Home The crystal structure of catena–poly[aqua(1-naphthoato-κ 2 O,O′)-(μ-1-naphthoato-κ 4 O:O,O′:O′)lead(II)], C22H16O5Pb
Article Open Access

The crystal structure of catena–poly[aqua(1-naphthoato-κ 2 O,O′)-(μ-1-naphthoato-κ 4 O:O,O′:O′)lead(II)], C22H16O5Pb

  • Jiahong Li , Zheyu Deng , Biao Li , Jiaqi Ou and Xiaoming Zhu ORCID logo EMAIL logo
Published/Copyright: February 22, 2023

Abstract

C22H16O5Pb, orthorhombic, P212121 (no. 19), a = 7.3395(8) Å, b = 10.7768(11) Å, c = 23.034(3) Å, V = 1821.9(3) Å3, Z = 4, R gt(F) = 0.0327, wR ref(F 2) = 0.0735, T = 296(2) K.

CCDC no.: 1409879

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Colorless block
Size 0.24 × 0.20 × 0.18 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 9.29 mm−1
Diffractometer, scan mode: Bruker APEX-II, φ and ω
θ max, completeness: 26.0°, >99%
N(hkl) measured, N(hkl) unique, R int: 9946, 3545, 0.056
Criterion for I obs, N(hkl) gt: I obs > 2 σ(I obs), 3423
N(param) refined: 255
Programs: Bruker [1], SHELX [2, 3], Diamond [4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
Pb1 0.73035 (4) 0.80457 (3) 0.03859 (2) 0.02730 (12)
O1 0.8849 (9) 0.6349 (7) −0.0172 (3) 0.0349 (17)
O2 0.5902 (9) 0.6350 (6) −0.0105 (3) 0.0363 (17)
O3 0.5682 (9) 0.6904 (9) 0.1218 (3) 0.0489 (18)
O4 0.8631 (9) 0.6604 (7) 0.1136 (3) 0.0429 (19)
O5 0.7246 (11) 0.8886 (7) −0.0714 (3) 0.0540 (19)
H5A 0.807426 0.857132 −0.088028 0.065*
H5B 0.608026 0.882350 −0.086578 0.065*
C1 0.7344 (11) 0.5847 (8) −0.0281 (3) 0.0246 (17)
C2 0.7265 (14) 0.4679 (7) −0.0627 (4) 0.0283 (18)
C3 0.8715 (14) 0.4408 (9) −0.0975 (5) 0.038 (2)
H3 0.973597 0.491835 −0.095887 0.046*
C4 0.8731 (17) 0.3401 (11) −0.1350 (5) 0.052 (3)
H4 0.974594 0.324197 −0.158033 0.063*
C5 0.7264 (18) 0.2660 (9) −0.1378 (5) 0.049 (3)
H5 0.726359 0.199977 −0.163848 0.058*
C6 0.5732 (14) 0.2854 (9) −0.1026 (5) 0.037 (2)
C7 0.4220 (17) 0.2047 (11) −0.1052 (5) 0.055 (3)
H7 0.422440 0.139519 −0.131649 0.066*
C8 0.2777 (19) 0.2204 (10) −0.0703 (6) 0.061 (3)
H8 0.178946 0.166566 −0.072784 0.074*
C9 0.2754 (15) 0.3184 (9) −0.0297 (5) 0.046 (2)
H9 0.175260 0.329211 −0.005481 0.056*
C10 0.4197 (13) 0.3972 (9) −0.0260 (4) 0.033 (2)
H10 0.417855 0.460002 0.001665 0.040*
C11 0.5726 (13) 0.3865 (8) −0.0631 (4) 0.030 (2)
C12 0.7147 (14) 0.6400 (9) 0.1386 (4) 0.033 (2)
C13 0.7076 (14) 0.5518 (8) 0.1896 (4) 0.033 (2)
C14 0.5507 (16) 0.4857 (10) 0.1966 (5) 0.045 (3)
H14 0.452933 0.499507 0.171710 0.054*
C15 0.5354 (17) 0.3962 (10) 0.2412 (6) 0.050 (3)
H15 0.429416 0.349459 0.244642 0.060*
C16 0.6722 (17) 0.3786 (11) 0.2785 (5) 0.047 (3)
H16 0.659402 0.320919 0.308289 0.057*
C17 0.8351 (15) 0.4461 (8) 0.2734 (4) 0.036 (2)
C18 0.9783 (18) 0.4313 (10) 0.3134 (5) 0.049 (3)
H18 0.965086 0.373330 0.342974 0.059*
C19 1.1332 (18) 0.4973 (12) 0.3106 (6) 0.057 (3)
H19 1.225637 0.484550 0.337564 0.068*
C20 1.1533 (16) 0.5850 (12) 0.2668 (5) 0.051 (3)
H20 1.259481 0.631894 0.264884 0.061*
C21 1.0203 (15) 0.6033 (10) 0.2268 (5) 0.041 (3)
H21 1.038048 0.661518 0.197568 0.049*
C22 0.8547 (15) 0.5354 (9) 0.2286 (4) 0.034 (2)

