Startseite Naturwissenschaften The crystal structure of 1-(2-chlorobenzyl)-3-(3,5-dichlorophenyl)urea, C14H11Cl3N2O
Artikel Open Access

The crystal structure of 1-(2-chlorobenzyl)-3-(3,5-dichlorophenyl)urea, C14H11Cl3N2O

  • Yingju Li ORCID logo und Zhimao Yang EMAIL logo
Veröffentlicht/Copyright: 24. Februar 2023

Abstract

C14H11Cl3N2O, orthorhombic, P212121 (no. 19), a = 8.3600(4) Å, b = 12.0085(8) Å, c = 14.3665(6) Å, V = 1442.27(13) Å3, Z = 4, Rgt (F) = 0.0460, wRref (F 2) = 0.0944, T = 293 K.

CCDC no.: 2235132

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Colourless block
Size: 0.26 × 0.22 × 0.20 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 0.63 mm−1
Diffractometer, scan mode: φ and ω
θ max, completeness: 29.4°, >99%
N(hkl)measured, N(hkl)unique, R int: 4927, 3047, 0.022
Criterion for I obs, N(hkl)gt: I obs > 2 σ(I obs), 2492
N(param)refined: 181
Programs: CrysAlis pro [1], SHELX [2, 3], Olex2 [3]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
C1 0.4442 (4) 0.6117 (3) 0.3845 (2) 0.0315 (8)
C2 0.4787 (4) 0.6263 (3) 0.2910 (3) 0.0361 (9)
H2 0.540130 0.686415 0.271430 0.043*
C3 0.4210 (4) 0.5507 (4) 0.2276 (2) 0.0398 (9)
C4 0.3314 (4) 0.4589 (3) 0.2538 (3) 0.0424 (9)
H4 0.292799 0.408309 0.210297 0.051*
C5 0.3021 (4) 0.4463 (3) 0.3477 (2) 0.0365 (8)
C6 0.3555 (4) 0.5210 (3) 0.4139 (2) 0.0345 (8)
H6 0.332361 0.510622 0.476584 0.041*
C7 0.4461 (4) 0.7219 (3) 0.5305 (2) 0.0292 (8)
C8 0.4978 (4) 0.8333 (3) 0.6707 (2) 0.0377 (9)
H8A 0.595255 0.845309 0.705951 0.045*
H8B 0.435791 0.777121 0.703027 0.045*
C9 0.4038 (4) 0.9400 (3) 0.6695 (2) 0.0326 (8)
C10 0.3756 (4) 0.9994 (4) 0.7512 (3) 0.0450 (10)
C11 0.2898 (5) 1.0976 (4) 0.7520 (4) 0.0615 (13)
H11 0.271136 1.134634 0.807874 0.074*
C12 0.2324 (5) 1.1403 (4) 0.6703 (4) 0.0656 (14)
H12 0.176199 1.207092 0.670272 0.079*
C13 0.2578 (5) 1.0847 (4) 0.5885 (3) 0.0574 (12)
H13 0.218513 1.113586 0.533000 0.069*
C14 0.3423 (4) 0.9849 (3) 0.5884 (3) 0.0408 (9)
H14 0.357759 0.947533 0.532476 0.049*
Cl1 0.46236 (15) 0.56963 (12) 0.11033 (7) 0.0693 (4)
Cl2 0.19757 (14) 0.32855 (9) 0.38288 (8) 0.0596 (3)
Cl3 0.45331 (16) 0.94840 (12) 0.85574 (7) 0.0698 (4)
N1 0.5093 (3) 0.6892 (3) 0.4472 (2) 0.0370 (8)
H1 0.598534 0.719357 0.431414 0.044*
N2 0.5402 (3) 0.7909 (2) 0.5797 (2) 0.0369 (7)
H2A 0.630185 0.810793 0.555855 0.044*
O1 0.3121 (2) 0.6907 (2) 0.55759 (16) 0.0337 (6)

Source of materials

In a typical process, 1,3-dichloro-5-isocyanatobenzene (188 mg 1 mmol) was dissolved in 10 mL dichloromethane under vigorous stirring for 20 min. Then, 2-chlorobenzylamine (142 mg, 1 mmol) was added to the resultant mixture, which was further stirred for 24 h at room temperature. After the natural volatilization of the dichloromethane solvent, the white powder product of the title compound was obtained. Fifty milligram of the obtained white powder product was dissolved in 5 mL ethanol/trichloromethane (v/v = 1:1) followed by a 5 min ultrasonic dispersion at room temperature. Subsequently, after slow volatilization of partial solvent at room temperature, colorless single-crystal products were obtained.

