Home The crystal structure of 1-(4-chlorophenyl)-3-cycloheptylurea, C14H19ClN2O
Article Open Access

The crystal structure of 1-(4-chlorophenyl)-3-cycloheptylurea, C14H19ClN2O

  • Qianqian Tang , Hanqi Dai , Guangfu Zhou , Yuanjiang Wu , Wei Wang ORCID logo EMAIL logo and Yang Zhao
Published/Copyright: February 28, 2023

Abstract

C14H19ClN2O, monoclinic, P21/c (no. 14), a = 12.8823(9) Å, b = 9.1617(6) Å, c = 11.7421(9) Å, β = 98.377(7)°, V = 1371.06(17) Å3, Z = 4, R gt (F) = 0.0678, wR ref (F2) = 0.1912, T = 293 K.

CCDC no.: 2240064

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Colourless block
Size: 0.43 × 0.37 × 0.33 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 0.27 mm−1
Diffractometer, scan mode: φ and ω
θ max, completeness: 29.3°, >99%
N(hkl)measured , N(hkl)unique, R int: 6456, 3150, 0.028
Criterion for I obs, N(hkl)gt: I obs > 2 σ(I obs), 2039
N(param)refined: 164
Programs: CrysAlisPRO [1], Olex2 [2], SHELX [3, 4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
C1 0.1781 (2) 0.4030 (3) 0.4453 (3) 0.0486 (7)
C2 0.2794 (2) 0.4315 (3) 0.4254 (3) 0.0486 (7)
H2 0.291555 0.476607 0.357692 0.058*
C3 0.3621 (2) 0.3917 (3) 0.5081 (2) 0.0446 (7)
H3 0.430601 0.408966 0.495354 0.053*
C4 0.34414 (19) 0.3265 (3) 0.6092 (2) 0.0379 (6)
C5 0.2420 (2) 0.3018 (3) 0.6283 (2) 0.0479 (7)
H5 0.229353 0.258863 0.696696 0.057*
C6 0.1587 (2) 0.3408 (3) 0.5457 (3) 0.0532 (8)
H6 0.090075 0.324678 0.558506 0.064*
C7 0.50912 (18) 0.3610 (3) 0.7407 (2) 0.0370 (6)
C8 0.6651 (2) 0.3622 (3) 0.8919 (2) 0.0451 (7)
H8 0.669120 0.463511 0.866093 0.054*
C9 0.7669 (2) 0.2875 (4) 0.8757 (3) 0.0643 (9)
H9A 0.773082 0.288147 0.794352 0.077*
H9B 0.763358 0.186385 0.899297 0.077*
C10 0.8661 (3) 0.3563 (6) 0.9422 (4) 0.1024 (15)
H10A 0.925935 0.303451 0.921673 0.123*
H10B 0.870803 0.455419 0.914420 0.123*
C11 0.8777 (3) 0.3624 (6) 1.0671 (4) 0.1075 (16)
H11A 0.859929 0.266700 1.093934 0.129*
H11B 0.951504 0.378125 1.095035 0.129*
C12 0.8192 (3) 0.4684 (5) 1.1226 (4) 0.0837 (12)
H12A 0.848163 0.563538 1.109187 0.100*
H12B 0.834174 0.450403 1.204743 0.100*
C13 0.7024 (3) 0.4804 (4) 1.0927 (3) 0.0719 (10)
H13A 0.687135 0.574357 1.055995 0.086*
H13B 0.673207 0.481949 1.164285 0.086*
C14 0.6436 (2) 0.3654 (4) 1.0160 (3) 0.0612 (9)
H14A 0.568988 0.380620 1.015417 0.073*
H14B 0.660849 0.270429 1.050067 0.073*
Cl 0.07362 (7) 0.44725 (11) 0.33836 (8) 0.0803 (4)
N1 0.42754 (17) 0.2769 (2) 0.6918 (2) 0.0471 (6)
H1 0.426672 0.186938 0.712617 0.057*
N2 0.57934 (18) 0.2915 (2) 0.8172 (2) 0.0553 (7)
H2A 0.573433 0.198385 0.822662 0.066*
O 0.51665 (14) 0.49159 (18) 0.71584 (17) 0.0465 (5)

