Home The crystal structure of 4-(pyren-1-yl)butyl-4-nitrobenzoate, C27H21NO4
Article Open Access

The crystal structure of 4-(pyren-1-yl)butyl-4-nitrobenzoate, C27H21NO4

  • Claudio Barrientos , Juan Arturo Squella and Silvana Moris ORCID logo EMAIL logo
Published/Copyright: February 28, 2023

Abstract

C27H21NO4, triclinic, P 1 (no. 2), a = 7.3476(2) Å, b = 7.4894(2) Å, c = 20.5137(5) Å, α = 89.33000(10)°, β = 79.7070(10)°, γ = 67.5220(10)°, V = 1024.31(5) Å3, Z = 2, R gt (F) = 0.0536, wR ref (F 2) = 0.1792, T = 296.15 K.

CCDC no.: 2240071

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Yellow plate
Size: 0.35 × 0.25 × 0.06 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 0.09 mm−1
Diffractometer, scan mode: Bruker APEX-II, φ and ω
θ max, completeness: 32.0°, 99%
N(hkl) measured, N(hkl) unique, R int: 38,014, 7063, 0.040
Criterion for I obs, N(hkl) gt: I obs > 2 σ(I obs), 5031
N(param)refined: 289
Programs: Olex2 [1, 2], SHELX [3]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
O1 0.4095 (2) 0.8490 (3) 1.08666 (5) 0.0987 (5)
O2 0.6965 (2) 0.7674 (2) 1.02432 (6) 0.0892 (4)
O3 0.01850 (13) 0.67382 (17) 0.82333 (5) 0.0648 (3)
O4 0.33353 (11) 0.54604 (12) 0.76573 (4) 0.04113 (19)
N1 0.5222 (2) 0.78884 (18) 1.03367 (5) 0.0564 (3)
C1 0.44000 (19) 0.74323 (17) 0.97852 (5) 0.0437 (3)
C2 0.2401 (2) 0.7740 (2) 0.98909 (6) 0.0531 (3)
H2 0.158519 0.820771 1.030400 0.064*
C3 0.16270 (19) 0.7339 (2) 0.93679 (6) 0.0511 (3)
H3 0.027484 0.754845 0.942625 0.061*
C4 0.28751 (16) 0.66242 (16) 0.87561 (5) 0.0384 (2)
C5 0.48893 (17) 0.63062 (17) 0.86679 (5) 0.0423 (2)
H5 0.571989 0.580763 0.825928 0.051*
C6 0.56792 (19) 0.67255 (19) 0.91844 (6) 0.0465 (3)
H6 0.702598 0.653632 0.912757 0.056*
C7 0.19537 (16) 0.62925 (17) 0.81986 (5) 0.0402 (2)
C8 0.25759 (15) 0.52075 (15) 0.70760 (5) 0.0358 (2)
H8A 0.185248 0.645771 0.691641 0.043*
H8B 0.166398 0.454702 0.718498 0.043*
C9 0.43361 (14) 0.40236 (14) 0.65491 (5) 0.0328 (2)
H9A 0.502114 0.275800 0.670577 0.039*
H9B 0.527700 0.465788 0.646040 0.039*
C10 0.36291 (14) 0.37930 (14) 0.59137 (5) 0.03200 (19)
H10A 0.294305 0.506381 0.576082 0.038*
H10B 0.267575 0.317386 0.600758 0.038*
C12 0.53513 (14) 0.25967 (14) 0.53653 (4) 0.03144 (19)
H12A 0.630883 0.321344 0.528407 0.038*
H12B 0.602484 0.133206 0.552462 0.038*
C13 0.47882 (13) 0.23119 (13) 0.47123 (4) 0.02908 (18)
C14 0.62853 (13) 0.12525 (13) 0.41680 (4) 0.02766 (18)
C15 0.57399 (13) 0.09871 (13) 0.35550 (4) 0.02739 (17)
C16 0.36996 (14) 0.17924 (14) 0.34853 (5) 0.03227 (19)
C17 0.22596 (14) 0.28310 (16) 0.40299 (5) 0.0387 (2)
H17 0.091561 0.336786 0.399302 0.046*
C18 0.28016 (14) 0.30759 (16) 0.46264 (5) 0.0367 (2)
H18 0.180442 0.377396 0.498101 0.044*
C19 0.83749 (14) 0.04039 (15) 0.42073 (5) 0.0351 (2)
H19 0.876289 0.055191 0.460395 0.042*
C20 0.97964 (14) −0.06069 (16) 0.36817 (5) 0.0390 (2)
H20 1.113403 −0.112965 0.372651 0.047*
C21 0.92887 (14) −0.08889 (15) 0.30599 (5) 0.0349 (2)
C22 0.72401 (13) −0.00832 (13) 0.30033 (4) 0.02965 (18)
C23 0.66812 (16) −0.03515 (15) 0.23939 (5) 0.0347 (2)
C24 0.46044 (17) 0.04475 (17) 0.23460 (5) 0.0406 (2)
H24 0.422564 0.025098 0.195258 0.049*
C25 0.31924 (16) 0.14804 (17) 0.28639 (5) 0.0399 (2)
H25 0.185593 0.200442 0.281771 0.048*
C26 0.81792 (19) −0.13906 (18) 0.18585 (5) 0.0450 (3)
H26 0.782881 −0.157630 0.145840 0.054*
C27 1.01746 (19) −0.2145 (2) 0.19172 (6) 0.0508 (3)
H27 1.115145 −0.281697 0.155408 0.061*
C28 1.07376 (17) −0.19124 (18) 0.25090 (6) 0.0458 (3)
H28 1.208538 −0.243855 0.254145 0.055*

