Home The crystal structure of 1,1′-bisisoquinoline, C18H12N2
Article Open Access

The crystal structure of 1,1′-bisisoquinoline, C18H12N2

  • Nicolas Grunwald , Alexandra Kelling , Hans-Jürgen Holdt and Uwe Schilde EMAIL logo
Published/Copyright: August 15, 2017

Abstract

C18H12N2, tetragonal, I41/a (no. 88), a = 13.8885(6) Å, c = 13.6718(6) Å, V = 2637.2(3) Å3, Z = 8, Rgt(F) = 0.0295, wRref(F2) = 0.0854, T = 210 K.

CCDC no.:: 631823

The molecular structure of the title compound is shown in the figure. Tables 1 and 2 contain details of the measurement method and a list of the atoms including atomic coordinates and displacement parameters.

Table 1

Data collection and handling.

Crystal:Yellow prism
Size:0.64 × 0.58 × 0.32 mm
Wavelength:Mo Kα radiation (0.71073 Å)
μ:0.8 cm−1
Diffractometer, scan mode:STOE IPDS 2, ω scans
2θmax, completeness:50°, >99%
N(hkl)measured, N(hkl)unique, Rint:8390, 1164, 0.055
Criterion for Iobs, N(hkl)gt:Iobs > 2 σ(Iobs), 927
N(param)refined:116
Programs:SHELX [1], WinGX [2], DIAMOND [3], PLATON [4]
Table 2

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyzUiso*/Ueq
C10.18787(9)0.82972(9)0.16368(10)0.0612(4)
H10.2126(10)0.8789(10)0.2112(10)0.071(4)*
C20.24871(9)0.77946(8)0.10507(10)0.0553(3)
H20.3242(9)0.7896(9)0.1085(9)0.058(3)*
C30.26831(9)0.65245(8)−0.02158(9)0.0530(3)
H30.3387(10)0.6630(9)−0.0206(8)0.059(3)*
C40.22713(9)0.58602(9)−0.08111(9)0.0551(3)
H40.2675(10)0.5459(10)−0.1238(10)0.068(4)*
C50.12673(9)0.57268(9)−0.08217(9)0.0524(3)
H50.0986(9)0.5240(9)−0.1231(10)0.058(3)*
C60.06914(9)0.62691(8)−0.02349(8)0.0466(3)
H60.0012(9)0.6174(9)−0.0235(8)0.052(3)*
C70.05365(8)0.75473(7)0.10355(8)0.0455(3)
C80.10969(7)0.69667(7)0.03968(8)0.0420(3)
C90.21067(7)0.70946(7)0.04073(8)0.0457(3)
N10.09037(7)0.81878(7)0.16407(8)0.0574(3)

Source of materials

The title compound has been obtained by nickel-catalyzed C—C coupling of 1-chlorisoquinoline [5], which was synthesized by chlorination of isoquinoline-N-oxid with POCl3 [6]. The N-oxid was prepared by reaction of isoquinoline with H2O2 [7]. Yellow crystals (Mp. 162–163 °C) suitable for single-crystal X-ray diffraction were obtained from diethyl ether by slow evaporation within 3 days.

Experimental details

Coordinates of hydrogen atoms were refined without any constraints or restraints.

Comment

The title compound is a well-known ligand in the coordination chemistry [8], [9], [10], [11], [12], [13]. In most complexes 1,1′-bisisoquinoline acts as bidendate ligand, but can also occur as bridging ligand in binuclear complexes. The latter ones are also observed in luminescent silver(I) complexes [14], whereas in gold(I) complexes both types of complexes are formed [15]. Optically active complexes with high chiral recognition can be formed by reaction of 1,1′-bisisoquinoline with chiral palladium complexes [16]. Pd(II) and Ni(II) complexes of 1,1′-bisisoquinolines can be used as catalysts for Suzuki and Heck reactions [17]. 1,1′-Bisisoquinolinium salts exhibit chemiluminescence on addition of hydrogen peroxide in alkaline solution [18].

