23 × 0.15 × 0.04 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 3.62 mm−1
Diffractometer, scan mode: Bruker Apex-II, φ and ω
θ max, completeness: 27.5°, >99%
N(hkl)measured, N(hkl)unique, R int: 6284, 2398, 0.027
Criterion for I obs, N(hkl)gt: I obs > 2σ(I obs), 2070
N(param)refined: 118
Programs: Bruker [1], Shelx [2, 3], WinGX/Ortep [4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
I1 0.17125 (2) 0.55094 (3) 0.56857 (2) 0.05658 (11)
S1 0.95419 (7) 0.75629 (11) 0.72613 (7) 0.04593 (19)
S2 0.86658 (9) 0.93158 (12) 0.59960 (9) 0.0596 (2)
S3 0.83166 (8) 0.48844(11) 0.80685 (8) 0.0494 (2)
N1 0.7290 (2) 0.8764 (4) 0.5848 (3) 0.0526 (7)
C1 0.3502 (3) 0.6211 (4) 0.5958 (3) 0.0386 (6)
C2 0.4385 (3) 0.5974 (4) 0.7077 (3) 0.0438 (7)
H2 0.417662 0.554721 0.770198 0.053*
C3 0.5577 (3) 0.6374 (4) 0.7259 (3) 0.0405 (6)
H3 0.617351 0.621527 0.800938 0.049*
C4 0.5890 (2) 0.7016 (3) 0.6325 (2) 0.0360(6)
C5 0.7148 (3) 0.7493 (4) 0.6480 (2) 0.0380 (6)
C6 0.8234 (3) 0.6616 (4) 0.7271 (2) 0.0367 (6)
C8 0.4985 (3) 0.7251 (4) 0.5219 (3) 0.0452 (7)
H8 0.518449 0.768256 0.459050 0.054*
C9 0.3794(3) 0.6856 (4) 0.5033 (3) 0.0467 (7)
H9 0.319408 0.702511 0.428621 0.056*

1 Source of material

All chemicals were purchased from commercial sources and used as received without further purification. A mixture of 1-(4-iodophenyl)ethanone O-acetyl oxime (15.1 g, 0.05 mol), S8 (9.6 g, 0.3 mol), CuBr (0.72 g, 0.005 mol), Li2CO3 (1.85 g, 0.025 mol), and DMSO (100 mL) were added successfully to a 250 mL oven-dried reaction flask. The sealed reaction flask was stirred at 130° C for 8 h. After cooling to room temperature, the reaction was diluted with ethyl acetate and water. The organic layer was separated, and the aqueous layer was extracted with ethyl acetate (100 mL) for three times. The combined organic layer was brine and dried over magnesium sulfate and the volatiles were removed under reduced pressure. The residue was purified by column chromatography on silica gel (PE/EA: 20/1) to yield the desired product (7.2 g, 46%) as a brown solid. Subsequently, dissolve 1 g of the target compound in 30 ml of dichloromethane, heat to reflux until the solid is completely dissolved, filtered. Finally, the title crystal was precipitated by controlling solvent volatilization.

2 Experimental details

All H-atoms bonded to C atoms were placed geometrically and refined using a riding model with common isotropic displacement factors U iso(H) = 1.2 or 1.5U eq (parent C-atom).

3 Comment

The 1,2,3-dithiazoles are important fused heterocycles because they show to have a broad biological activity profile, including antibacterial [5], anticancer [6], antifungal/herbicidal [7], and anti-melanin activities [8]. The 1,2,3-dithiazole compounds plays an important role in the mechanism of 1,2,3-dithiazoles as Inhibitors of the Feline Immunodeficiency Virus (FIV) Nucleocapsid Protein via a Proposed Zinc Ejection Mechanism [9].

Single-crystal structure analysis revealed that the title compound crystallized in the monoclinic space group P21/c. The Ortep diagram is presented in Figure. The bond lengths of S1–S2 in the title molecule is 2.0393(13) Å, it is similar to the literature [10], [11], [12]. The bond lengths of C6–S3, C6–S1 and N1–S2 in the title molecule are 1.651(3) Å, 1.719(3) Å and 1.628(3) Å, respectively. They are similar to the literature [13, 14]. The bond length of C1–I1 is 2.094(3) Å, which is similar to those reported in the literature [15], [16].


