Home Crystal structure of catena-poly[bis(μ2-dicyanamide-κ2 N:N′)-bis(4-vinylpyridine-κN)-copper(II)], C18H14CuN8
Article Open Access

Crystal structure of catena-poly[bis(μ2-dicyanamide-κ2 N:N′)-bis(4-vinylpyridine-κN)-copper(II)], C18H14CuN8

  • Chong Tan ORCID logo , Tong Zhang ORCID logo and Xiaodong Yi ORCID logo EMAIL logo
Published/Copyright: April 12, 2023

Abstract

C18H14CuN8, triclinic, P1̄ (no. 2), a = 7.2431(5) Å, b = 7.3783(5) Å, c = 9.8740(6) Å, α = 110.174(6)°, β = 105.036(5)°, γ = 92.219(5)°, V = 473.55(6) Å3, Z = 1, R gt (F) = 0.0409, wR ref (F 2) = 0.1272, T = 293(2) K.

CCDC no.: 2245520

Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Green flaky
Size: 0.48 × 0.30 × 0.10 mm
Wavelength: Cu Kα radiation (1.54184 Å)
μ: 1.79 mm−1
Diffractometer, scan mode: XtaLAB Synergy, ω
θ max, completeness: 78.1°, 99%
N(hkl)measured, N(hkl)unique, R int: 4781, 1910, 0.031
Criterion for I obs, N(hkl)gt: I obs > 2σ(I obs), 1707
N(param)refined: 124
Programs: CrysAlisPRO [1], SHELX [2]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom X y z U iso*/U eq
C1 0.6756 (5) 0.6146 (4) 0.8808 (3) 0.0539 (7)
C2 0.7038 (5) 0.3042 (5) 0.8647 (3) 0.0569 (7)
C3 0.0990 (5) 0.8996 (5) 0.8057 (4) 0.0630 (8)
H3 0.073409 0.944071 0.898388 0.076*
C4 −0.0544 (5) 0.8346 (6) 0.6765 (4) 0.0671 (9)
H4 −0.179890 0.836007 0.683699 0.081*
C5 0.3136 (5) 0.8367 (5) 0.6697 (3) 0.0553 (7)
H5 0.440650 0.836950 0.666057 0.066*
C6 0.1672 (5) 0.7691 (5) 0.5358 (3) 0.0590 (8)
H6 0.196614 0.724446 0.444629 0.071*
C7 −0.0237 (5) 0.7676 (5) 0.5366 (3) 0.0563 (7)
C8 −0.1879 (5) 0.6990 (6) 0.3983 (4) 0.0717 (9)
H8 −0.310322 0.706631 0.411502 0.086*
C9 −0.1812 (6) 0.6299 (7) 0.2617 (4) 0.0822 (11)
H9A −0.062582 0.618937 0.241866 0.099*
H9B −0.294868 0.590820 0.182522 0.099*
Cu01 0.500000 1.000000 1.000000 0.0494 (2)
N1 0.6281 (4) 0.7643 (4) 0.9217 (3) 0.0596 (7)
N2 0.7320 (6) 0.4499 (5) 0.8229 (5) 0.0967 (13)
N3 0.6832 (5) 0.1683 (4) 0.8900 (4) 0.0750 (8)
N4 0.2815 (4) 0.9019 (3) 0.8043 (3) 0.0498 (5)

1 Source of material

The 10 mL of Cu(ClO4)2·6H2O (116 mg, 0.5 mmol) and 4-vinylpyridine (105 mg, 1.0 mmol) ethanol solution was added to a 10 mL aqueous solution of sodium dicyanamide (89 mg, 1 mmol) with severely stirring at 80 °C. The mixture was stirred for 10 min and then cooled to room temperature. After few minutes, green flaky crystals were collected, washed by ethanol, and dried in air, yield 60% (based on 4-vinylpyridine).

2 Experimental details

The structure was solved by Direct Methods and refined by full-matrix least-squares method on F 2 with anisotropic thermal parameters for all non-hydrogen atoms. The hydrogen atom positions were determined by theoretical calculations and refined with an isotropic displacement factor.

3 Comment

Metal-based coordination polymers have attracted much attention in the fields of coordination chemistry and crystal engineering. Nitrogen-containing organic ligands containing unsaturated groups have been used to assemble hypergolic fuels due to their unique activities. Moreover, high-energy dicandiamine ions (DCA) also have great advantages in regulating the structure and properties of compounds. In this work, we present a 1D coordination polymer based on 4-vinylpyridine and DCA [3], [4], [5], [6], [7], [8], [9], [10], [11].