Experimental details

The structure was solved with the ShelXT [2] program and refined with the ShelXL [3] software package in Olex2 [4]. All hydrogen atoms were placed in idealized positions and refined as riding atoms. Their Uiso values were set to 1.2 Ueq of the parent atoms.

Comment

The urea derivatives frequently crystallize into structures through the self-assembly of intermolecular hydrogen bonds between urea groups, which is a crucial crystal design element [5]. Additionally, diphenylurea has conformational polymorphism because of the low rotation energy around the central amide bond. On the one hand, the one-dimensional chains were formed via self-assembly of N–H⋯O hydrogen bonds in the diphenylurea derivative structures. For instance, 1,3-diphenylurea [6] and 1,3-bis (m–X-phenyl) urea [7], where X = chlorine, bromine, iodine, or methyl, exhibited one-dimensional urea chains. On the other hand, some intermolecular hydrogen bonds were observed in 1,3-bis (m-nitrophenyl) urea [8, 9], leading to various polymorphs and hydrates. Due to the vital application prospect in drug development and the interesting crystal structures, there are many crystal structures of diphenylurea derivatives reported [10], [11], [12], [13], [14], [15], [16].

Three Cl atoms replaced three H atoms in the two phenyl groups of the title compound (see the figure). The bond length of these three C–Cl bonds is 1.747 (5) Å of the C10–Cl3 bond, 1.737 (4) Å of the C5–Cl2 bond, and 1.735 (4) Å of C3–Cl1 bond, respectively. The dihedral angles of C13–C11–C10–Cl3, C2–C6–C5–Cl2, and C1–C4–C3–Cl1 are 178.6 (3)°, 177.2 (3)°, and 179.9 (4)° respectively, which are all close to 180°, indicating these Cl groups are almost in the same plane of the corresponding phenyl group. These parameters agree with the literature [17, 18]. The dihedral angle of the chlorophenyl plane and the urea group plane is 88.8°, and the dihedral angle of the dichlorophenyl plane and the urea group plane is 32.5°. These torsions of these two phenyl groups are more evident than that of 1,3-diphenylurea without Cl substitute with dihedral angles of 37.1° and 43.8° [19].

The hydrogen bonds N1–H1⋯O1 and N2–H2A⋯O1 connect molecules forming a chain structure. The bond angles of N1–H1⋯O1 and N2–H2A⋯O1 are 159.7(3)° and 152.3(2)°, and the bond length are 2.093 (2) and 2.229 (3) Å, respectively. Compared with the hydrogen bond of diphenylurea, bond angles of 157(3)° and 148(3)°, bond lengths of 1.954 (19) Å and 2.12(2)Å, the hydrogen bonds of the title compound are little longer, indicating that the hydrogen bonds between urea groups may be weakened after chlorine substitution.


Corresponding author: Zhimao Yang, School of Science, MOE Key Laboratory for Non–Equilibrium Synthesis and Modulation of Condensed Matter, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, P. R. China, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Rigaku, O. D. CrysAlispro; Rigaku Oxford Diffraction Ltd: Yarnton, Oxfordshire, England, 2017.Suche in Google Scholar

2. Sheldrick, G. M. SHELXTL – integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Suche in Google Scholar PubMed PubMed Central

3. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Suche in Google Scholar

4. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Suche in Google Scholar

5. Capacci-Daniel, C. A., Mohammadi, C., Urbelis, J. H., Heyrana, K., Khatri, N. M., Solomos, M. A., Swift, J. A. Structural diversity in 1,3-bis(m-cyanophenyl)urea. Cryst. Growth Des. 2015, 15, 2373–2379; https://doi.org/10.1021/acs.cgd.5b00168.Suche in Google Scholar

6. Dannecker, J. K., Rust, H. Crystal structure of N,N- diphenylurea. Cryst. Struct. Commun. 1979, 8, 429–432.Suche in Google Scholar

7. Capacci-Daniel, C., Dehghan, S., Wurster, V. M., Basile, J. A., Hiremath, R., Sarjeant, A. A., Swift, J. A. Halogen/methyl exchange in a series of isostructural 1,3-bis (m-dihalophenyl) ureas. CrystEngComm 2008, 10, 1875–1880; https://doi.org/10.1039/b812138a.Suche in Google Scholar

8. Rafilovich, M., Bernstein, J., Harris, R. K., Apperley, D. C., Karamertzanis, P. G., Price, S. L. Groth’s original concomitant polymorphs revisited. Cryst. Growth Des. 2005, 5, 2197–2209; https://doi.org/10.1021/cg050151j.Suche in Google Scholar