Corresponding author: Penghui Ni, School of Chemistry and Materials Science, Key Laboratory of Functional Metal–Organic Compounds of Hunan Province, Hengyang Normal University, Hengyang, Hunan 421008, China, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by the Scientific & Technological Projects of Hengyang city (No. 202150063426), Scientific Research Fund of Hunan Provincial Education Department of China (No. 21B0634), Science Foundation of Hengyang Normal University of China (No. 2020QD07) and Key Laboratory of Functional Metal–Organic Compounds of Hunan Province (2022HSKFJJ024).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Bruker. Saint, Apex2 and Sadabs; Bruker AXS Inc.: Madison, WI, USA, 2012.Search in Google Scholar

2. Sheldrick, G. M. Shelxtl – integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8.10.1107/S2053273314026370Search in Google Scholar PubMed PubMed Central

3. Sheldrick, G. M. Crystal structure refinement with Shelxl. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

4. Farrugia, L. J. WinGX and Ortep for Windows: an update. J. Appl. Crystallogr. 2012, 45, 849–854; https://doi.org/10.1107/s0021889812029111.Search in Google Scholar

5. Konstantinova, L. S., Bol’shakov, O. I., Obruchnikova, N. V., Laborie, H., Tanga, A., Sopena, V., Lanneluc, I., Picot, L., Sable, S., Thiery, V., Rakitin, O. A. One-pot synthesis of 5-phenylimino, 5-thieno or 5-oxo-1,2,3-dithiazoles and evaluation of their antimicrobial and antitumor activity. Bioorg. Med. Chem. Lett. 2009, 19, 136–141; https://doi.org/10.1016/j.bmcl.2008.11.010.Search in Google Scholar PubMed

6. Oppedisano, F., Catto, M., Koutentis, P. A., Nicolotti, O., Pochini, L., Koyioni, M., Introcaso, A., Michaelidou, S. S., Carotti, A., Indiveri, C. Inactivation of the glutamine/amino acid transporter ASCT2 by 1,2,3-dithiazoles: proteoliposomes as a tool to gain insights in the molecular mechanism of action and of antitumor activity. Toxicol. Appl. Pharmacol. 2012, 265, 93–102; https://doi.org/10.1016/j.taap.2012.09.011.Search in Google Scholar PubMed

7. Konstantinova, L. S., Bol’shakov, O. A., Obruchnikova, N. V., Golova, S. P., Nelyubina, Y. V., Lyssenko, K. A., Rakitin, O. A. Synthesis of 1,2,5-thiadiazole-3(2H)-thiones and 1,2,5-thiadiazol-3(2H)-ones from 1,2,3-dithiazoles. Mendeleev Commun. 2009, 19, 84–86; https://doi.org/10.1016/j.mencom.2009.03.010.Search in Google Scholar

8. Charalambous, A., Koyioni, M., Antoniades, I., Pegeioti, D., Eleftheriou, I., Michaelidou, S. S., Amelichev, S. A., Konstantinova, L. S., Rakitin, O. A., Koutentis, P. A., Skourides, P. A. 1,2,3–dithiazoles – new reversible melanin synthesis inhibitors: a chemical genomics study. MedChemComm 2015, 6, 935–946; https://doi.org/10.1039/c5md00052a.Search in Google Scholar

9. Asquith, C. R., Konstantinova, L. S., Laitinen, T., Meli, M. L., Poso, A., Rakitin, O. A., Hofmann–Lehmann, R., Hilton, S. T. Evaluation of substituted 1,2,3-dithiazoles as inhibitors of the Feline Immunodeficiency Virus (FIV) nucleocapsid protein via a proposed zinc ejection mechanism. ChemMedChem 2016, 11, 2119–2126; https://doi.org/10.1002/cmdc.201600260.Search in Google Scholar PubMed

10. Mayo, R. A., Morgan, I. S., Soldatov, D. V., Clérac, R., Preuss, K. E. Heisenberg spin chains via chalcogen bonding: noncovalent S, O contacts enable long-range magnetic order. Inorg. Chem. 2021, 60, 11338–11346; https://doi.org/10.1021/acs.inorgchem.1c01287.Search in Google Scholar PubMed