The title structure shows C2 symmetry. The asymmetric unit contains half a molecule. Both quinoline moieties are related by a 4̅ axis, located between the bridging atoms (C7 and C7′) running along the crystallographic c direction. The quinoline ring system is nearly full planar with a maximal deviation of the best plane of 0.012(1) Å (C1). The length of the C7—C7′ bond is 1.496(2) Å. The main structural feature is the position of the quinoline subunits being almost perpendicular to each other [88.54(1)°], which is caused by the transannular steric effect of the hydrogen atoms in the 8-position (labelled here with H6). For enhancing the transannular steric hindrance a series of 8,8′-dialkylsubstituted 1,1-bisisoquinolines were synthesized, whereby dihedric angles between both isoquinoline moieties of 77.68° (Me) and 86.27° (Et) can be observed [19]. Introducing ethoxy substituents in the 4,4′-positions leads to a dihedral angle of 66.20° [20]. During complexation reaction the isoquinoline subunits can forced into a more planar position depending on the requirements of the metal centre [13]. In presence of other suitable ligands, which also can complete the coordination sphere the twisted bisisoquinoline structure is only slightly changed and bisisoquinoline often acts as bridging ligand and binuclear complexes are formed [16]. The crystal packing is characterized by a large number of π–π interactions. Furthermore, C—H⋅⋅⋅π interactions are observed [C4—H4⋅⋅⋅C3—C6/C8/C9 ring].

References

Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112–122.10.1107/S0108767307043930Search in Google Scholar

Farrugia, L. J.: WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr. 45 (2012) 849–854.10.1107/S0021889812029111Search in Google Scholar

Brandenburg, K.: DIAMOND. Visual Crystal Structure Information System. Ver. 4.3.2. Crystal Impact, Bonn, Germany, 2017.Search in Google Scholar

Spek, A. L.: PLATON − a multipurpose crystallographic tool. Acta Crystallogr. D65 (2011) 148–155.10.1107/S090744490804362XSearch in Google Scholar

Case, F. H.: The preparation of 1,1′- and 3,3′-bisisoquinoline. J. Org. Chem. 17 (1952) 471–472.10.1021/jo01137a021Search in Google Scholar

Alcock, N. W.; Brown, J. M.; Hulmes, D. I.: Synthesis and resolution of 1-(2-diphenylphosphino-1-naphthyl)isoquinoline; a P—N chelating ligand for asymmetric catalysis. Tetrahedron Asymmetry 4 (1993) 743–756.10.1016/S0957-4166(00)80183-4Search in Google Scholar

Zhu, C.; Yi, M.; Wei, D.; Chen, X.; Wu, Y.; Cui, X.: Copper-catalyzed direct amination of quinoline N-oxides via C—H bond activation under mild conditions. Org. Lett. 16 (2014) 1840–1843.10.1021/ol500183wSearch in Google Scholar

Starke, I.; Kammer, S.; Grunwald, N.; Schilde, U.; Holdt, H.-J.; Kleinpeter, E.: Complexation of diazaperylene and bisisoquinoline with transition metal ions in the gas phase studied by electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 22 (2008) 665–671.10.1002/rcm.3412Search in Google Scholar

Frediani, P.; Giannelli, C.; Salvini, A.; Ianelli, S.: Ruthenium complexes with 1,1′-biisoquinoline as ligand. Synthesis and hydrogenation activity. J. Organomet. Chem. 667 (2003) 197–208.10.1016/S0022-328X(02)02193-9Search in Google Scholar

Yu, W.-Y.; Cheng, W.-C.; Che, C.-M.; Wang, Y.: Synthesis, redox properties and reactivities of ruthenium(II) complexes of 1,1′-biisoquinoline (BIQN) and X-ray crystal structure of [RuII(terpy)(BIQN)(Cl)]ClO4 (terpy = 2,2′:6′,2′′-terpyridine). Polyhedron 13 (1994) 2963–2969.10.1016/S0277-5387(00)83415-4Search in Google Scholar

Yang, R.; Dai, L.: Synthesis and electronic spectra of ruthenium(II)-1,1′-biisoquinoline complexes. Chin. Chem. Lett. 4 (1993) 1021–1024.Search in Google Scholar

Cheng, L. K.; Yeung, K. S.; Che, C. M.; Cheng, M. C.; Wang, Y.: X-ray structure and spectroscopic properties of platinum(II) complexes of 1,1′-biisoquinoline. Polyhedron 12 (1993) 1201–1207.10.1016/S0277-5387(00)88212-1Search in Google Scholar

Ashby, M. T.; Alguindigue, S. S.; Schwane, J. D.; Daniel, T. A.: Regular and inverse secondary kinetic enthalpy effects (KHE) for the rate of inversion of thioether and 1,1′-biisoquinoline complexes of ruthenium and osmium. Inorg. Chem. 40 (2001) 6643–6650.10.1021/ic0105720Search in Google Scholar PubMed

