Startseite Crystal structure of bis(μ3-2,2′-azanediylbis(ethan-1-olato)-κ5O:O,N,O′:O′)-tetrachlorido-bis(μ2-2-((2-hydroxyethyl)amino)ethan-1-olato-κ3N,O:O)dicobalt(II)dicobalt(III), C16H38Cl4Co4N4O8
Artikel Open Access

Crystal structure of bis(μ3-2,2′-azanediylbis(ethan-1-olato)-κ5O:O,N,O′:O′)-tetrachlorido-bis(μ2-2-((2-hydroxyethyl)amino)ethan-1-olato-κ3N,O:O)dicobalt(II)dicobalt(III), C16H38Cl4Co4N4O8

  • Ganlin Zhao EMAIL logo
Veröffentlicht/Copyright: 6. Juli 2017

Abstract

C16H38Cl4Co4N4O8, monoclinic, P21/c (no. 14), a = 9.070(3) Å, b = 15.201(5) Å, c = 20.786(6) Å, β = 111.385(11)°, V = 2668.5(15) Å3, Z = 4, Rgt(F) = 0.0646, wRref(F2) = 0.1743, T = 293 K.

CCDC no.:: 1556624

The asymmetric unit of the title crystal structure is shown in the figure. Tables 1 and 2 contain details on crystal structure and measurement conditions and a list of the atoms including atomic coordinates and displacement parameters.

Table 1

Data collection and handling.

Crystal:Green block
Size:0.20 × 0.18 × 0.15 mm
Wavelength:Mo Kα radiation (0.71073 Å)
μ:28.9 cm−1
Diffractometer, scan mode:Bruker APEXII, φ and ω
2θmax, completeness:50.2°, >99%
N(hkl)measured, N(hkl)unique, Rint:31371, 4718, 0.065
Criterion for Iobs, N(hkl)gt:Iobs > 2 σ(Iobs), 3958
N(param)refined:321
Programs:Bruker [1], SHELX [2]
Table 2

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyzUiso*/Ueq
C10.2209(9)0.0686(5)0.3228(4)0.0269(16)
H1A0.12650.03920.29210.032*
H1B0.29350.02430.35050.032*
C20.1794(8)0.1307(5)0.3678(4)0.0226(15)
H2A0.08800.16520.34060.027*
H2B0.15250.09840.40230.027*
C30.3751(9)0.0587(6)0.2474(4)0.0325(18)
H3A0.48040.04540.28000.039*
H3B0.31600.00400.23720.039*
C40.3896(10)0.0911(6)0.1829(4)0.039(2)
H4A0.44950.14560.19170.047*
H4B0.44520.04820.16560.047*
C50.9019(9)0.3882(5)0.4864(4)0.0275(16)
H5A0.82330.43070.46010.033*
H5B0.99360.41990.51690.033*
C60.9479(8)0.3307(5)0.4391(4)0.0239(15)
H6A0.96400.36580.40320.029*
H6B1.04610.30040.46450.029*
C70.7657(9)0.3812(5)0.5713(4)0.0317(18)
H7A0.68930.34440.58130.038*
H7B0.71040.43240.54610.038*
C80.8945(11)0.4107(6)0.6394(4)0.039(2)
H8A0.96960.44880.62970.047*
H8B0.84670.44350.66680.047*
C90.8486(8)0.1319(5)0.5822(4)0.0219(15)
H9A0.90850.17730.61370.026*
H9B0.89140.07510.60130.026*
C100.6743(7)0.1376(5)0.5731(3)0.0193(14)
H10A0.62160.08230.55580.023*
H10B0.66400.15020.61700.023*
C110.8162(8)0.0642(4)0.4685(4)0.0227(15)
H11A0.83960.01190.49720.027*
H11B0.87850.06190.43920.027*
C120.6396(8)0.0658(4)0.4234(4)0.0215(14)
H12A0.61550.02180.38720.026*
H12B0.57560.05450.45100.026*
C130.2816(8)0.3188(5)0.2248(4)0.0256(16)
H13A0.23660.37490.20490.031*
H13B0.22290.27230.19420.031*
C140.4536(8)0.3147(5)0.2333(4)0.0233(15)
H14A0.46370.30010.18970.028*
H14B0.50420.37110.24880.028*
C150.3174(8)0.3891(5)0.3385(4)0.0245(15)
H15A0.25460.39290.36750.029*
H15B0.29620.44100.30940.029*
C160.4943(8)0.3861(5)0.3842(4)0.0221(15)
H16A0.55910.39600.35670.026*
H16B0.51920.43060.42000.026*
Cl10.3447(2)0.38910(11)0.51187(10)0.0271(4)
Cl20.25233(19)0.16641(11)0.54815(8)0.0212(4)
Cl30.7952(2)0.07337(12)0.29209(10)0.0280(4)
Cl40.8692(2)0.30582(13)0.26128(9)0.0265(4)
Co10.41717(10)0.21633(6)0.34264(4)0.0144(2)
Co20.71356(9)0.23657(6)0.46548(4)0.0130(2)
Co30.38507(10)0.24570(6)0.48920(5)0.0157(2)
Co40.74714(10)0.21329(6)0.31869(5)0.0188(3)
N10.2966(6)0.1196(4)0.2818(3)0.0201(12)
H10.21600.14590.24720.024*
N20.8355(6)0.3309(4)0.5274(3)0.0187(12)
H2C0.92110.30320.55810.022*
N30.8600(7)0.1439(4)0.5130(3)0.020
H30.96030.16040.51850.024*
N40.2712(6)0.3082(4)0.2941(3)0.0188(12)
H4C0.17090.29220.28910.023*
O10.3081(5)0.1866(3)0.4005(2)0.0184(10)
O20.2366(8)0.1053(7)0.1337(4)0.073(3)
H20.22830.08080.09740.109*
O30.8241(5)0.2680(3)0.4087(2)0.0183(10)
O40.9745(7)0.3354(4)0.6770(3)0.0391(14)
H40.91650.30970.69320.059*
O50.6056(5)0.2062(3)0.5252(2)0.0171(10)
O60.6103(5)0.1521(3)0.3945(2)0.0155(9)
O70.5259(5)0.2478(3)0.2838(2)0.0173(10)
O80.5214(5)0.3005(3)0.4138(2)0.0153(9)