11. Konstantinova, L. S., Baranovsky, I. V., Pritchina, E. A., Mikhailov, M. S., Bagryanskaya, I. Y., Semenov, N. A., Irtegova, I. G., Salnikov, G. E., Lyssenko, K. A., Gritsan, N. P., Zibarev, A. V., Rakitin, O. A. Fused 1,2,3-thiaselenazoles synthesized from 1,2,3-dithiazoles through selective chalcogen exchange. Chem. Eur J. 2017, 23, 17037–17047; https://doi.org/10.1002/chem.201703182.Search in Google Scholar PubMed

12. Konstantinova, L. S., Baranovsky, I. V., Pritchina, E. A., Mikhailov, M. S., Bagryanskaya, I. Y., Semenov, N. A., Irtegova, I. G., Salnikov, G. E., Lyssenko, K. A., Gritsan, N. P., Zibarev, A. V., Rakitin, O. A. Fused 1,2,3-thiaselenazoles synthesized from 1,2,3-dithiazoles through selective chalcogen exchange. Chem. Eur J. 2017, 23, 17037–17047; https://doi.org/10.1002/chem.201703182.Search in Google Scholar PubMed

13. Koyioni, M., Manoli, M., Koutentis, P. A. The reaction of DABCO with 4-chloro-5H-1,2,3-dithiazoles: synthesis and chemistry of 4-[N-(2-chloroethyl)piperazin-1-yl]-5H-1,2,3-dithiazoles. J. Org. Chem. 2016, 81, 615–631; https://doi.org/10.1021/acs.joc.5b02497.Search in Google Scholar PubMed

14. Bo’shakov, O. I., Yushina, I. D., Stash, A. I., Aysin, R. R., Bartashevich, E. V., Rakitin, O. A. Structure and properties of 4-phenyl-5H-1,2,3-dithiazole-5-thione polyiodide with S–I+–S bridged complex. Struct. Chem. 2020, 31, 1729–1737; https://doi.org/10.1007/s11224-020-01584-y.Search in Google Scholar

15. Ranjan, S., Takamizawa, S. Two-dimensional organoferroelasticity in a single crystal of 4-iodoaniline. Cryst. Growth Des. 2022, 22, 1831–1836; https://doi.org/10.1021/acs.cgd.1c01394.Search in Google Scholar

16. Dishman, S. N., Laconsay, C. J., Fettinger, J. C., Tantillo, D. J., Shaw, J. T. Divergent stereochemical outcomes in the insertion of donor/donor carbenes into the C–H bonds of stereogenic centers. Chem. Sci. 2022, 13, 1030–1036; https://doi.org/10.1039/d1sc04622e.Search in Google Scholar PubMed PubMed Central

Received: 2023-02-22
Accepted: 2023-03-09
Published Online: 2023-03-23
Published in Print: 2023-06-27