Bardaji, M.; Miguel-Coello, A. B.; Espinet, P.: Predominance of bridging coordination in luminescent 1,1′-bisisoquinoline silver(I) derivatives. Inorg. Chim. Acta 386 (2012) 93–101.10.1016/j.ica.2012.01.059Search in Google Scholar

Bardaji, M.; Miguel-Coello, A. B.; Espinet, P.: Mono- and dinuclear luminescent 1,1′-bisisoquinoline gold(I) complexes. Inorg. Chim. Acta 392 (2012) 91–98.10.1016/j.ica.2012.06.024Search in Google Scholar

Dai, L.-X.; Zhou, Z.-H.; Zhang, Y.-Z.; Ni, C.-Z.; Zhang, Z.-M.; Zhou, Y.-F.: 1,1′-Bi-isoquinoline: a chiral bidentate N-donor ligand with C2-symmetry; formation of optically active complexes with high chiral recognition. J. Chem. Soc. Chem. Commun. (1987) 1760–1762.10.1039/C39870001760Search in Google Scholar

Khrushcheva, N. S.; Bulygina, L. A.; Starikova, Z. A.; Sokolov, V. I.: Synthesis, structure, and catalytic activity of complexes of 1,1′-bisisoquinoline with PdCl2 and NiCl2. Russ. Chem. Bull. 63 (2014) 883–889.10.1007/s11172-014-0524-8Search in Google Scholar

Maeda, K.; Matsuyama, Y.; Isozaki, K.; Yamada, S.; Mori, Y.: Mechanism of the chemiluminescence of biisoquinolinium salts. J. Chem. Soc. Perkin Trans. 2 (1996) 121–126.10.1039/p29960000121Search in Google Scholar

Tsue, H.; Fujinami, H.; Itakura, T.; Tsuchiya, R.; Kobayashi, K.; Takahashi, H.; Hirao, K.: Absolute configuration of 8,8′-dialkyl-1,1′-bisisoquinoline. Chem. Lett. 28 (1999) 17–18.10.1246/cl.1999.17Search in Google Scholar

Kapatsina, E.; Mateescu, M.; Baro, A.; Frey, W.; Laschat, S.: Concise synthesis of [1,1′-biisoquinoline]-4,4′-diol via a protecting group strategy and its application for potential liquid-crystalline compounds. Helvet. Chim. Acta 92 (2009) 2024–2037.10.1002/hlca.200900085Search in Google Scholar

Received: 2017-4-3
Accepted: 2017-7-27
Published Online: 2017-8-15
Published in Print: 2017-9-26

©2017 Nicolas Grunwald et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Articles in the same Issue