9. Hiremath, R., Basile, J. A., Varney, S. W., Swift, J. A. Controlling molecular crystal polymorphism with self-assembled monolayer templates. J. Am. Chem. Soc. 2005, 127, 18321–18327; https://doi.org/10.1021/ja0565119.Suche in Google Scholar PubMed

10. Koshti, V. S., Thorat, S. H., Gote, R. P., Chikkali, S. H., Gonnade, R. G. The impact of modular substitution on crystal packing: the tale of two ureas. CrystEngComm 2016, 18, 7078–7094; https://doi.org/10.1039/c6ce01324d.Suche in Google Scholar

11. Chutia, R., Das, G. Hydrogen and halogen bonding in a concerted act of anion recognition: F-induced atmospheric CO2 uptake by an iodophenyl functionalized simple urea receptor. Dalton Trans. 2014, 43, 15628–15637; https://doi.org/10.1039/c4dt00940a.Suche in Google Scholar PubMed

12. Kirby, I. L., Pitak, M. B., Wenzel, M., Wilson, C., Sparkes, H. A., Coles, S. J., Gale, P. A. Systematic structural analysis of a series of anion receptor complexes. CrystEngComm 2013, 15, 9003–9010; https://doi.org/10.1039/c3ce41503a.Suche in Google Scholar

13. Lin, Q., Zhang, Y.-M., Wei, T.-B., Wang, H. N,N′–Bis(4- bromophenyl)urea. Acta Crystallogr. 2004, E60, o696–o698; https://doi.org/10.1107/s1600536804005495.Suche in Google Scholar

14. Bentley, K. W., Proano, D., Wolf, C. Chirality imprinting and direct asymmetric reaction screening using a stereodynamic Brønsted/Lewis acid receptor. Nat. Commun. 2016, 7, 12539; https://doi.org/10.1038/ncomms12539.Suche in Google Scholar PubMed PubMed Central

15. George, S., Nangia, A., Lam, C.-K., Mak, T. C. W., Nicoud, J.-F. Crystal engineering of urea α-network via I … O2N synthon and design of SHG active crystal N-4-iodophenyl-N′-4′- nitrophenylurea. Chem. Commun. 2004, 40, 1202–1203; https://doi.org/10.1039/b402050b.Suche in Google Scholar PubMed

16. Boiocchi, M., Del Boca, L., Gómez, D. E., Fabbrizzi, L., Licchelli, M., Monzani, E. Nature of urea-fluoride interaction: incipient and definitive proton transfer. J. Am. Chem. Soc. 2004, 126, 16507–16514; https://doi.org/10.1021/ja045936c.Suche in Google Scholar PubMed

17. Yan, X.-C., Wang, H.-B., Liu, Z.-Q. [3-(2–Chlorophenyl)-1,2,4-oxadiazol-5-yl]methanol. Acta Crystallogr. 2006, E62, o3007–o3008; https://doi.org/10.1107/s1600536806018952.Suche in Google Scholar

18. Stepakov, A. V., Kinzhalov, M. A., Boitsov, V. M., Stepakova, L. V., Starova, G. L., Vyazmin, S. Y., Grinenko, E. V. A new approach to the synthesis of 4-(N-aryl)carbamoylmethyl-4,5-dihydropyridazin- 3(2H)-ones. Tetrahedron Lett. 2011, 52, 3146–3149; https://doi.org/10.1016/j.tetlet.2011.04.038.Suche in Google Scholar

19. Huth, S. L., Threlfall, T. L., Hursthouse, M. B. Crystal Structure Report Archive; University of Southampton: Southampton, 2008; p. 681.Suche in Google Scholar

Received: 2022-11-29
Accepted: 2023-01-10
Published Online: 2023-02-24
Published in Print: 2023-06-27

© 2022 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Artikel in diesem Heft