Source of material

A mixture of CoCl2⋅6H2O (0.1 mmol), diethanolamine (0.1 mmol), triethylamine (0.1 mL) and water (15 mL) was stirred for ten minutes at room temperature. The mixture was then transfered in a 20 mL Teflon-lined stainless-steel reactor, heated to 433 K for 72 h, and then slowly cooled to room temperature at a rate of 5 K/h. Dark green block crystals were collected by filtration.

Experimental details

All H atoms were placed in idealized positions, refined with distance restraints of C—H = 0.97 Å and N—H = 0.91 Å and refined as riding atoms with Uiso(H) = 1.2 Ueq(C, N), respectively.

Discussion

The construction of polynuclear metal complexes is one of the most active research areas in coordination chemistry, not only because of their intriguing variety of structures but also due to their potential applications as functional materials used in the area of molecular magnetism, quantum computing and biology [3], [4], [5], [6], [7], [8], [9], [10]. It is well known that the structures of the coordination polymers are mainly dependent on the organic ligands and the metal ions [11], [12], [13], [14], [15]. So, through deliberate design and judicious choice of organic ligands and metal ions, such polynuclear metal complexes can be synthesized. Amino alcohols and their derivatives have been proved as powerful ligands in preparation of polynuclear metal complexes because their flexible coordination fashion and various coordination modes. The three heteroatoms can adjust their coordination number and orientation through rotation of C—N, C—O and C—C single bonds [16], [17], [18], [19]. Herein, we reported a tetranuclear mixed valent cobalt complex.

The asymmetric unit of the title compound consists of two Co(II) ions (Co1, Co2), two Co(III) ions (Co3, Co4), four organic ligands, and four chlorido ligands. Both Co1 and Co2 exhibit a distorted octahedral coordination geometry, which is defined by two N atoms and four O atoms from three organic ligands, respectively. Co3 and Co4 are coordinated by two oxygen atoms from two organic ligands and two chlorido ligands, respectively, displaying the same distorted tetrahedral coordination geometries. In the crystal structure, there exist abundant hydrogen bonds, involving N—H⋯Cl, O—H⋯Cl and O—H⋯O hydrogen bonds forming a two-dimensional network.

Acknowledgement

This work was financial supported by Changsha Enviromental Protection College.