  1. Cover and Frontmatter
  2. Crystal structure of 2-(2-ethoxyphenyl)-7-propyl-5-methylimidazo[5,1-f][1,2,4]triazin-4(3H)-one, C17H20N4O2
  3. Crystal structure of catena-poly[aqua-(μ3-1,3,5-benzenetricarboxylato-κ3O:O′:O′′)-[μ3hydroxy-(1,3-di-(μ2-1,2,4-triazole-4-yl)benzoato-κ2N:N′)copper(II)], C19H16Cu2N6O9
  4. Crystal structure of poly[aqua-(μ3-3,5-di(4H-1,2,4-triazolyl-4-κ3N,N′:N′′)benzenecarboxylato)silver(I)], C11H9AgN6O3
  5. Crystal structure of tetrapropylammonium hydrogen carbonate, C13H29NO3
  6. Crystal structure of poly[μ2-acetato-κ3-O,O′:O′)diaqua(μ3-isophthalato-κ4O,O′:O′′:O′′′)yttrium(III)] monohydrate, C20H24O17Y2
  7. Crystal structure of catena-poly[dichlorido-(μ2-4-(1H-pyrazol-3-yl)-pyridine-κ2N,N′)]cadmium(II), C48H42Cd3Cl16N18
  8. Crystal structure of bis(tetraethylammonium) [1,1′-biphenyl]-2,2′-dicarboxylate trihydrate, C30H54N2O7
  9. Crystal structure of poly[(thiophene-3,4-dicarboxylato-κ1O)bis[1,2-bis(4-pyridyl)ethane-κ2N:N′]silver(I)] octahydrate, C30H42Ag2N4O12S
  10. The crystal structure of amine-(4-(1H-1,2,4-triazol-1-yl)benzoato-κN)silver(I) dihydrate, C9H13AgN4O4
  11. Crystal structure of poly[tetrakis(μ2-cyanido-κ2N:O)-cyanido-tris(pyridine)dicobalt(II/III)], C20H15Co2N8
  12. Crystal structure of bis(pyridine)-bis(2-formyl-4,6-dichlorophenolato)cobalt(II), C24H16Cl4CoN2O4
  13. Crystal structure of (E)-1-(4-(((E)-5-bromo-2-hydroxybenzylidene)amino)phenyl)ethan-1-one O-methyl oxime, C16H15BrN2O2
  14. Crystal structure of catena-poly[(μ2-3-(1H-pyrazol-4-yl)-5-(pyridin-4-yl)-1,2,4-triazole-κ N:N′)-bis(benzoato-κO)zinc(II)], C24H18N6O4Zn
  15. Hydrothermal synthesis and crystal structure of a poly[aqua-(μ4-4-(carboxylatomethyl)benzoato-κ4O:O′:O′′:O′′′)-(μ2-1-(4-(1H-imidazol-1-yl)benzyl)-1H-1,2,4-triazole-κ2N:N′) dimanganese(II)], [Mn2(C9H6O4)2(C12H11N5)(H2O)]
  16. Crystal structure of diaqua-catena-poly[diaqua-bis(μ2-5-(4-(1H-1,2,4-triazol-1-yl)phenyl)tetrazol-2-ido-κ2N:N′)cobalt(II)] dihydrate, C20H24CoN14O4
  17. Crystal structure of bis(μ3-2,2′-azanediylbis(ethan-1-olato)-κ5O:O,N,O′:O′)-tetrachlorido-bis(μ2-2-((2-hydroxyethyl)amino)ethan-1-olato-κ3N,O:O)dicobalt(II)dicobalt(III), C16H38Cl4Co4N4O8
  18. Crystal structure of poly[μ4-(4-(carboxylatomethyl)benzoato-κ4O:O′:O′′:O′′′)-(2-(4-(1H-imidazol-1-yl)phenyl)-1H-benzo[d]imidazole-κN)manganese(II)] [Mn(C9H6O4)(C16H12N4)]
  19. Crystal structure of 4-chloro-6-phenylpyrimidine, C10H7ClN2
  20. The crystal structure of [6-methoxy-2-(2,2,2-trifluoroacetyl)-3,4-dihydronaphthalen-1(2H)-one]difluoroborane, C13H10BF5O3
  21. Crystal structure of 3,3′-(butane-1,4-diylbis(azanylylidene))bis(1-phenylbut-1-en-1-olato)-κ4N,N′,O,O′]copper(II), C24H26N2O2Cu
  22. Crystal structure of tetraaqua-bis((E)-N′-(2-bromobenzylidene)isonicotinohydrazide-κN)zinc(II) dinitrate, C26H28N8O12Br2Zn
  23. Crystal structure of 2-amino-4-(4-bromophenyl)-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile, C16H13BrN2O2
  24. A single crystal study on tert-butyl-4-((4-(4-bromo-2-fluorophenylamino)-6-methoxyquinazolin-7-yloxy)methyl)piperidine-1-carboxylate, C26H30BrFN4O4
  25. Crystal structure of 1,1′-((1E,1′E)-(((ethane-1,2-diylbis(oxy))bis(2,1-phenylene))bis(azanylylidene))bis(methanylylidene))bis(naphthalen-2-olato-κ3O,O′,N)zinc(II), C36H26N2O4Zn
  26. Crystal structure of diaqua-bis(5′-(pyridin-1-ium-4-yl)-1H-[3,3′-bi(1,2,4-triazol)]-2′-ide-κ2N,N′)cobalt(II) — bis(5-(pyridin-4-yl-κN)-1H,1′H-3,3′-bi(1,2,4-triazole))octamolybdate – water (2/1/8), C27H33CoMo4N21O19