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of phenyl(3,3-dichloro-1,3-dihydro-2H-pyrrolo[2,3-b]pyridin-2-one)methanone, C7H4Cl2N2O
  4. Crystal structure of poly[diaqua-bis(μ 2-1,4-diaminobutane-N:N′)cobalt(II)] dichloride, C8H28Cl2CoN4O2
  5. Synthesis and crystal structure of (4aR,7S)-7-hydroxy-7-isopropyl-1,1-dimethyldecahydro-2H,6H-8a,4a-(epoxymethano)phenanthren-12-one, C20H32O3
  6. The crystal structure of 1-(2-chlorobenzyl)-3-(3,5-dichlorophenyl)urea, C14H11Cl3N2O
  7. Crystal structure of tetrapropylammonium-1,3,5-thiadiazole-5-amido-2-carbamate – 1,2,4-thiadiazole-3,5-diamine – water (1/1/1), C17H37N9O3S2
  8. Tetrabutylammonium 1,3,5-thiadiazole-5-amido-2-carbamate—1,2,4-thiadiazole-3,5-diamine— water (1/1/1), C21H45N9O3S2
  9. The crystal structure of ((E)-2,4-dichloro-6-(((2-hydroxy-5-nitrophenyl)imino)methyl)phenolato-κ 3 N,O,O′)tris(pyridine-κN)manganese(II), C28H21Cl2MnN5O4
  10. The crystal structure of aqua-bis{2-bromo-6-((2-(2-phenylacetyl)hydrazineylidene)methyl)phenolato-κ3 N,O,O′}-dimethylformamide-κ1 O-erbium(III) chloride – dimethylformamide – water (1/2/1), C39H49N7O9Br2ClEr
  11. Crystal structure of (diaqua-bis(phenanthroline-K 2 N,N′)-tetrakis(m 2-3,4,5,6-tetrafluorophthalato-K 4 O,O:O′:O″;K 2 O:O′)dierbium (III) phenanthroline (1/2), C80H38Er2F16N8O18
  12. Crystal structure of (E)-7-methoxy-2-(4-methoxy-2-(trifluoromethyl)benzylidene)-3,4-dihydronaphthalen-1(2H)-one, C20H17F3O3
  13. The crystal structure of 4–(4,4,5,5–tetramethyl–1,3,2–dioxaborolan–2–yl)morpholine, C10H20BNO3
  14. The crystal structure of catena–poly[aqua(1-naphthoato-κ 2 O,O′)-(μ-1-naphthoato-κ 4 O:O,O′:O′)lead(II)], C22H16O5Pb
  15. The crystal structure of 1-(4-chlorophenyl)-3-cycloheptylurea, C14H19ClN2O
  16. The crystal structure of 4-(pyren-1-yl)butyl-4-nitrobenzoate, C27H21NO4
  17. Crystal structure of cyclo-(bis(µ2-3,3′-(1H-imidazole-3-ium-1,3-diyl)dipropionato-κ4 O,O′:O″,O″′)-dinitrato-κ2 O,O′-tetraoxido-diuranium(VI) C18H22N6O18U2
  18. The crystal structure of catena-[nitrato-κ 2 O,O′-(μ 3-3-iodobenzene-1,2-dicarboxylato-κ 4 O:O′:O″,O‴)-(2,2′:6′,2″-terpyridine-κ 3 N,N′,N″)lanthanum(III)], C23H14IN4O7La
  19. Redetermination of crystal structure of [bis(pyridin-2-ylmethyl)amine-κ 3 N,,]chloridopalladium(II) chloride monohydrate
  20. Crystal structure of catena-poly[triaqua-[bis(m2-4-(1H-1,2,4-triazol-1-yl)benzoato-k2O:O')-(4-(1H-1,2,4-triazol-1-yl)benzoato-k1O)-praseodymium (III) monohydrate], C27H26N9O10Pr
  21. Crystal structure of trans-diaqua-bis(methyl methylcarbamohydrazonothioato-κ2 N,N′) nickel(II) iodide semihydrate, C6H22N6O2NiS2I2·0.5H2O
  22. The crystal structure of 2-(2-fluoro-4-methyl-5-((2,2,2-trifluoroethyl)thio)phenyl)isoindolin-1-one, C17H13F4NOS
  23. The crystal structure of di-μ-1-naphthylacetato-κ 3 O,O′:O;κ 3 O:O,O′-bis[(1-naphthylacetato-κ 2 O,O′)(2,2′-bipyridine-κ 2 N,N′)lead(II)] monohydrate, C68H54N4O9Pb2
  24. Crystal structure of tetrapropylammonium guanidinium 4,4′-sulfonyldibenzoate monohydrate, C27H44N4O7S
  25. Crystal structure of bis(tetrapropylammonium) terephthalate – 1-(diaminomethylene)thiourea – water (1/2/4) C18H40N5O4S
  26. Crystal structure of (E)-7-fluoro-2-(4-morpholinobenzylidene)-3,4-dihydronaphthalen-1(2H)-one, C21H20FNO2