References

Bruker. APEX2, SAINT and SADABS. Brucker AXS Inc., Madison, Wisconsin, USA, 2009.Suche in Google Scholar

Sheldrick, G. M.: Crystal structure refinement with SHELXL. Acta Crystallogr. C71 (2015) 3–8.10.1107/S2053229614024218Suche in Google Scholar PubMed PubMed Central

Makhankova, V. G.; Vassilyeva, O. Y.; Kokozay, V. N.; Skelton, B. W.; Reedijk, J.; Albada, G. A. V.; Soraced, L.; Gatteschid, D.: A unique heteropentanuclear CuII2CoIICoIII2 complex, synthesised from metallic Cu and Co acetate in the presence of triethanolamine. Magnetic properties and a strong H-bond stabilised lattice. New J. Chem. 25 (2001) 685–689.10.1039/b009194oSuche in Google Scholar

Bertaina, S.; Gambarelli, S.; Mitra, T.; Tsukerblat, B.; Müller, A.; Barbara, B.: Quantum oscillations in a molecular magnet. Nature 453 (2008) 203–206.10.1038/nature06962Suche in Google Scholar PubMed

Stamp, P. C. E.; Gaita-Ariño, A.: Spin-based quantum computers made by chemistry: hows and whys. J. Mater. Chem. 19 (2009) 1718–1730.10.1039/B811778KSuche in Google Scholar

Sanvito, S.: Molecular spintronics. Chem. Soc. Rev. 40 (2011) 3336–3355.10.1201/9780429441189-11Suche in Google Scholar

Goswami, S.; Mondal, A. K.; Konar, S.: Nanoscopic molecular magnets. Inorg. Chem. Front. 2 (2015) 687–712.10.1039/C5QI00059ASuche in Google Scholar

Bürgler, D. E.; Heβ, V.; Esat, T.; Fahrendorf, S.; Matthes, F.; Schneider, C. M.; Besson, C.; Monakhov, K. Y.; Kögerler, P.; Ghisolfi, A.; Braunstein, P.; Atodiresei, N.; Caciuc, V.; Blügel, S.: Spin-Hybrids: a single-molecule approach to spintronics. e-J. Surf. Sci. Nanotechnol. 14 (2016) 17–22.10.1380/ejssnt.2016.17Suche in Google Scholar

Schmitz, S.; Monakhov, Y. K.; Leusen, J.; Izarova, N. V.; Heβ, V.; Kögerler, p.: CoII/III5 horseshoe and NiII4 lacunary cubane coordination clusters: the isobutyrate/N-butyldiethanolamine reaction system. RSC Adv. 6 (2016) 100664–100669.10.1039/C6RA19232GSuche in Google Scholar

Sakiyama, H.; Chiba, H.; Tone, K.; Yamasaki, M.; Mikuriya, M.; Krzystek, J.; Ozarowski, A.: Magnetic Properties of a dinuclear nickel(II) complex with 2,6-bis[(2-hydroxyethyl)methylaminomethyl]-4-methylphenolate. Inorg. Chem. 56 (2017) 138–146.10.1021/acs.inorgchem.6b01671Suche in Google Scholar PubMed

Yang, J.; Ma, J. F.; Liu, Y. Y.; Ma, J. C.; Batten, S. R.: A series of Cu(II) complexes based on different bis(imidazole) ligands and organic acids: formation of water clusters and fixation of atmospheric carbon dioxide. Cryst. Growth. Des. 8 (2008) 4383–4393.10.1021/cg701119gSuche in Google Scholar

Bu, X. H.; Tong, M. L.; Chang, H. C.; Kitagawa, S.; Batten, S. R.: A neutral 3D copper coordination polymer showing 1D open channels and the first interpenetrating NbO-type network. Angew. Chem. Int. Ed. 43 (2004) 192–195.10.1002/anie.200352024Suche in Google Scholar PubMed

Han, M. L.; Chang, X. H.; Feng, X.; Ma, L. F.; Wang, L. Y.: Temperature and pH driven self-assembly of Zn(II) coordination polymers: crystal structures, supramolecular isomerism, and photoluminescence. CrystEngComm 16 (2014) 1687–1695.10.1039/c3ce41968aSuche in Google Scholar

Meng, X.; Song, S. Y.; Song, X. Z.; Zhu, M.; Zhao, S. N.; Wu, L. L.; Zhang, H. J.: A Eu/Tb-codoped coordination polymer luminescent thermometer. Inorg. Chem. Front. 1 (2014) 757–760.10.1039/C4QI00122BSuche in Google Scholar