© 2023 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of phenyl(3,3-dichloro-1,3-dihydro-2H-pyrrolo[2,3-b]pyridin-2-one)methanone, C7H4Cl2N2O
  4. Crystal structure of poly[diaqua-bis(μ 2-1,4-diaminobutane-N:N′)cobalt(II)] dichloride, C8H28Cl2CoN4O2
  5. Synthesis and crystal structure of (4aR,7S)-7-hydroxy-7-isopropyl-1,1-dimethyldecahydro-2H,6H-8a,4a-(epoxymethano)phenanthren-12-one, C20H32O3
  6. The crystal structure of 1-(2-chlorobenzyl)-3-(3,5-dichlorophenyl)urea, C14H11Cl3N2O
  7. Crystal structure of tetrapropylammonium-1,3,5-thiadiazole-5-amido-2-carbamate – 1,2,4-thiadiazole-3,5-diamine – water (1/1/1), C17H37N9O3S2
  8. Tetrabutylammonium 1,3,5-thiadiazole-5-amido-2-carbamate—1,2,4-thiadiazole-3,5-diamine— water (1/1/1), C21H45N9O3S2
  9. The crystal structure of ((E)-2,4-dichloro-6-(((2-hydroxy-5-nitrophenyl)imino)methyl)phenolato-κ 3 N,O,O′)tris(pyridine-κN)manganese(II), C28H21Cl2MnN5O4
  10. The crystal structure of aqua-bis{2-bromo-6-((2-(2-phenylacetyl)hydrazineylidene)methyl)phenolato-κ3 N,O,O′}-dimethylformamide-κ1 O-erbium(III) chloride – dimethylformamide – water (1/2/1), C39H49N7O9Br2ClEr
  11. Crystal structure of (diaqua-bis(phenanthroline-K 2 N,N′)-tetrakis(m 2-3,4,5,6-tetrafluorophthalato-K 4 O,O:O′:O″;K 2 O:O′)dierbium (III) phenanthroline (1/2), C80H38Er2F16N8O18
  12. Crystal structure of (E)-7-methoxy-2-(4-methoxy-2-(trifluoromethyl)benzylidene)-3,4-dihydronaphthalen-1(2H)-one, C20H17F3O3
  13. The crystal structure of 4–(4,4,5,5–tetramethyl–1,3,2–dioxaborolan–2–yl)morpholine, C10H20BNO3
  14. The crystal structure of catena–poly[aqua(1-naphthoato-κ 2 O,O′)-(μ-1-naphthoato-κ 4 O:O,O′:O′)lead(II)], C22H16O5Pb
  15. The crystal structure of 1-(4-chlorophenyl)-3-cycloheptylurea, C14H19ClN2O
  16. The crystal structure of 4-(pyren-1-yl)butyl-4-nitrobenzoate, C27H21NO4
  17. Crystal structure of cyclo-(bis(µ2-3,3′-(1H-imidazole-3-ium-1,3-diyl)dipropionato-κ4 O,O′:O″,O″′)-dinitrato-κ2 O,O′-tetraoxido-diuranium(VI) C18H22N6O18U2
  18. The crystal structure of catena-[nitrato-κ 2 O,O′-(μ 3-3-iodobenzene-1,2-dicarboxylato-κ 4 O:O′:O″,O‴)-(2,2′:6′,2″-terpyridine-κ 3 N,N′,N″)lanthanum(III)], C23H14IN4O7La
  19. Redetermination of crystal structure of [bis(pyridin-2-ylmethyl)amine-κ 3 N,,]chloridopalladium(II) chloride monohydrate
  20. Crystal structure of catena-poly[triaqua-[bis(m2-4-(1H-1,2,4-triazol-1-yl)benzoato-k2O:O')-(4-(1H-1,2,4-triazol-1-yl)benzoato-k1O)-praseodymium (III) monohydrate], C27H26N9O10Pr
  21. Crystal structure of trans-diaqua-bis(methyl methylcarbamohydrazonothioato-κ2 N,N′) nickel(II) iodide semihydrate, C6H22N6O2NiS2I2·0.5H2O
  22. The crystal structure of 2-(2-fluoro-4-methyl-5-((2,2,2-trifluoroethyl)thio)phenyl)isoindolin-1-one, C17H13F4NOS
  23. The crystal structure of di-μ-1-naphthylacetato-κ 3 O,O′:O;κ 3 O:O,O′-bis[(1-naphthylacetato-κ 2 O,O′)(2,2′-bipyridine-κ 2 N,N′)lead(II)] monohydrate, C68H54N4O9Pb2
  24. Crystal structure of tetrapropylammonium guanidinium 4,4′-sulfonyldibenzoate monohydrate, C27H44N4O7S
  25. Crystal structure of bis(tetrapropylammonium) terephthalate – 1-(diaminomethylene)thiourea – water (1/2/4) C18H40N5O4S
  26. Crystal structure of (E)-7-fluoro-2-(4-morpholinobenzylidene)-3,4-dihydronaphthalen-1(2H)-one, C21H20FNO2