The title crystal structure belongs to the triclinic space group P 1 (no. 2), and features a 1D chain. Each asymmetric unit contains half a Cu(II) atom, a bridging dicyanamide anion and a 4-vinylpyridine. The Cu1 atom is six-coordinated by two nitrogen atoms (N4, N4#3) from two 4-vinylpyridine ligands and four nitrogen atoms (N3#2, N1, N3#4, N1#3) from four dicyanamide anions, forming a distorted octahedral geometry with the Cu–N distances being in the normal range of 2.013(3)–2.456(4) Å. Each dicyanamide anion displays a μ2-coordination style (see the figure) to link the neighboring Cu(II) atom to form an infinite 1D chain with a Cu(II) ⋯ Cu(II) distance of 7.3783(5) Å along the b-axis. The N–Cu–N angles vary from 88.11(11) to 180.0°. These values match with the previously reported Cu(II) compounds. Furthermore, these chains are stacked via van der Waals forces to produce a 3D supramolecular structure along the b-axis.


Corresponding author: Xiaodong Yi, CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, and State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002 Fuzhou, Fujian, P.R. China, E-mail:

Acknowledgements

We thank the Center of Testing and Analysis, Fujian Institute of Research on the Structure of Matter, for support.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Agilent Technologies. CrysAlisPRO. Agilent Technologies: Santa Clara, CA, USA, 2017.Search in Google Scholar

2. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930.Search in Google Scholar

3. Jin, Y., Shi, Y., Zhang, W., Qi, X., Xia, H., Zhang, Q. Cationic effect on properties related to thermal stability and ignition delay for hypergolic ionic liquids. J. Mol. Liq. 2021, 336, 116572; https://doi.org/10.1016/j.molliq.2021.116572.Search in Google Scholar

4. Li, Z., Zhong, Y., Liang, L., Feng, Y., Zhang, J., Zhang, T., Zhang, Y. Hypergolic coordination compounds as modifiers for ionic liquid propulsion. Chem. Eng. J. 2021, 423, 130187; https://doi.org/10.1016/j.cej.2021.130187.Search in Google Scholar

5. Liu, F.-Q., Li, R.-X., Li, S.-X., Sun, L.-S., Liu, G.-Y., Tetra-μ-acetato-κ8O:O′-bis[(4-vinylpyridine-κN)copper(II)](Cu–Cu). Acta Crystallogr. 2007, E63, m2455.Search in Google Scholar

6. Liu, T., Qi, X., Huang, S., Jiang, L., Li, J., Tang, C., Zhang, Q. Exploiting hydrophobic borohydride-rich ionic liquids as faster-igniting rocket fuels. Chem. Commun. 2016, 52, 2031–2034; https://doi.org/10.1039/c5cc09737a.Search in Google Scholar

7. Taş, M., Karabağ, E., Titiz, A., Kaya, M., Ataseven, M., Dal, H. Synthesis and characterization of tetrakis-μ-[N-phenylanthranilato](O,O′)-bis[(4-vinylpyridine copper(II)] complex. Z. für Kristallogr. Cryst. Mater. 2013, 228, 92–99, https://doi.org/10.1524/zkri.2013.1583.Search in Google Scholar

8. Volz, D., Nieger, M., Friedrichs, J., Baumann, T., Bräse, S. Small change, big red shift: syntheses, structure and photoluminescence of Cu2Br2(Ph3P)2py2 (py=pyridine, 4-vinylpyridine). Inorg. Chem. Commun. 2013, 37, 106–109; https://doi.org/10.1016/j.inoche.2013.09.023.Search in Google Scholar

9. Xu, Y., Wang, Y., Zhong, Y., Lei, G., Li, Z., Zhang, J., Zhang, T. High-energy metal-organic frameworks with a dicyanamide linker for hypergolic fuels. Inorg. Chem. 2021, 60, 5100–5106; https://doi.org/10.1021/acs.inorgchem.1c00109.Search in Google Scholar

10. Yang, R., Sun, Y., Zhao, D., Guo, L. Synthesis of asymmetric binuclear copper(I) complexes containing 4-vinylpyridine and bis(diphenylphosphino) methane. J. Coord. Chem. 2010, 56, 1169–1177; https://doi.org/10.1080/00958970310001624465.Search in Google Scholar

11. Zhao, J. Tetrakis(μ-2-chloro-benzoato-κO:O′)bis-[(4-vinyl-pyridine- κN)copper(II)]. Acta Crystallogr. 2008, E64, m1336.Search in Google Scholar

Received: 2023-03-03
Accepted: 2023-03-24
Published Online: 2023-04-12
Published in Print: 2023-06-27