1 Source of materials

Equimolar quantities of the respective nitrobenzoyl chloride and 4-pyren-1-ylbutanol were mixed in a round bottom flask with dry THF to obtain the 4-(pyren-1-yl)butyl nitrobenzoate derivatives, according to previously reported methodology [4], [5], [6] 4-(pyren-1-yl)butyl-4-nitrobenzoate (4–NBPy) C27H21NO4. Yellow powder, yield: 58.64%, mp: 168 °C–169 °C, 1 H NMR (CDCl3) d (ppm): 8.22–7.76 (m, 12H, Ar–H), 4.34, (t, 2 H, CH2–OR), 3.36, (t, 2 H, CH2-pyrene), 2.05–1.80 (m, 4H, 2xCH2). 13 C -NMR (75 MHz, CDCl3 d [ppm]): 163.62, 149.34, 134.96, 134.54, 130.39, 129.80, 129.48, 128.92, 127.57, 126.46, 126.31, 125.71, 124.91, 124.00, 123.76, 122.37, 122.15, 94.06, 64.67, 63.55, 32.00, 28.68, 27.38, 26.88. Single crystals of 4-(pyren-1-yl)butyl-4-nitrobenzoate was prepared by dissolving the polycrystalline material in boiling chloroform (0.5 mL) and then hot methanol was added dropwise (0.5 mL) [5]. The mixture was allowed to crystallize for two weeks until the appearance of yellow plates.

2 Experimental details

For solving the structure OLEX2 was used [1] with the olex2.solve [2] and refined with the use of SHELX program package [3]. SADABS-2016/2 (Bruker, 2016/2) was used for absorption correction. H atoms were finally included in their calculated positions and treated as riding on their parent atom with constrained thermal parameters as Uiso(H) = 1.2 Ueq(C), the constraint distances of C–H ranging from 0.93 Å to 0.97 Å.