Source of materials

1-Chloro-4-isocyanatobenzene and cycloheptylamine were purchased from Aladdin Co. Ltd. and used as received. The 1-(4-chlorophenyl)-3-cycloheptylurea was synthesized using a modified literature procedure [5]. In a dry flask, a mixture of 1-chloro-4-isocyanatobenzene (0.15 g, 1 mmol) and cycloheptylamine (0.11 g, 1 mmol) was stirred in dichloromethane (15 mL). The reaction was monitored by thin-layer chromatography (TLC) on silica gel plates. The resulting precipitate was dried under vacuum at room temperature. The solution was prepared by dissolving 1-(4-chlorophenyl)-3-cycloheptylurea (0.05 g) in ethanol (10 mL) and stirring the solution at room temperature for 20 minutes. The solution was then placed in a vial and left to evaporate at room temperature. The crystals were obtained and collected after three days.

Experimental details

The structure was solved by Direct Methods and refined using the SHELXL program [3]. The structure refinement, and the graphical representation of the structure were performed using the OLEX2 software package [2].

Comment

Urea derivatives have been used as a starting material in the synthesis of a variety of heterocyclic compounds [6]. Many urea derivatives crystals have been reported [7], [8], [9], [10], [11], [12]. In these crystal structures, the hydrogen bond between molecules is the main force for the stacking of molecules into crystals.

1-(4-Chlorophenyl)-3-cycloheptylurea crystallizes in the monoclinic space group P21/c with a unit cell containing four molecules. The structure is stabilized by intermolecular hydrogen bonds. The CPCU molecule consists of a cycloheptylurea ring, with a 4-chlorophenyl group attached to the nitrogen atom. The 4-chlorophenyl group is twisted away from the ring plane with a dihedral angle of 55.4°.

When compared to the isostructural bromocompound of the title compound, 1-(4-bromophenyl)-3-cycloheptylurea (BPBU) [13], the crystal structure of CPCU is similar in many respects. Both molecules contain a cycloheptylurea ring with a phenyl group attached to the nitrogen atom. In CPCU and BPBU, the 4-chlorophenyl group is twisted away from the ring plane with a similar angle. However, the crystal structures of the two molecules differ in the C–X (X=Cl or Br) bonds. The C–Cl bond (1.749(3) Å) is shorter than that of the C–Br bond (1.905(4) Å).

The crystal structure is stabilized by strong intermolecular interactions from hydrogen bonds (N1–H1–O) and (N2–H2A–O). The hydrogen bonds are formed between the hydrogen atoms attached to the nitrogen atoms of the cycloheptylurea ring. The angles of these two hydrogen bonds are 158.07(15)° and 151.13(16)°, and the length are 2.0648(17) Å and 2.2333(17) Å.


Corresponding author: Wei Wang, College of Science & Technology, Ningbo University, Cixi 315302, China, E-mail:

Funding source: National College Students’ Innovation and Entrepreneurship Training Program http://dx.doi.org/10.13039/501100013254

Award Identifier / Grant number: 202213277014

Funding source: K. C. Wong Magna Fund in Ningbo University http://dx.doi.org/10.13039/501100020738

Funding source: HuLan Outstanding Doctor Fund in Ningbo University http://dx.doi.org/10.13039/501100004387

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This research was supported by the National College Students’ Innovation and Entrepreneurship Training Program, China (No. 202213277014). Contract grant sponsors: K. C. Wong Magna Fund and HuLan Outstanding Doctor Fund in Ningbo University.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Rigaku, OD. CrysAlisPRO; Rigaku Oxford Diffraction Ltd: Yarnton: Oxfordshire, England, 2017.Search in Google Scholar

2. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

3. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar PubMed PubMed Central

4. Sheldrick, G. M. SHELXTL – Integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8.10.1107/S2053273314026370Search in Google Scholar PubMed PubMed Central

5. Zhu, Z., Zhang, L. The crystal structure of 1-(4-bromophenyl)-3-(2-chlorobenzyl)urea, C14H12BrClN2O. Z. Kristallogr. N. Cryst. Struct. 2023, 238, 13–14; https://doi.org/10.1515/ncrs-2022-0456.Search in Google Scholar