© 2023 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of phenyl(3,3-dichloro-1,3-dihydro-2H-pyrrolo[2,3-b]pyridin-2-one)methanone, C7H4Cl2N2O
  4. Crystal structure of poly[diaqua-bis(μ 2-1,4-diaminobutane-N:N′)cobalt(II)] dichloride, C8H28Cl2CoN4O2
  5. Synthesis and crystal structure of (4aR,7S)-7-hydroxy-7-isopropyl-1,1-dimethyldecahydro-2H,6H-8a,4a-(epoxymethano)phenanthren-12-one, C20H32O3
  6. The crystal structure of 1-(2-chlorobenzyl)-3-(3,5-dichlorophenyl)urea, C14H11Cl3N2O
  7. Crystal structure of tetrapropylammonium-1,3,5-thiadiazole-5-amido-2-carbamate – 1,2,4-thiadiazole-3,5-diamine – water (1/1/1), C17H37N9O3S2
  8. Tetrabutylammonium 1,3,5-thiadiazole-5-amido-2-carbamate—1,2,4-thiadiazole-3,5-diamine— water (1/1/1), C21H45N9O3S2
  9. The crystal structure of ((E)-2,4-dichloro-6-(((2-hydroxy-5-nitrophenyl)imino)methyl)phenolato-κ 3 N,O,O′)tris(pyridine-κN)manganese(II), C28H21Cl2MnN5O4
  10. The crystal structure of aqua-bis{2-bromo-6-((2-(2-phenylacetyl)hydrazineylidene)methyl)phenolato-κ3 N,O,O′}-dimethylformamide-κ1 O-erbium(III) chloride – dimethylformamide – water (1/2/1), C39H49N7O9Br2ClEr
  11. Crystal structure of (diaqua-bis(phenanthroline-K 2 N,N′)-tetrakis(m 2-3,4,5,6-tetrafluorophthalato-K 4 O,O:O′:O″;K 2 O:O′)dierbium (III) phenanthroline (1/2), C80H38Er2F16N8O18
  12. Crystal structure of (E)-7-methoxy-2-(4-methoxy-2-(trifluoromethyl)benzylidene)-3,4-dihydronaphthalen-1(2H)-one, C20H17F3O3
  13. The crystal structure of 4–(4,4,5,5–tetramethyl–1,3,2–dioxaborolan–2–yl)morpholine, C10H20BNO3
  14. The crystal structure of catena–poly[aqua(1-naphthoato-κ 2 O,O′)-(μ-1-naphthoato-κ 4 O:O,O′:O′)lead(II)], C22H16O5Pb
  15. The crystal structure of 1-(4-chlorophenyl)-3-cycloheptylurea, C14H19ClN2O
  16. The crystal structure of 4-(pyren-1-yl)butyl-4-nitrobenzoate, C27H21NO4
  17. Crystal structure of cyclo-(bis(µ2-3,3′-(1H-imidazole-3-ium-1,3-diyl)dipropionato-κ4 O,O′:O″,O″′)-dinitrato-κ2 O,O′-tetraoxido-diuranium(VI) C18H22N6O18U2
  18. The crystal structure of catena-[nitrato-κ 2 O,O′-(μ 3-3-iodobenzene-1,2-dicarboxylato-κ 4 O:O′:O″,O‴)-(2,2′:6′,2″-terpyridine-κ 3 N,N′,N″)lanthanum(III)], C23H14IN4O7La
  19. Redetermination of crystal structure of [bis(pyridin-2-ylmethyl)amine-κ 3 N,,]chloridopalladium(II) chloride monohydrate
  20. Crystal structure of catena-poly[triaqua-[bis(m2-4-(1H-1,2,4-triazol-1-yl)benzoato-k2O:O')-(4-(1H-1,2,4-triazol-1-yl)benzoato-k1O)-praseodymium (III) monohydrate], C27H26N9O10Pr
  21. Crystal structure of trans-diaqua-bis(methyl methylcarbamohydrazonothioato-κ2 N,N′) nickel(II) iodide semihydrate, C6H22N6O2NiS2I2·0.5H2O
  22. The crystal structure of 2-(2-fluoro-4-methyl-5-((2,2,2-trifluoroethyl)thio)phenyl)isoindolin-1-one, C17H13F4NOS
  23. The crystal structure of di-μ-1-naphthylacetato-κ 3 O,O′:O;κ 3 O:O,O′-bis[(1-naphthylacetato-κ 2 O,O′)(2,2′-bipyridine-κ 2 N,N′)lead(II)] monohydrate, C68H54N4O9Pb2
  24. Crystal structure of tetrapropylammonium guanidinium 4,4′-sulfonyldibenzoate monohydrate, C27H44N4O7S
  25. Crystal structure of bis(tetrapropylammonium) terephthalate – 1-(diaminomethylene)thiourea – water (1/2/4) C18H40N5O4S
  26. Crystal structure of (E)-7-fluoro-2-(4-morpholinobenzylidene)-3,4-dihydronaphthalen-1(2H)-one, C21H20FNO2