3 Comment

The pyrene ring and derivatives are well known for there properties in photochemistry field [7]. Excited state of pyrene in solution present an excimer formation which is used as a standard for micro-environmental changes [8, 9]. Pyrene is frequently used for supramolecular studies as a probe for proteins, peptides and lipid membranes and it is very sensible to environmental changes such as pH, pressure or temperature and used to identify guest molecules, metals or other substrates [10], [11], [12], [13], [14], [15]. Nitro compounds have an important role in organic synthesis due to their versatility to transform into other functional groups [16] and can be used as redox mediators for interesting biomolecules such as NADH [17]. The N–O bond lengths in the nitro group are 1.2144(16) and 1.2071(18) Å. In the crystal structure of the title compound, coplanarity of the nitro group with the pyrene group was observed (the C2–C1–N1–O1 torsion angle is 1.2(2)°).


Corresponding author: Silvana Moris, Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Avenida San Miguel 3605, Talca 3480112, Chile, E-mail:

Funding source: FONDEQUIP

Award Identifier / Grant number: EQM200138

Acknowledgements

We gratefully acknowledge support by FONDEQUIP EQM200138 for D8 Venture diffractometer.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: FONDEQUIP EQM200138.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K., Puschmann, H. The anatomy of a comprehensive constrained, restrained refinement program for the modern computing environment–Olex2 dissected. Acta Crystallogr. 2015, A71, 59–75; https://doi.org/10.1107/s2053273314022207.Search in Google Scholar PubMed PubMed Central

2. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

3. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

4. Moscoso, R., Barrientos, C., Moris, S., Squella, J. A. Electrocatalytic oxidation of NADH in a new nanostructured interface with an entrapped butylpyrene nitroaromatic derivative. J. Electroanal. Chem. 2019, 837, 48–54; https://doi.org/10.1016/j.jelechem.2019.02.013.Search in Google Scholar

5. Barrientos, C., Barahona, P., Guevara, J. L., Squella, J. A., Moris, S. The crystal structure of 4-(pyren-1-yl)butyl-3-nitrobenzoate, C27H21NO4. Z. Kristallogr. N. Cryst. Struct. 2019, 234, 1213–1214; https://doi.org/10.1515/ncrs-2019–0340.10.1515/ncrs-2019-0340Search in Google Scholar

6. Barrientos, C., Moscoso, R., Moris, S., Squella, J. A. Electrochemical study of butyl-pyrene nitrobenzoate derivatives trapped on MWCNT nanostructured electrodes. J. Electrochem. Soc. 2021, 168, 126515; https://doi.org/10.1149/1945–7111/ac3ff5.10.1149/1945-7111/ac3ff5Search in Google Scholar

7. Figueira–Duarte, T. M., Mullen, K. Pyrene-based materials for organic electronics. Chem. Rev. 2011, 111, 7260–7314; https://doi.org/10.1021/cr100428a.Search in Google Scholar PubMed

8. Forster, T., Kasper, K. Ein Konzentrationsumschlag der Fluoreszenz des Pyrens. Z. Elektrochem., Ber. Bunsenges. Phys. Chem. 1955, 59, 976–980; https://doi.org/10.1002/bbpc.19550591018.Search in Google Scholar

9. Kalyanasundaram, K., Thomas, J. K. Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems. J. Am. Chem. Soc. 1977, 99, 2039–2044; https://doi.org/10.1021/ja00449a004.Search in Google Scholar

10. Sahoo, D., Weers, P. M. M., Ryan, R. O., Narayanaswami, V. Lipid-triggered conformational switch of Apolipophorin III helix bundle to an extended helix organization. J. Mol. Biol. 2002, 321, 201–214; https://doi.org/10.1016/S0022–2836(02)00618–6.10.1016/S0022-2836(02)00618-6Search in Google Scholar

11. Paris, P. L., Langenhan, J. M., Kool, E. T. Probing DNA sequences in solution with a monomer-excimer fluorescence color change. Nucleic Acids Res. 1998, 26, 3789–3793; https://doi.org/10.1093/nar/26.16.3789.Search in Google Scholar PubMed PubMed Central