  27. The crystal structure of poly[diaqua-bis(μ 3-5-bromobenzene-1,3-dicarboxylato-κ 3 O,O,O′)-(μ 2-1,3-bis-(4-pyridyl)-propane-κ 2 N,N′)-dizinc(II))] – 5-bromobenzene-1,3-dicarboxylic acid [2/1], C37H29Br3N2O14Zn2
  28. The crystal structure of 2-bromo-1,3-phenylene bis(4-methylbenzenesulfonate), C20H17BrO6S2
  29. Crystal structure of europium dichromium icosaaluminum, EuCr2Al20
  30. The crystal structure of N1,N3-di((E)-benzylidene) isophthalohydrazide dihydrate, C 22 H 22 N 4 O 4
  31. Crystal structure of 7α,11α-dihydroxy-15-oxo-ent-kauran-16-en-19,6β-olide, C20H26O5
  32. Crystal structure of 4-chloro-N′-[(1E)-pyridin-3-ylmethylidene]benzohydrazide, C13H10ClN3O
  33. The crystal structure of (Z)-3-(1-(2-((E)-4-isopropylbenzylidene)hydrazinyl)ethylidene) chroman-2,4-dione, C21H20N2O3
  34. Crystal structure of E-7-fluoro-2-(2-(trifluoromethyl)benzylidene)-3,4-dihydronaphthalen-1(2H)-one, C18H12F4O
  35. Crystal structure of bis(6-aminopyridine-2-carboxylato–k2O,N)-bis(N,N-dimethylformamide-k1 O)zinc(II), C18H24N6O6Zn
  36. Crystal structure of 5-(adamantan-1-yl)-3-[(4-{[2-(trifluoromethyl)phenyl]-methyl}piperazin-1-yl)methyl]-1,3,4-oxadiazole-2(3H)-thione, C25H31F3N4OS
  37. Crystal structure of tetrapropylammonium bicarbonate–1-(diaminomethylene)thiourea – water (2/2/1), C30H72N10O7S2
  38. Crystal structure of tris(2,2′-bipyridine-κ2 N,N′)iron(II) triiodide – dichloromethane (2/1), C61H50Cl2Fe2I12N12
  39. Crystal structure of 2-amino-3-[2-(1,3,3-trimethyl-1,3-dihydro-indol-2-ylidene)-ethylideneamino]-but-2-enedinitrile, C17H17N5
  40. The crystal structure of 1-(2-chlorophenyl)-3-cycloheptylurea, C14H19ClN2O
  41. Crystal structure of potassium bis(pentaselenido-κ 2 Se 1,Se 5)palladate(II), K2[Pd(Se5)2]
  42. The crystal structure of 5,10-bis(2-methoxyethyl)-5,10-dihydro-[1,2,3,4]tetrathiocino[5,6-b:8, 7-b′]diindole, C22H22N2O2S4
  43. The crystal structure of 4-(4-iodophenyl)-5H-1,2,3-dithiazole-5-thione, C8H4INS3
  44. Crystal structure of bis{μ2-(4-acetyl-phenoxy)acetato-κ2 O:O′}-bis{μ2-(4-acetyl-phenoxy)acetato-κ3 O,O′:O)- bis{(4-acetyl-phenoxy)acetato-κ2 O,O′}-bis(phenanthrolin-κ2 N,N′)didysprosium(III) tetrahydrate, C84H78N4O28Dy2
  45. Crystal structure of Eu2Pd3.37(1)Zn13.63(1)
  46. Crystal structure of 2-methoxy-4-(methoxy-carbonyl)phenyl 2-chloro-4-fluorobenzoate, C16H12ClFO5
  47. Crystal structure of catena-poly[bis(μ2-dicyanamide-κ2 N:N′)-bis(4-vinylpyridine-κN)-copper(II)], C18H14CuN8
  48. The crystal structure of iguratimod-dimethylformamide (1/1), C17H14N2O6S·C3H7NO
  49. Synthesis and crystal structure of 1-((3R,10S,13S,17S)-10,13-dimethyl-3-(m-tolylamino)hexadecahydro-1H-cyclopenta[α]phenanthren-17-yl)ethan-1-one, C28H41NO
  50. The crystal structure of diaqua-bis(4-bromo-2-formylphenoxy)zinc(II), C14H12Br2O6Zn
  51. The crystal structure of tetra(1-ethylimidazole-κ 1 N)-[μ 4-imidazole-4,5-dicarboxylato-κ 4 O, N, O′, N′]-trioxido-divanadium, C25H33N10O7V2
  52. The crystal structure of (E)-N′-(1-(4-fluorophenyl)propylidene)-2-hydroxybenzohydrazide, C16H15FN2O2
Heruntergeladen am 5.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2022-0549/html?lang=de
Button zum nach oben scrollen