  27. The crystal structure of poly[diaqua-bis(μ 3-5-bromobenzene-1,3-dicarboxylato-κ 3 O,O,O′)-(μ 2-1,3-bis-(4-pyridyl)-propane-κ 2 N,N′)-dizinc(II))] – 5-bromobenzene-1,3-dicarboxylic acid [2/1], C37H29Br3N2O14Zn2
  28. The crystal structure of 2-bromo-1,3-phenylene bis(4-methylbenzenesulfonate), C20H17BrO6S2
  29. Crystal structure of europium dichromium icosaaluminum, EuCr2Al20
  30. The crystal structure of N1,N3-di((E)-benzylidene) isophthalohydrazide dihydrate, C 22 H 22 N 4 O 4
  31. Crystal structure of 7α,11α-dihydroxy-15-oxo-ent-kauran-16-en-19,6β-olide, C20H26O5
  32. Crystal structure of 4-chloro-N′-[(1E)-pyridin-3-ylmethylidene]benzohydrazide, C13H10ClN3O
  33. The crystal structure of (Z)-3-(1-(2-((E)-4-isopropylbenzylidene)hydrazinyl)ethylidene) chroman-2,4-dione, C21H20N2O3
  34. Crystal structure of E-7-fluoro-2-(2-(trifluoromethyl)benzylidene)-3,4-dihydronaphthalen-1(2H)-one, C18H12F4O
  35. Crystal structure of bis(6-aminopyridine-2-carboxylato–k2O,N)-bis(N,N-dimethylformamide-k1 O)zinc(II), C18H24N6O6Zn
  36. Crystal structure of 5-(adamantan-1-yl)-3-[(4-{[2-(trifluoromethyl)phenyl]-methyl}piperazin-1-yl)methyl]-1,3,4-oxadiazole-2(3H)-thione, C25H31F3N4OS
  37. Crystal structure of tetrapropylammonium bicarbonate–1-(diaminomethylene)thiourea – water (2/2/1), C30H72N10O7S2
  38. Crystal structure of tris(2,2′-bipyridine-κ2 N,N′)iron(II) triiodide – dichloromethane (2/1), C61H50Cl2Fe2I12N12
  39. Crystal structure of 2-amino-3-[2-(1,3,3-trimethyl-1,3-dihydro-indol-2-ylidene)-ethylideneamino]-but-2-enedinitrile, C17H17N5
  40. The crystal structure of 1-(2-chlorophenyl)-3-cycloheptylurea, C14H19ClN2O
  41. Crystal structure of potassium bis(pentaselenido-κ 2 Se 1,Se 5)palladate(II), K2[Pd(Se5)2]
  42. The crystal structure of 5,10-bis(2-methoxyethyl)-5,10-dihydro-[1,2,3,4]tetrathiocino[5,6-b:8, 7-b′]diindole, C22H22N2O2S4
  43. The crystal structure of 4-(4-iodophenyl)-5H-1,2,3-dithiazole-5-thione, C8H4INS3
  44. Crystal structure of bis{μ2-(4-acetyl-phenoxy)acetato-κ2 O:O′}-bis{μ2-(4-acetyl-phenoxy)acetato-κ3 O,O′:O)- bis{(4-acetyl-phenoxy)acetato-κ2 O,O′}-bis(phenanthrolin-κ2 N,N′)didysprosium(III) tetrahydrate, C84H78N4O28Dy2
  45. Crystal structure of Eu2Pd3.37(1)Zn13.63(1)
  46. Crystal structure of 2-methoxy-4-(methoxy-carbonyl)phenyl 2-chloro-4-fluorobenzoate, C16H12ClFO5
  47. Crystal structure of catena-poly[bis(μ2-dicyanamide-κ2 N:N′)-bis(4-vinylpyridine-κN)-copper(II)], C18H14CuN8
  48. The crystal structure of iguratimod-dimethylformamide (1/1), C17H14N2O6S·C3H7NO
  49. Synthesis and crystal structure of 1-((3R,10S,13S,17S)-10,13-dimethyl-3-(m-tolylamino)hexadecahydro-1H-cyclopenta[α]phenanthren-17-yl)ethan-1-one, C28H41NO
  50. The crystal structure of diaqua-bis(4-bromo-2-formylphenoxy)zinc(II), C14H12Br2O6Zn
  51. The crystal structure of tetra(1-ethylimidazole-κ 1 N)-[μ 4-imidazole-4,5-dicarboxylato-κ 4 O, N, O′, N′]-trioxido-divanadium, C25H33N10O7V2
  52. The crystal structure of (E)-N′-(1-(4-fluorophenyl)propylidene)-2-hydroxybenzohydrazide, C16H15FN2O2
Downloaded on 15.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2023-0084/html
Scroll to top button