12. Tong, G., Lawlor, J. M., Tregear, G. W., Haralambidis, J. Oligonucleotide-polyamide hybrid molecules containing multiple pyrene residues exhibit significant excimer fluorescence. J. Am. Chem. Soc. 1995, 117, 12151–12158; https://doi.org/10.1021/ja00154a015.Search in Google Scholar

13. Song, X., Swanson, B. I. Rational design of an optical sensing system for multivalent proteins. Langmuir 1999, 15, 4710–4712; https://doi.org/10.1021/la980758k.Search in Google Scholar

14. Pokhrel, M. R., Bossmann, S. H. Synthesis, characterization, and first application of high molecular weight polyacrylic acid derivatives possessing perfluorinated side chains and chemically linked pyrene labels. J. Phys. Chem. B 2000, 104, 2215–2223; https://doi.org/10.1021/jp9917190.Search in Google Scholar

15. Ludwig, R., Dzung, N. T. K. Calixarene-based molecules for cation recognition. Sensors 2002, 2, 397–416; https://doi.org/10.3390/s21000397.Search in Google Scholar

16. Yan, G., Yang, M. Recent advances in the synthesis of aromatic nitro compounds. Org. Biomol. Chem. 2013, 11, 2554–2566; https://doi.org/10.1039/c3ob27354g.Search in Google Scholar PubMed

17. Contreras, G., Barrientos, C., Moscoso, R., Álvarez–Luejec, A., Squella, J. A. Electrocatalytic determination of NADH by means of electrodes modified with MWCNTs and nitroaromatic compounds. Microchem. J. 2020, 159, 105422; https://doi.org/10.1016/j.microc.2020.105422.Search in Google Scholar

Received: 2023-01-20
Accepted: 2023-02-06
Published Online: 2023-02-28
Published in Print: 2023-06-27