  27. The crystal structure of poly[diaqua-bis(μ 3-5-bromobenzene-1,3-dicarboxylato-κ 3 O,O,O′)-(μ 2-1,3-bis-(4-pyridyl)-propane-κ 2 N,N′)-dizinc(II))] – 5-bromobenzene-1,3-dicarboxylic acid [2/1], C37H29Br3N2O14Zn2
  28. The crystal structure of 2-bromo-1,3-phenylene bis(4-methylbenzenesulfonate), C20H17BrO6S2
  29. Crystal structure of europium dichromium icosaaluminum, EuCr2Al20
  30. The crystal structure of N1,N3-di((E)-benzylidene) isophthalohydrazide dihydrate, C 22 H 22 N 4 O 4
  31. Crystal structure of 7α,11α-dihydroxy-15-oxo-ent-kauran-16-en-19,6β-olide, C20H26O5
  32. Crystal structure of 4-chloro-N′-[(1E)-pyridin-3-ylmethylidene]benzohydrazide, C13H10ClN3O
  33. The crystal structure of (Z)-3-(1-(2-((E)-4-isopropylbenzylidene)hydrazinyl)ethylidene) chroman-2,4-dione, C21H20N2O3
  34. Crystal structure of E-7-fluoro-2-(2-(trifluoromethyl)benzylidene)-3,4-dihydronaphthalen-1(2H)-one, C18H12F4O
  35. Crystal structure of bis(6-aminopyridine-2-carboxylato–k2O,N)-bis(N,N-dimethylformamide-k1 O)zinc(II), C18H24N6O6Zn
  36. Crystal structure of 5-(adamantan-1-yl)-3-[(4-{[2-(trifluoromethyl)phenyl]-methyl}piperazin-1-yl)methyl]-1,3,4-oxadiazole-2(3H)-thione, C25H31F3N4OS
  37. Crystal structure of tetrapropylammonium bicarbonate–1-(diaminomethylene)thiourea – water (2/2/1), C30H72N10O7S2
  38. Crystal structure of tris(2,2′-bipyridine-κ2 N,N′)iron(II) triiodide – dichloromethane (2/1), C61H50Cl2Fe2I12N12
  39. Crystal structure of 2-amino-3-[2-(1,3,3-trimethyl-1,3-dihydro-indol-2-ylidene)-ethylideneamino]-but-2-enedinitrile, C17H17N5
  40. The crystal structure of 1-(2-chlorophenyl)-3-cycloheptylurea, C14H19ClN2O
  41. Crystal structure of potassium bis(pentaselenido-κ 2 Se 1,Se 5)palladate(II), K2[Pd(Se5)2]
  42. The crystal structure of 5,10-bis(2-methoxyethyl)-5,10-dihydro-[1,2,3,4]tetrathiocino[5,6-b:8, 7-b′]diindole, C22H22N2O2S4
  43. The crystal structure of 4-(4-iodophenyl)-5H-1,2,3-dithiazole-5-thione, C8H4INS3
  44. Crystal structure of bis{μ2-(4-acetyl-phenoxy)acetato-κ2 O:O′}-bis{μ2-(4-acetyl-phenoxy)acetato-κ3 O,O′:O)- bis{(4-acetyl-phenoxy)acetato-κ2 O,O′}-bis(phenanthrolin-κ2 N,N′)didysprosium(III) tetrahydrate, C84H78N4O28Dy2
  45. Crystal structure of Eu2Pd3.37(1)Zn13.63(1)
  46. Crystal structure of 2-methoxy-4-(methoxy-carbonyl)phenyl 2-chloro-4-fluorobenzoate, C16H12ClFO5
  47. Crystal structure of catena-poly[bis(μ2-dicyanamide-κ2 N:N′)-bis(4-vinylpyridine-κN)-copper(II)], C18H14CuN8
  48. The crystal structure of iguratimod-dimethylformamide (1/1), C17H14N2O6S·C3H7NO
  49. Synthesis and crystal structure of 1-((3R,10S,13S,17S)-10,13-dimethyl-3-(m-tolylamino)hexadecahydro-1H-cyclopenta[α]phenanthren-17-yl)ethan-1-one, C28H41NO
  50. The crystal structure of diaqua-bis(4-bromo-2-formylphenoxy)zinc(II), C14H12Br2O6Zn
  51. The crystal structure of tetra(1-ethylimidazole-κ 1 N)-[μ 4-imidazole-4,5-dicarboxylato-κ 4 O, N, O′, N′]-trioxido-divanadium, C25H33N10O7V2
  52. The crystal structure of (E)-N′-(1-(4-fluorophenyl)propylidene)-2-hydroxybenzohydrazide, C16H15FN2O2
Downloaded on 15.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2023-0100/html
Scroll to top button