Liu, H. Y.; Wu, H.; Ma, J. F.; Liu, Y. Y.; Yang, J.; Ma, J. C.: Inorganic-organic hybrid compounds based on octamolybdates and metal-organic fragments with flexible multidentate ligand: syntheses, structures and characterization. Dalton. Trans. 40 (2011) 602–613.10.1039/C0DT01024CSuche in Google Scholar

Chen, Y.; Liu, Q.; Deng, Y.; Zhu, H.; Chen, C.; Fan, H.; Liao, D.; Gao, E.: Vanadium, molybdenum, and sodium triethanolamine complexes derived from an assembly system containing tetrathiometalate and triethanolamine. Inorg. Chem. 40 (2001) 3725–3733.10.1021/ic010126cSuche in Google Scholar PubMed

Nesterov, D. S.; Makhankova, V. G.; Vassilyeva, O. Y.; Kokozay, V. N.; Kovbasyuk, L. A.; Skelto, B. W.; Jezierska, J.: Assembling novel heterotrimetallic Cu/Co/Ni and Cu/Co/Cd cores supported by diethanolamine ligand in one-pot reactions of zerovalent copper with metal salts. Inorg. Chem. 43 (2004) 7868–7876.10.1021/ic048955wSuche in Google Scholar PubMed

Nesterov, D. S.; Makhankova, V. G.; Kokozay, V. N.; Skelton, B. W.: Direct synthesis and crystal structures of new heteropolynuclear complexes containing aminoalcohol ligands: From heterobi-(Co/Zn) to heterotrimetallic (Cu/Co/Zn) compounds. Inorg. Chim. Acta 358 (2005) 4519–4526.10.1016/j.ica.2005.07.032Suche in Google Scholar

Semenaka, V. V.; Nesterova, O. V.; Kokozay, V. N.; Zybatyuk, R. I.; Shishkin, O. V.; Boca, R.; Gómez-Garcí, C. J.; Clemente-Juan, J. M.; Jezierska, J.: Structural and magnetic studies of tetranuclear heterometallic M/Cr (M = Co, Mn) complexes self-assembled from zerovalent cobalt or manganese, Reineckes salt and diethanolamine. Polyhedron 29 (2010) 1326–1336.10.1016/j.poly.2009.12.032Suche in Google Scholar

Received: 2017-1-6
Accepted: 2017-6-16
Published Online: 2017-7-6
Published in Print: 2017-9-26

©2017 Ganlin Zhao, published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Artikel in diesem Heft