© 2023 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of phenyl(3,3-dichloro-1,3-dihydro-2H-pyrrolo[2,3-b]pyridin-2-one)methanone, C7H4Cl2N2O
  4. Crystal structure of poly[diaqua-bis(μ 2-1,4-diaminobutane-N:N′)cobalt(II)] dichloride, C8H28Cl2CoN4O2
  5. Synthesis and crystal structure of (4aR,7S)-7-hydroxy-7-isopropyl-1,1-dimethyldecahydro-2H,6H-8a,4a-(epoxymethano)phenanthren-12-one, C20H32O3
  6. The crystal structure of 1-(2-chlorobenzyl)-3-(3,5-dichlorophenyl)urea, C14H11Cl3N2O
  7. Crystal structure of tetrapropylammonium-1,3,5-thiadiazole-5-amido-2-carbamate – 1,2,4-thiadiazole-3,5-diamine – water (1/1/1), C17H37N9O3S2
  8. Tetrabutylammonium 1,3,5-thiadiazole-5-amido-2-carbamate—1,2,4-thiadiazole-3,5-diamine— water (1/1/1), C21H45N9O3S2
  9. The crystal structure of ((E)-2,4-dichloro-6-(((2-hydroxy-5-nitrophenyl)imino)methyl)phenolato-κ 3 N,O,O′)tris(pyridine-κN)manganese(II), C28H21Cl2MnN5O4
  10. The crystal structure of aqua-bis{2-bromo-6-((2-(2-phenylacetyl)hydrazineylidene)methyl)phenolato-κ3 N,O,O′}-dimethylformamide-κ1 O-erbium(III) chloride – dimethylformamide – water (1/2/1), C39H49N7O9Br2ClEr
  11. Crystal structure of (diaqua-bis(phenanthroline-K 2 N,N′)-tetrakis(m 2-3,4,5,6-tetrafluorophthalato-K 4 O,O:O′:O″;K 2 O:O′)dierbium (III) phenanthroline (1/2), C80H38Er2F16N8O18
  12. Crystal structure of (E)-7-methoxy-2-(4-methoxy-2-(trifluoromethyl)benzylidene)-3,4-dihydronaphthalen-1(2H)-one, C20H17F3O3
  13. The crystal structure of 4–(4,4,5,5–tetramethyl–1,3,2–dioxaborolan–2–yl)morpholine, C10H20BNO3
  14. The crystal structure of catena–poly[aqua(1-naphthoato-κ 2 O,O′)-(μ-1-naphthoato-κ 4 O:O,O′:O′)lead(II)], C22H16O5Pb
  15. The crystal structure of 1-(4-chlorophenyl)-3-cycloheptylurea, C14H19ClN2O
  16. The crystal structure of 4-(pyren-1-yl)butyl-4-nitrobenzoate, C27H21NO4
  17. Crystal structure of cyclo-(bis(µ2-3,3′-(1H-imidazole-3-ium-1,3-diyl)dipropionato-κ4 O,O′:O″,O″′)-dinitrato-κ2 O,O′-tetraoxido-diuranium(VI) C18H22N6O18U2
  18. The crystal structure of catena-[nitrato-κ 2 O,O′-(μ 3-3-iodobenzene-1,2-dicarboxylato-κ 4 O:O′:O″,O‴)-(2,2′:6′,2″-terpyridine-κ 3 N,N′,N″)lanthanum(III)], C23H14IN4O7La
  19. Redetermination of crystal structure of [bis(pyridin-2-ylmethyl)amine-κ 3 N,,]chloridopalladium(II) chloride monohydrate
  20. Crystal structure of catena-poly[triaqua-[bis(m2-4-(1H-1,2,4-triazol-1-yl)benzoato-k2O:O')-(4-(1H-1,2,4-triazol-1-yl)benzoato-k1O)-praseodymium (III) monohydrate], C27H26N9O10Pr
  21. Crystal structure of trans-diaqua-bis(methyl methylcarbamohydrazonothioato-κ2 N,N′) nickel(II) iodide semihydrate, C6H22N6O2NiS2I2·0.5H2O
  22. The crystal structure of 2-(2-fluoro-4-methyl-5-((2,2,2-trifluoroethyl)thio)phenyl)isoindolin-1-one, C17H13F4NOS
  23. The crystal structure of di-μ-1-naphthylacetato-κ 3 O,O′:O;κ 3 O:O,O′-bis[(1-naphthylacetato-κ 2 O,O′)(2,2′-bipyridine-κ 2 N,N′)lead(II)] monohydrate, C68H54N4O9Pb2
  24. Crystal structure of tetrapropylammonium guanidinium 4,4′-sulfonyldibenzoate monohydrate, C27H44N4O7S
  25. Crystal structure of bis(tetrapropylammonium) terephthalate – 1-(diaminomethylene)thiourea – water (1/2/4) C18H40N5O4S
  26. Crystal structure of (E)-7-fluoro-2-(4-morpholinobenzylidene)-3,4-dihydronaphthalen-1(2H)-one, C21H20FNO2