  27. Crystal structure of 3-cyclohexyl-2-(cyclohexylimino)-2,3-dihydro-6,8-diiodo-4H-1,3-benzoxazin-4-one, C20H24I2N2O2
  28. Crystal structure of dinitrato-κO-bis(tris((1H-benzo[d]imidazol-2-yl)methyl)amine-κ4N,N′,N′′,N′′′)-(μ2-cyclohexane-1,4-dicarboxylato-κ4O,O′:O′′,O′′′)dimanganese(II) – methanol – water (1/6/2), C62H80Mn2N16O18
  29. Crystal structure of bis(2-hydroxyethyl(phenyl)carbamodithioate)nickel(II), C18H20N2NiO2S4
  30. Crystal structure of methyl 1-(4-fluorobenzyl)-4-methoxy-5-oxopyrrolidine-3-carboxylate, C14H16FNO4
  31. Crystal structure of di-μ-iodido-bis(6-(p-tolyl)-2,2′-bipyridine-κ2N,N′)dicopper(I) — 2-(diphenylphosphoryl)benzoic acid (1/2), C36H29CuIN2O3P
  32. Crystal structure of 2-amino-4-(3-bromo-4-fluoro-phenyl)-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile, C18H16BrFN2O2
  33. Crystal structure of bis(μ2-2-chlorobenzoato-κ3O,O′:O′)-(2-chlorobenzoato-κO)-(2-chlorobenzoato-κO,O′)-bis(1,10-phenanthroline-κ2N,N′)-dicadmium(II) monohydrate, C52H36Cd2Cl4N4O10
  34. Crystal structure of 2-(8a-methyl-5-oxo-hexahydroimidazo [1,2-a]pyridin-1(5H)-yl)-2-oxoethyl acetate, C12H18N2O4
  35. Crystal structure of (E)-N,N-diethyl-2-(5-nitrothiazol-2-yl)-1-phenylethen-1-amine, C15H17N3O2S
  36. Crystal structure of diazido-dimethanolato-bis(μ2-2-(((3-oxidopropyl)imino)methyl)phenolato-κ4O:O,O′,N)dimanganese(III), C22H28Mn2N8O6
  37. The crystal structure of bis(2-(2,2,2-trifluoroacetyl)-3,4-dihydronaphthalen-1-olato-κ2O,O′)copper(II), C24H16CuF6O4
  38. Crystal structure of hexaaquanickel(II) bis((E)-4-((4-(dimethylamino)phenyl)diazenyl)benzenesulfonate), C28H40N6NiO12S2
  39. Crystal structure of catena-poly[aqua-(μ2-hexamethylenetetramine-κ2N:N′)-bis(2,6-difluorobenzoato-κ2O:O′)cadmium(II)]monohydrate, C20H22CdF4N4O6
  40. Crystal structure of 3-benzyl-2,3-dihydro-2-thioxoquinazolin-4(1H)-one, C15H12N2OS
  41. Crystal structure of bis(μ2-ferrocenecarboxylato-κ2O:O′)-bis(1,10-phenanthroline-κ2N,N′)-(μ2-methanolato2O,O)dicopper(II) tetrafluoroborate – acetonitrile (1/1), C49H40BCu2F4Fe2N5O5
  42. The crystal structure of tetrakis(1,3,5-triaza-7-phosphatricyclo[3.3.1.13,7]decane-κP)silver(I) chloride dihydrate, C24H60AgClN12O6P4
  43. Crystal structure of 5-ethyl-2-(p-tolyl)-1,3-dioxane-5-carboxylic acid, C14H18O4
  44. Crystal structure of 2-(4-fluorophenyl)-1,3-dimethyl-1H-perimidin-3-ium iodide, C19H16ClIN2
  45. Crystal structure of catena-poly[(μ2-hexamethylenetetramine-κ2N:N′)-tetrakis(μ2-2,6-difluorobenzoato-κ2O:O′)dicopper(II)], C34H24Cu2F8N4O8
  46. Crystal structure of ethyl 3-hydroxy-5-methyl-2-(4-(m-tolyl)-1H-1,2,3-triazol-1-yl)-[1,1′-biphenyl]-4- carboxylate, C25H24N3O3
  47. The crystal structure of carbonyl(2-oxopyridin-1(2H)-olato-κ2O,O′)-(diphenylcyclohexylphosphine-κP)rhodium(I), C24H25NO3PRh
  48. Crystal structure of bis((pyrazin-2-ylmethyl)(pyrazine-2-carbonyl)amido-κ3N,N′,N′′)copper(II), C20H16CuN10O2
  49. Crystal structure of catena-poly[tetraaqua-(μ2-succinonitrile-κ2N:N′)cobalt(II)] dinitrate, C4H12CoN4O10
  50. The crystal structure of 1,1′-bisisoquinoline, C18H12N2
  51. Crystal structure of bis(hydroxydi(pyridin-2-yl)methanolato-κ3N,N′,O)cobalt(III) perchlorate dihydrate, C22H22ClCoN4O10
Downloaded on 5.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2017-0088/html
Scroll to top button