  1. Cover and Frontmatter
  2. Crystal structure of 2-(2-ethoxyphenyl)-7-propyl-5-methylimidazo[5,1-f][1,2,4]triazin-4(3H)-one, C17H20N4O2
  3. Crystal structure of catena-poly[aqua-(μ3-1,3,5-benzenetricarboxylato-κ3O:O′:O′′)-[μ3hydroxy-(1,3-di-(μ2-1,2,4-triazole-4-yl)benzoato-κ2N:N′)copper(II)], C19H16Cu2N6O9
  4. Crystal structure of poly[aqua-(μ3-3,5-di(4H-1,2,4-triazolyl-4-κ3N,N′:N′′)benzenecarboxylato)silver(I)], C11H9AgN6O3
  5. Crystal structure of tetrapropylammonium hydrogen carbonate, C13H29NO3
  6. Crystal structure of poly[μ2-acetato-κ3-O,O′:O′)diaqua(μ3-isophthalato-κ4O,O′:O′′:O′′′)yttrium(III)] monohydrate, C20H24O17Y2
  7. Crystal structure of catena-poly[dichlorido-(μ2-4-(1H-pyrazol-3-yl)-pyridine-κ2N,N′)]cadmium(II), C48H42Cd3Cl16N18
  8. Crystal structure of bis(tetraethylammonium) [1,1′-biphenyl]-2,2′-dicarboxylate trihydrate, C30H54N2O7
  9. Crystal structure of poly[(thiophene-3,4-dicarboxylato-κ1O)bis[1,2-bis(4-pyridyl)ethane-κ2N:N′]silver(I)] octahydrate, C30H42Ag2N4O12S
  10. The crystal structure of amine-(4-(1H-1,2,4-triazol-1-yl)benzoato-κN)silver(I) dihydrate, C9H13AgN4O4
  11. Crystal structure of poly[tetrakis(μ2-cyanido-κ2N:O)-cyanido-tris(pyridine)dicobalt(II/III)], C20H15Co2N8
  12. Crystal structure of bis(pyridine)-bis(2-formyl-4,6-dichlorophenolato)cobalt(II), C24H16Cl4CoN2O4
  13. Crystal structure of (E)-1-(4-(((E)-5-bromo-2-hydroxybenzylidene)amino)phenyl)ethan-1-one O-methyl oxime, C16H15BrN2O2
  14. Crystal structure of catena-poly[(μ2-3-(1H-pyrazol-4-yl)-5-(pyridin-4-yl)-1,2,4-triazole-κ N:N′)-bis(benzoato-κO)zinc(II)], C24H18N6O4Zn
  15. Hydrothermal synthesis and crystal structure of a poly[aqua-(μ4-4-(carboxylatomethyl)benzoato-κ4O:O′:O′′:O′′′)-(μ2-1-(4-(1H-imidazol-1-yl)benzyl)-1H-1,2,4-triazole-κ2N:N′) dimanganese(II)], [Mn2(C9H6O4)2(C12H11N5)(H2O)]
  16. Crystal structure of diaqua-catena-poly[diaqua-bis(μ2-5-(4-(1H-1,2,4-triazol-1-yl)phenyl)tetrazol-2-ido-κ2N:N′)cobalt(II)] dihydrate, C20H24CoN14O4
  17. Crystal structure of bis(μ3-2,2′-azanediylbis(ethan-1-olato)-κ5O:O,N,O′:O′)-tetrachlorido-bis(μ2-2-((2-hydroxyethyl)amino)ethan-1-olato-κ3N,O:O)dicobalt(II)dicobalt(III), C16H38Cl4Co4N4O8
  18. Crystal structure of poly[μ4-(4-(carboxylatomethyl)benzoato-κ4O:O′:O′′:O′′′)-(2-(4-(1H-imidazol-1-yl)phenyl)-1H-benzo[d]imidazole-κN)manganese(II)] [Mn(C9H6O4)(C16H12N4)]
  19. Crystal structure of 4-chloro-6-phenylpyrimidine, C10H7ClN2
  20. The crystal structure of [6-methoxy-2-(2,2,2-trifluoroacetyl)-3,4-dihydronaphthalen-1(2H)-one]difluoroborane, C13H10BF5O3
  21. Crystal structure of 3,3′-(butane-1,4-diylbis(azanylylidene))bis(1-phenylbut-1-en-1-olato)-κ4N,N′,O,O′]copper(II), C24H26N2O2Cu
  22. Crystal structure of tetraaqua-bis((E)-N′-(2-bromobenzylidene)isonicotinohydrazide-κN)zinc(II) dinitrate, C26H28N8O12Br2Zn
  23. Crystal structure of 2-amino-4-(4-bromophenyl)-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile, C16H13BrN2O2
  24. A single crystal study on tert-butyl-4-((4-(4-bromo-2-fluorophenylamino)-6-methoxyquinazolin-7-yloxy)methyl)piperidine-1-carboxylate, C26H30BrFN4O4
  25. Crystal structure of 1,1′-((1E,1′E)-(((ethane-1,2-diylbis(oxy))bis(2,1-phenylene))bis(azanylylidene))bis(methanylylidene))bis(naphthalen-2-olato-κ3O,O′,N)zinc(II), C36H26N2O4Zn