  27. The crystal structure of poly[diaqua-bis(μ 3-5-bromobenzene-1,3-dicarboxylato-κ 3 O,O,O′)-(μ 2-1,3-bis-(4-pyridyl)-propane-κ 2 N,N′)-dizinc(II))] – 5-bromobenzene-1,3-dicarboxylic acid [2/1], C37H29Br3N2O14Zn2
  28. The crystal structure of 2-bromo-1,3-phenylene bis(4-methylbenzenesulfonate), C20H17BrO6S2
  29. Crystal structure of europium dichromium icosaaluminum, EuCr2Al20
  30. The crystal structure of N1,N3-di((E)-benzylidene) isophthalohydrazide dihydrate, C 22 H 22 N 4 O 4
  31. Crystal structure of 7α,11α-dihydroxy-15-oxo-ent-kauran-16-en-19,6β-olide, C20H26O5
  32. Crystal structure of 4-chloro-N′-[(1E)-pyridin-3-ylmethylidene]benzohydrazide, C13H10ClN3O
  33. The crystal structure of (Z)-3-(1-(2-((E)-4-isopropylbenzylidene)hydrazinyl)ethylidene) chroman-2,4-dione, C21H20N2O3
  34. Crystal structure of E-7-fluoro-2-(2-(trifluoromethyl)benzylidene)-3,4-dihydronaphthalen-1(2H)-one, C18H12F4O
  35. Crystal structure of bis(6-aminopyridine-2-carboxylato–k2O,N)-bis(N,N-dimethylformamide-k1 O)zinc(II), C18H24N6O6Zn
  36. Crystal structure of 5-(adamantan-1-yl)-3-[(4-{[2-(trifluoromethyl)phenyl]-methyl}piperazin-1-yl)methyl]-1,3,4-oxadiazole-2(3H)-thione, C25H31F3N4OS
  37. Crystal structure of tetrapropylammonium bicarbonate–1-(diaminomethylene)thiourea – water (2/2/1), C30H72N10O7S2
  38. Crystal structure of tris(2,2′-bipyridine-κ2 N,N′)iron(II) triiodide – dichloromethane (2/1), C61H50Cl2Fe2I12N12
  39. Crystal structure of 2-amino-3-[2-(1,3,3-trimethyl-1,3-dihydro-indol-2-ylidene)-ethylideneamino]-but-2-enedinitrile, C17H17N5
  40. The crystal structure of 1-(2-chlorophenyl)-3-cycloheptylurea, C14H19ClN2O
  41. Crystal structure of potassium bis(pentaselenido-κ 2 Se 1,Se 5)palladate(II), K2[Pd(Se5)2]
  42. The crystal structure of 5,10-bis(2-methoxyethyl)-5,10-dihydro-[1,2,3,4]tetrathiocino[5,6-b:8, 7-b′]diindole, C22H22N2O2S4
  43. The crystal structure of 4-(4-iodophenyl)-5H-1,2,3-dithiazole-5-thione, C8H4INS3
  44. Crystal structure of bis{μ2-(4-acetyl-phenoxy)acetato-κ2 O:O′}-bis{μ2-(4-acetyl-phenoxy)acetato-κ3 O,O′:O)- bis{(4-acetyl-phenoxy)acetato-κ2 O,O′}-bis(phenanthrolin-κ2 N,N′)didysprosium(III) tetrahydrate, C84H78N4O28Dy2
  45. Crystal structure of Eu2Pd3.37(1)Zn13.63(1)
  46. Crystal structure of 2-methoxy-4-(methoxy-carbonyl)phenyl 2-chloro-4-fluorobenzoate, C16H12ClFO5
  47. Crystal structure of catena-poly[bis(μ2-dicyanamide-κ2 N:N′)-bis(4-vinylpyridine-κN)-copper(II)], C18H14CuN8
  48. The crystal structure of iguratimod-dimethylformamide (1/1), C17H14N2O6S·C3H7NO
  49. Synthesis and crystal structure of 1-((3R,10S,13S,17S)-10,13-dimethyl-3-(m-tolylamino)hexadecahydro-1H-cyclopenta[α]phenanthren-17-yl)ethan-1-one, C28H41NO
  50. The crystal structure of diaqua-bis(4-bromo-2-formylphenoxy)zinc(II), C14H12Br2O6Zn
  51. The crystal structure of tetra(1-ethylimidazole-κ 1 N)-[μ 4-imidazole-4,5-dicarboxylato-κ 4 O, N, O′, N′]-trioxido-divanadium, C25H33N10O7V2
  52. The crystal structure of (E)-N′-(1-(4-fluorophenyl)propylidene)-2-hydroxybenzohydrazide, C16H15FN2O2
Downloaded on 1.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2023-0034/html?lang=en
Scroll to top button