1 Source of material

All chemicals were purchased from commercial sources and used as received. In a typical experiment 2 mmol 1-naphthoic acid and 1 mmol lead acetate were added in CH3OH (50 mL) and refluxed with agitating for 11 h. Then, the reaction solution was filtered. Finally, the title crystal was precipitated by controlling solvent volatilization.

2 Experimental details

All H-atoms bonded to C atoms were placed geometrically and refined using a riding model with common isotropic displacement factors U iso(H) = 1.2 or 1.5 U eq (parent C-atom). The absolute structure was established by refinement of the Flack parameter (−0.018(16) from 1350 selected quotients) using Parsons’ method [5].

3 Comment

In recent years, rational designs and syntheses of coordination polymer of lead have attracted wide attention, owing to their rich structural aesthetics and functionalities [6], [7], [8], [9]. Aromatic organic carboxylic acids are widely used as ligands to construct inorganic and organic hybrid materials [1011]. The different coordination modes make the expected structures much more robust. Deprotonated carboxylate groups can form hydrogen bonds to participate in supermolecular self-assembly with coordination bonds as acceptors [12]. So, the synthesis and crystal structure of the title compound are of great significance to studying the structure and function.

Single-crystal structure analysis reveals that the title compound crystallizes in the orthorhombic space group P212121 and exhibits a chain structure (see the Figure). The Pb(II) ion is seven-coordinated by six carboxylate oxygen atoms from four different 1-naphthalene carboxyl and one water molecule. The Pb–O bond lengths and O–Pb–O angles, all of which are within the range of those observed for other analogical Pb complexes [13, 14], are ranging from 2.382(7) to 2.796(7) Å and 51.1(2)° to 149.2(2)°, respectively.

Intramolecular and intermolecular hydrogen bonds exist in the crystal structure of the title compound. In an infinite chain, the oxygen atom O5 provides one intramolecular hydrogen bond to O4′ and O3″ (O5···O4′ = 2.874(1) Å; O5···O3″ = 2.903(1) Å; ′ = x − 0.5, −y + 1.5, −z; ″ = x + 0.5, −y + 1.5, −z).

It should not be unmentioned that the water free analogous structure has been already reported [15].


Corresponding author: Xiaoming Zhu, School of Chemistry and Materials Science , Hengyang Normal University, Hengyang, Hunan 421008, China, E-mail:

Funding source: Hunan Provincial Natural Science Foundation of China

Award Identifier / Grant number: 2021JJ40010

Funding source: College Students Innovation and Entrepreneurship Training Program of Hunan Province General Project

Award Identifier / Grant number: cxcy2022011

Funding source: Science and Technology Plan Project of Hengyang City

Award Identifier / Grant number: 202002042081

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by the Hunan Provincial Natural Science Foundation of China (No. 2021JJ40010), and College Students Innovation and Entrepreneurship Training Program of Hunan Province General Project (No. cxcy2022011), Science and Technology Plan Project of Hengyang City (No. 202002042081).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Bruker. SAINT, APEX2 and SADABS; Bruker AXS Inc.: Madison, WI, USA, 2012.Search in Google Scholar

2. Sheldrick, G. M. SHELXTL – integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8.10.1107/S2053273314026370Search in Google Scholar PubMed PubMed Central

3. Sheldrick, G. M. Crystal structure refinement with Shelxl. Acta Crystallogr 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

4. Brandenburg, K. DIAMOND. Visual Crystal Structure Information System. Ver. 4.0; Crystal Impact: Bonn, Germany, 2015.Search in Google Scholar

5. Parsons, S., Flack, H. D., Wagner, T. Use of intensity quotients and differences in absolute structure refinement. Acta Crystallogr. 2013, B69, 249–259; https://doi.org/10.1107/s2052519213010014.Search in Google Scholar PubMed PubMed Central