6. Ghosh, A. K., Brindisi, M. Urea derivatives in modern drug discovery and medicinal chemistry. J. Med. Chem. 2019, 63, 2751–2788; https://doi.org/10.1021/acs.jmedchem.9b01541.Search in Google Scholar PubMed PubMed Central

7. Ali, H., Halim, S. N. A., Khamis, N. A., Yusof, M. S., Yamin, B. M. N-(p–Methoxybenzoyl)-N’-(o-methoxyphenyl) thiourea. Acta. Crystallogr. 2004, E60, o1497–o1498; https://doi.org/10.1107/s1600536804018823.Search in Google Scholar

8. Xu, M., Jupp, A. R., Ong, M. S. E., Burton, K. I., Chitnis, S. S., Stephan, D. W. Synthesis of urea derivatives from CO2 and silylamines. Angew. Chem. Int. Ed. 2019, 58, 5707–5711; https://doi.org/10.1002/ange.201900058.Search in Google Scholar

9. Capacci–Daniel, C. A., Bertke, J. A., Dehghan, S., Hiremath–Darji, R., Swift, J. A. Concomitant polymorphs of 1,3-bis(3-fluorophenyl)urea. Acta. Crystallogr. 2016, C72, 692–696; https://doi.org/10.1107/s2053229616013565.Search in Google Scholar

10. Koshti, V. S., Thorat, S. H., Gote, R. P., Chikkali, S. H., Gonnade, R. G. The impact of modular substitution on crystal packing: the tale of two ureas. CrystEngComm 2016, 18, 7078–7094; https://doi.org/10.1039/c6ce01324d.Search in Google Scholar

11. Choi, H., Shim, Y. S., Lee, S. C., Kang, S. K., Sung, C. K. 1-(2-Hydroxy-2-phenylethyl)-3-(4-methoxyphenyl)urea. Acta. Crystallogr. 2011, E67, o2632; https://doi.org/10.1107/s1600536811036464.Search in Google Scholar

12. Capacci–Daniel, C. A., Mohammadi, C., Urbelis, J. H., Heyrana, K., Khatri, N. M., Solomos, M. A., Swift, J. A. Structural diversity in 1,3-bis(m-cyanophenyl)urea. Cryst. Growth Des. 2015, 15, 2373–2379; https://doi.org/10.1021/acs.cgd.5b00168.Search in Google Scholar

13. Gao, K., Zha, S.-E., Liu, C.-Y., Wang, Q.-J., Wang, E.-Q. The crystal structure of 1-(4-bromophenyl)-3-cycloheptylurea, C14H19BrN2O. Z. Kristallogr. N. Cryst. Struct. 2023, 238, 117–118; https://doi.org/10.1515/ncrs-2022-0486.Search in Google Scholar

Received: 2023-01-19
Accepted: 2023-02-06
Published Online: 2023-02-28
Published in Print: 2023-06-27