6. Martínez-Casado, F. J., Ramos-Riesco, M., Rodríguez-Cheda, J. A., Cucinotta, F., Matesanz, E., Miletto, I., Gianotti, E., Marchese, L., Mateěj, Z. Unraveling the decomposition process of lead(II) acetate: anhydrous polymorphs, hydrates, and byproducts and room temperature phosphorescence. Inorg. Chem. 2016, 55, 8576–8586; https://doi.org/10.1021/acs.inorgchem.6b01116.Search in Google Scholar PubMed

7. Kowalik, M., Masternak, J., Kazimierczuk, K., Kupcewicz, B., Khavryuchenkod, O. V., Barszcza, B. Exploring thiophene-2-acetate and thiophene-3-acetate binding modes towards the molecular, supramolecular structures and photoluminescence properties of Pb(II) polymers. CrystEngComm 2020, 22, 7025–7035; https://doi.org/10.1039/d0ce01224f.Search in Google Scholar

8. Chen, Y., Hu, C. L., Fang, Z., Li, Y. L., Mao, J. G. From Pb(H2C3N3O3)(OH) to Pb(H2C3N3O3)F: homovalent anion substitution-induced band gap enlargement and birefringence enhancement. Inorg. Chem. 2022, 61, 1778–1786; https://doi.org/10.1021/acs.inorgchem.1c03711.Search in Google Scholar PubMed

9. Kamakura, Y., Chinapang, P., Masaoka, S., Saeki, A., Ogasawara, K., Nishitani, S. R., Yoshikawa, H., Katayama, T., Tamai, N., Sugimoto, K., Tanaka, D. Semiconductive nature of lead-based metal-organic frameworks with three-dimensionally extended sulfur secondary building units. J. Am. Chem. Soc. 2020, 142, 27–32; https://doi.org/10.1021/jacs.9b10436.Search in Google Scholar PubMed

10. Fu, F., Chen, S.-P., Ren, Y.-X., Gao, S.-L. Single crystal structures and fluorescence property of a series of lanthanide coordination polymers incorporating isophthalate. Acta Chim. Sinica 2008, 66, 1663–1668.Search in Google Scholar

11. Yang, J., Miao, J., Dai, J., Yang, L., Zhang, L.-N. Syntheses, crystal structures and properties of two lead(II) complexes with para-substituted benzoic acid and 2,2′-bipyridine co-ligand. Chinese J. Inorg. Chem. 2010, 26, 1992–2000.Search in Google Scholar

12. Shen, W., Hu, W.-J., Wu, X.-Y., Zhao, G.-L. Syntheses, structures and DNA interaction of Zn(II) and Pb(II) complexes based on imidazo-phenanthrolin-phenoxy acetic acid. Chinese J. Inorg. Chem. 2016, 32, 1101–1110.Search in Google Scholar

13. Sarma, R., Jubaraj, B., Baruah, J. B. Solvent coordination in changing dimensionality of lead benzoate coordination polymers. Inorg. Chim. Acta 2009, 362, 4977–4984; https://doi.org/10.1016/j.ica.2009.07.032.Search in Google Scholar

14. Xue, J.-L., Tian, C.-H. Lead(II) coordination polymer with 4-chlorophenoxyacetate as ligand: structure, luminescence and biological bctivity. Chinese J. Inorg. Chem. 2014, 30, 907–912.Search in Google Scholar

15. Hammer, A. C., Jia, X., Zeller, M., Coughlin, E. J., Zhang, W., Oertel, C. M. Ligand geometry directs the packing and symmetry of one-dimensional helical motifs in lead oxide naphthoates and biphenylcarboxylates. CrystEngComm 2020, 22, 6465–6477; https://doi.org/10.1039/d0ce01150a.Search in Google Scholar

Received: 2023-01-19
Accepted: 2023-02-06
Published Online: 2023-02-22
Published in Print: 2023-06-27

© 2023 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of phenyl(3,3-dichloro-1,3-dihydro-2H-pyrrolo[2,3-b]pyridin-2-one)methanone, C7H4Cl2N2O
  4. Crystal structure of poly[diaqua-bis(μ 2-1,4-diaminobutane-N:N′)cobalt(II)] dichloride, C8H28Cl2CoN4O2
  5. Synthesis and crystal structure of (4aR,7S)-7-hydroxy-7-isopropyl-1,1-dimethyldecahydro-2H,6H-8a,4a-(epoxymethano)phenanthren-12-one, C20H32O3
  6. The crystal structure of 1-(2-chlorobenzyl)-3-(3,5-dichlorophenyl)urea, C14H11Cl3N2O
  7. Crystal structure of tetrapropylammonium-1,3,5-thiadiazole-5-amido-2-carbamate – 1,2,4-thiadiazole-3,5-diamine – water (1/1/1), C17H37N9O3S2
  8. Tetrabutylammonium 1,3,5-thiadiazole-5-amido-2-carbamate—1,2,4-thiadiazole-3,5-diamine— water (1/1/1), C21H45N9O3S2
  9. The crystal structure of ((E)-2,4-dichloro-6-(((2-hydroxy-5-nitrophenyl)imino)methyl)phenolato-κ 3 N,O,O′)tris(pyridine-κN)manganese(II), C28H21Cl2MnN5O4
  10. The crystal structure of aqua-bis{2-bromo-6-((2-(2-phenylacetyl)hydrazineylidene)methyl)phenolato-κ3 N,O,O′}-dimethylformamide-κ1 O-erbium(III) chloride – dimethylformamide – water (1/2/1), C39H49N7O9Br2ClEr
  11. Crystal structure of (diaqua-bis(phenanthroline-K 2 N,N′)-tetrakis(m 2-3,4,5,6-tetrafluorophthalato-K 4 O,O:O′:O″;K 2 O:O′)dierbium (III) phenanthroline (1/2), C80H38Er2F16N8O18
  12. Crystal structure of (E)-7-methoxy-2-(4-methoxy-2-(trifluoromethyl)benzylidene)-3,4-dihydronaphthalen-1(2H)-one, C20H17F3O3
  13. The crystal structure of 4–(4,4,5,5–tetramethyl–1,3,2–dioxaborolan–2–yl)morpholine, C10H20BNO3
  14. The crystal structure of catena–poly[aqua(1-naphthoato-κ 2 O,O′)-(μ-1-naphthoato-κ 4 O:O,O′:O′)lead(II)], C22H16O5Pb
  15. The crystal structure of 1-(4-chlorophenyl)-3-cycloheptylurea, C14H19ClN2O
  16. The crystal structure of 4-(pyren-1-yl)butyl-4-nitrobenzoate, C27H21NO4
  17. Crystal structure of cyclo-(bis(µ2-3,3′-(1H-imidazole-3-ium-1,3-diyl)dipropionato-κ4 O,O′:O″,O″′)-dinitrato-κ2 O,O′-tetraoxido-diuranium(VI) C18H22N6O18U2
  18. The crystal structure of catena-[nitrato-κ 2 O,O′-(μ 3-3-iodobenzene-1,2-dicarboxylato-κ 4 O:O′:O″,O‴)-(2,2′:6′,2″-terpyridine-κ 3 N,N′,N″)lanthanum(III)], C23H14IN4O7La
  19. Redetermination of crystal structure of [bis(pyridin-2-ylmethyl)amine-κ 3 N,,]chloridopalladium(II) chloride monohydrate
  20. Crystal structure of catena-poly[triaqua-[bis(m2-4-(1H-1,2,4-triazol-1-yl)benzoato-k2O:O')-(4-(1H-1,2,4-triazol-1-yl)benzoato-k1O)-praseodymium (III) monohydrate], C27H26N9O10Pr
  21. Crystal structure of trans-diaqua-bis(methyl methylcarbamohydrazonothioato-κ2 N,N′) nickel(II) iodide semihydrate, C6H22N6O2NiS2I2·0.5H2O
  22. The crystal structure of 2-(2-fluoro-4-methyl-5-((2,2,2-trifluoroethyl)thio)phenyl)isoindolin-1-one, C17H13F4NOS
  23. The crystal structure of di-μ-1-naphthylacetato-κ 3 O,O′:O;κ 3 O:O,O′-bis[(1-naphthylacetato-κ 2 O,O′)(2,2′-bipyridine-κ 2 N,N′)lead(II)] monohydrate, C68H54N4O9Pb2
  24. Crystal structure of tetrapropylammonium guanidinium 4,4′-sulfonyldibenzoate monohydrate, C27H44N4O7S
  25. Crystal structure of bis(tetrapropylammonium) terephthalate – 1-(diaminomethylene)thiourea – water (1/2/4) C18H40N5O4S
  26. Crystal structure of (E)-7-fluoro-2-(4-morpholinobenzylidene)-3,4-dihydronaphthalen-1(2H)-one, C21H20FNO2