© 2023 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of phenyl(3,3-dichloro-1,3-dihydro-2H-pyrrolo[2,3-b]pyridin-2-one)methanone, C7H4Cl2N2O
  4. Crystal structure of poly[diaqua-bis(μ 2-1,4-diaminobutane-N:N′)cobalt(II)] dichloride, C8H28Cl2CoN4O2
  5. Synthesis and crystal structure of (4aR,7S)-7-hydroxy-7-isopropyl-1,1-dimethyldecahydro-2H,6H-8a,4a-(epoxymethano)phenanthren-12-one, C20H32O3
  6. The crystal structure of 1-(2-chlorobenzyl)-3-(3,5-dichlorophenyl)urea, C14H11Cl3N2O
  7. Crystal structure of tetrapropylammonium-1,3,5-thiadiazole-5-amido-2-carbamate – 1,2,4-thiadiazole-3,5-diamine – water (1/1/1), C17H37N9O3S2
  8. Tetrabutylammonium 1,3,5-thiadiazole-5-amido-2-carbamate—1,2,4-thiadiazole-3,5-diamine— water (1/1/1), C21H45N9O3S2
  9. The crystal structure of ((E)-2,4-dichloro-6-(((2-hydroxy-5-nitrophenyl)imino)methyl)phenolato-κ 3 N,O,O′)tris(pyridine-κN)manganese(II), C28H21Cl2MnN5O4
  10. The crystal structure of aqua-bis{2-bromo-6-((2-(2-phenylacetyl)hydrazineylidene)methyl)phenolato-κ3 N,O,O′}-dimethylformamide-κ1 O-erbium(III) chloride – dimethylformamide – water (1/2/1), C39H49N7O9Br2ClEr
  11. Crystal structure of (diaqua-bis(phenanthroline-K 2 N,N′)-tetrakis(m 2-3,4,5,6-tetrafluorophthalato-K 4 O,O:O′:O″;K 2 O:O′)dierbium (III) phenanthroline (1/2), C80H38Er2F16N8O18
  12. Crystal structure of (E)-7-methoxy-2-(4-methoxy-2-(trifluoromethyl)benzylidene)-3,4-dihydronaphthalen-1(2H)-one, C20H17F3O3
  13. The crystal structure of 4–(4,4,5,5–tetramethyl–1,3,2–dioxaborolan–2–yl)morpholine, C10H20BNO3
  14. The crystal structure of catena–poly[aqua(1-naphthoato-κ 2 O,O′)-(μ-1-naphthoato-κ 4 O:O,O′:O′)lead(II)], C22H16O5Pb
  15. The crystal structure of 1-(4-chlorophenyl)-3-cycloheptylurea, C14H19ClN2O
  16. The crystal structure of 4-(pyren-1-yl)butyl-4-nitrobenzoate, C27H21NO4
  17. Crystal structure of cyclo-(bis(µ2-3,3′-(1H-imidazole-3-ium-1,3-diyl)dipropionato-κ4 O,O′:O″,O″′)-dinitrato-κ2 O,O′-tetraoxido-diuranium(VI) C18H22N6O18U2
  18. The crystal structure of catena-[nitrato-κ 2 O,O′-(μ 3-3-iodobenzene-1,2-dicarboxylato-κ 4 O:O′:O″,O‴)-(2,2′:6′,2″-terpyridine-κ 3 N,N′,N″)lanthanum(III)], C23H14IN4O7La
  19. Redetermination of crystal structure of [bis(pyridin-2-ylmethyl)amine-κ 3 N,,]chloridopalladium(II) chloride monohydrate
  20. Crystal structure of catena-poly[triaqua-[bis(m2-4-(1H-1,2,4-triazol-1-yl)benzoato-k2O:O')-(4-(1H-1,2,4-triazol-1-yl)benzoato-k1O)-praseodymium (III) monohydrate], C27H26N9O10Pr
  21. Crystal structure of trans-diaqua-bis(methyl methylcarbamohydrazonothioato-κ2 N,N′) nickel(II) iodide semihydrate, C6H22N6O2NiS2I2·0.5H2O
  22. The crystal structure of 2-(2-fluoro-4-methyl-5-((2,2,2-trifluoroethyl)thio)phenyl)isoindolin-1-one, C17H13F4NOS
  23. The crystal structure of di-μ-1-naphthylacetato-κ 3 O,O′:O;κ 3 O:O,O′-bis[(1-naphthylacetato-κ 2 O,O′)(2,2′-bipyridine-κ 2 N,N′)lead(II)] monohydrate, C68H54N4O9Pb2
  24. Crystal structure of tetrapropylammonium guanidinium 4,4′-sulfonyldibenzoate monohydrate, C27H44N4O7S
  25. Crystal structure of bis(tetrapropylammonium) terephthalate – 1-(diaminomethylene)thiourea – water (1/2/4) C18H40N5O4S
  26. Crystal structure of (E)-7-fluoro-2-(4-morpholinobenzylidene)-3,4-dihydronaphthalen-1(2H)-one, C21H20FNO2
  27. The crystal structure of poly[diaqua-bis(μ 3-5-bromobenzene-1,3-dicarboxylato-κ 3 O,O,O′)-(μ 2-1,3-bis-(4-pyridyl)-propane-κ 2 N,N′)-dizinc(II))] – 5-bromobenzene-1,3-dicarboxylic acid [2/1], C37H29Br3N2O14Zn2
  28. The crystal structure of 2-bromo-1,3-phenylene bis(4-methylbenzenesulfonate), C20H17BrO6S2
  29. Crystal structure of europium dichromium icosaaluminum, EuCr2Al20
  30. The crystal structure of N1,N3-di((E)-benzylidene) isophthalohydrazide dihydrate, C 22 H 22 N 4 O 4
  31. Crystal structure of 7α,11α-dihydroxy-15-oxo-ent-kauran-16-en-19,6β-olide, C20H26O5
  32. Crystal structure of 4-chloro-N′-[(1E)-pyridin-3-ylmethylidene]benzohydrazide, C13H10ClN3O
  33. The crystal structure of (Z)-3-(1-(2-((E)-4-isopropylbenzylidene)hydrazinyl)ethylidene) chroman-2,4-dione, C21H20N2O3
  34. Crystal structure of E-7-fluoro-2-(2-(trifluoromethyl)benzylidene)-3,4-dihydronaphthalen-1(2H)-one, C18H12F4O
  35. Crystal structure of bis(6-aminopyridine-2-carboxylato–k2O,N)-bis(N,N-dimethylformamide-k1 O)zinc(II), C18H24N6O6Zn
  36. Crystal structure of 5-(adamantan-1-yl)-3-[(4-{[2-(trifluoromethyl)phenyl]-methyl}piperazin-1-yl)methyl]-1,3,4-oxadiazole-2(3H)-thione, C25H31F3N4OS
  37. Crystal structure of tetrapropylammonium bicarbonate–1-(diaminomethylene)thiourea – water (2/2/1), C30H72N10O7S2
  38. Crystal structure of tris(2,2′-bipyridine-κ2 N,N′)iron(II) triiodide – dichloromethane (2/1), C61H50Cl2Fe2I12N12
  39. Crystal structure of 2-amino-3-[2-(1,3,3-trimethyl-1,3-dihydro-indol-2-ylidene)-ethylideneamino]-but-2-enedinitrile, C17H17N5
  40. The crystal structure of 1-(2-chlorophenyl)-3-cycloheptylurea, C14H19ClN2O
  41. Crystal structure of potassium bis(pentaselenido-κ 2 Se 1,Se 5)palladate(II), K2[Pd(Se5)2]
  42. The crystal structure of 5,10-bis(2-methoxyethyl)-5,10-dihydro-[1,2,3,4]tetrathiocino[5,6-b:8, 7-b′]diindole, C22H22N2O2S4
  43. The crystal structure of 4-(4-iodophenyl)-5H-1,2,3-dithiazole-5-thione, C8H4INS3
  44. Crystal structure of bis{μ2-(4-acetyl-phenoxy)acetato-κ2 O:O′}-bis{μ2-(4-acetyl-phenoxy)acetato-κ3 O,O′:O)- bis{(4-acetyl-phenoxy)acetato-κ2 O,O′}-bis(phenanthrolin-κ2 N,N′)didysprosium(III) tetrahydrate, C84H78N4O28Dy2
  45. Crystal structure of Eu2Pd3.37(1)Zn13.63(1)
  46. Crystal structure of 2-methoxy-4-(methoxy-carbonyl)phenyl 2-chloro-4-fluorobenzoate, C16H12ClFO5
  47. Crystal structure of catena-poly[bis(μ2-dicyanamide-κ2 N:N′)-bis(4-vinylpyridine-κN)-copper(II)], C18H14CuN8
  48. The crystal structure of iguratimod-dimethylformamide (1/1), C17H14N2O6S·C3H7NO
  49. Synthesis and crystal structure of 1-((3R,10S,13S,17S)-10,13-dimethyl-3-(m-tolylamino)hexadecahydro-1H-cyclopenta[α]phenanthren-17-yl)ethan-1-one, C28H41NO
  50. The crystal structure of diaqua-bis(4-bromo-2-formylphenoxy)zinc(II), C14H12Br2O6Zn
  51. The crystal structure of tetra(1-ethylimidazole-κ 1 N)-[μ 4-imidazole-4,5-dicarboxylato-κ 4 O, N, O′, N′]-trioxido-divanadium, C25H33N10O7V2
  52. The crystal structure of (E)-N′-(1-(4-fluorophenyl)propylidene)-2-hydroxybenzohydrazide, C16H15FN2O2
Downloaded on 15.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2023-0033/html
Scroll to top button