  27. The crystal structure of poly[diaqua-bis(μ 3-5-bromobenzene-1,3-dicarboxylato-κ 3 O,O,O′)-(μ 2-1,3-bis-(4-pyridyl)-propane-κ 2 N,N′)-dizinc(II))] – 5-bromobenzene-1,3-dicarboxylic acid [2/1], C37H29Br3N2O14Zn2
  28. The crystal structure of 2-bromo-1,3-phenylene bis(4-methylbenzenesulfonate), C20H17BrO6S2
  29. Crystal structure of europium dichromium icosaaluminum, EuCr2Al20
  30. The crystal structure of N1,N3-di((E)-benzylidene) isophthalohydrazide dihydrate, C 22 H 22 N 4 O 4
  31. Crystal structure of 7α,11α-dihydroxy-15-oxo-ent-kauran-16-en-19,6β-olide, C20H26O5
  32. Crystal structure of 4-chloro-N′-[(1E)-pyridin-3-ylmethylidene]benzohydrazide, C13H10ClN3O
  33. The crystal structure of (Z)-3-(1-(2-((E)-4-isopropylbenzylidene)hydrazinyl)ethylidene) chroman-2,4-dione, C21H20N2O3
  34. Crystal structure of E-7-fluoro-2-(2-(trifluoromethyl)benzylidene)-3,4-dihydronaphthalen-1(2H)-one, C18H12F4O
  35. Crystal structure of bis(6-aminopyridine-2-carboxylato–k2O,N)-bis(N,N-dimethylformamide-k1 O)zinc(II), C18H24N6O6Zn
  36. Crystal structure of 5-(adamantan-1-yl)-3-[(4-{[2-(trifluoromethyl)phenyl]-methyl}piperazin-1-yl)methyl]-1,3,4-oxadiazole-2(3H)-thione, C25H31F3N4OS
  37. Crystal structure of tetrapropylammonium bicarbonate–1-(diaminomethylene)thiourea – water (2/2/1), C30H72N10O7S2
  38. Crystal structure of tris(2,2′-bipyridine-κ2 N,N′)iron(II) triiodide – dichloromethane (2/1), C61H50Cl2Fe2I12N12
  39. Crystal structure of 2-amino-3-[2-(1,3,3-trimethyl-1,3-dihydro-indol-2-ylidene)-ethylideneamino]-but-2-enedinitrile, C17H17N5
  40. The crystal structure of 1-(2-chlorophenyl)-3-cycloheptylurea, C14H19ClN2O
  41. Crystal structure of potassium bis(pentaselenido-κ 2 Se 1,Se 5)palladate(II), K2[Pd(Se5)2]
  42. The crystal structure of 5,10-bis(2-methoxyethyl)-5,10-dihydro-[1,2,3,4]tetrathiocino[5,6-b:8, 7-b′]diindole, C22H22N2O2S4
  43. The crystal structure of 4-(4-iodophenyl)-5H-1,2,3-dithiazole-5-thione, C8H4INS3
  44. Crystal structure of bis{μ2-(4-acetyl-phenoxy)acetato-κ2 O:O′}-bis{μ2-(4-acetyl-phenoxy)acetato-κ3 O,O′:O)- bis{(4-acetyl-phenoxy)acetato-κ2 O,O′}-bis(phenanthrolin-κ2 N,N′)didysprosium(III) tetrahydrate, C84H78N4O28Dy2
  45. Crystal structure of Eu2Pd3.37(1)Zn13.63(1)
  46. Crystal structure of 2-methoxy-4-(methoxy-carbonyl)phenyl 2-chloro-4-fluorobenzoate, C16H12ClFO5
  47. Crystal structure of catena-poly[bis(μ2-dicyanamide-κ2 N:N′)-bis(4-vinylpyridine-κN)-copper(II)], C18H14CuN8
  48. The crystal structure of iguratimod-dimethylformamide (1/1), C17H14N2O6S·C3H7NO
  49. Synthesis and crystal structure of 1-((3R,10S,13S,17S)-10,13-dimethyl-3-(m-tolylamino)hexadecahydro-1H-cyclopenta[α]phenanthren-17-yl)ethan-1-one, C28H41NO
  50. The crystal structure of diaqua-bis(4-bromo-2-formylphenoxy)zinc(II), C14H12Br2O6Zn
  51. The crystal structure of tetra(1-ethylimidazole-κ 1 N)-[μ 4-imidazole-4,5-dicarboxylato-κ 4 O, N, O′, N′]-trioxido-divanadium, C25H33N10O7V2
  52. The crystal structure of (E)-N′-(1-(4-fluorophenyl)propylidene)-2-hydroxybenzohydrazide, C16H15FN2O2
Downloaded on 15.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2023-0032/html
Scroll to top button