  26. Crystal structure of diaqua-bis(5′-(pyridin-1-ium-4-yl)-1H-[3,3′-bi(1,2,4-triazol)]-2′-ide-κ2N,N′)cobalt(II) — bis(5-(pyridin-4-yl-κN)-1H,1′H-3,3′-bi(1,2,4-triazole))octamolybdate – water (2/1/8), C27H33CoMo4N21O19
  27. Crystal structure of 3-cyclohexyl-2-(cyclohexylimino)-2,3-dihydro-6,8-diiodo-4H-1,3-benzoxazin-4-one, C20H24I2N2O2
  28. Crystal structure of dinitrato-κO-bis(tris((1H-benzo[d]imidazol-2-yl)methyl)amine-κ4N,N′,N′′,N′′′)-(μ2-cyclohexane-1,4-dicarboxylato-κ4O,O′:O′′,O′′′)dimanganese(II) – methanol – water (1/6/2), C62H80Mn2N16O18
  29. Crystal structure of bis(2-hydroxyethyl(phenyl)carbamodithioate)nickel(II), C18H20N2NiO2S4
  30. Crystal structure of methyl 1-(4-fluorobenzyl)-4-methoxy-5-oxopyrrolidine-3-carboxylate, C14H16FNO4
  31. Crystal structure of di-μ-iodido-bis(6-(p-tolyl)-2,2′-bipyridine-κ2N,N′)dicopper(I) — 2-(diphenylphosphoryl)benzoic acid (1/2), C36H29CuIN2O3P
  32. Crystal structure of 2-amino-4-(3-bromo-4-fluoro-phenyl)-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile, C18H16BrFN2O2
  33. Crystal structure of bis(μ2-2-chlorobenzoato-κ3O,O′:O′)-(2-chlorobenzoato-κO)-(2-chlorobenzoato-κO,O′)-bis(1,10-phenanthroline-κ2N,N′)-dicadmium(II) monohydrate, C52H36Cd2Cl4N4O10
  34. Crystal structure of 2-(8a-methyl-5-oxo-hexahydroimidazo [1,2-a]pyridin-1(5H)-yl)-2-oxoethyl acetate, C12H18N2O4
  35. Crystal structure of (E)-N,N-diethyl-2-(5-nitrothiazol-2-yl)-1-phenylethen-1-amine, C15H17N3O2S
  36. Crystal structure of diazido-dimethanolato-bis(μ2-2-(((3-oxidopropyl)imino)methyl)phenolato-κ4O:O,O′,N)dimanganese(III), C22H28Mn2N8O6
  37. The crystal structure of bis(2-(2,2,2-trifluoroacetyl)-3,4-dihydronaphthalen-1-olato-κ2O,O′)copper(II), C24H16CuF6O4
  38. Crystal structure of hexaaquanickel(II) bis((E)-4-((4-(dimethylamino)phenyl)diazenyl)benzenesulfonate), C28H40N6NiO12S2
  39. Crystal structure of catena-poly[aqua-(μ2-hexamethylenetetramine-κ2N:N′)-bis(2,6-difluorobenzoato-κ2O:O′)cadmium(II)]monohydrate, C20H22CdF4N4O6
  40. Crystal structure of 3-benzyl-2,3-dihydro-2-thioxoquinazolin-4(1H)-one, C15H12N2OS
  41. Crystal structure of bis(μ2-ferrocenecarboxylato-κ2O:O′)-bis(1,10-phenanthroline-κ2N,N′)-(μ2-methanolato2O,O)dicopper(II) tetrafluoroborate – acetonitrile (1/1), C49H40BCu2F4Fe2N5O5
  42. The crystal structure of tetrakis(1,3,5-triaza-7-phosphatricyclo[3.3.1.13,7]decane-κP)silver(I) chloride dihydrate, C24H60AgClN12O6P4
  43. Crystal structure of 5-ethyl-2-(p-tolyl)-1,3-dioxane-5-carboxylic acid, C14H18O4
  44. Crystal structure of 2-(4-fluorophenyl)-1,3-dimethyl-1H-perimidin-3-ium iodide, C19H16ClIN2
  45. Crystal structure of catena-poly[(μ2-hexamethylenetetramine-κ2N:N′)-tetrakis(μ2-2,6-difluorobenzoato-κ2O:O′)dicopper(II)], C34H24Cu2F8N4O8
  46. Crystal structure of ethyl 3-hydroxy-5-methyl-2-(4-(m-tolyl)-1H-1,2,3-triazol-1-yl)-[1,1′-biphenyl]-4- carboxylate, C25H24N3O3
  47. The crystal structure of carbonyl(2-oxopyridin-1(2H)-olato-κ2O,O′)-(diphenylcyclohexylphosphine-κP)rhodium(I), C24H25NO3PRh
  48. Crystal structure of bis((pyrazin-2-ylmethyl)(pyrazine-2-carbonyl)amido-κ3N,N′,N′′)copper(II), C20H16CuN10O2
  49. Crystal structure of catena-poly[tetraaqua-(μ2-succinonitrile-κ2N:N′)cobalt(II)] dinitrate, C4H12CoN4O10
  50. The crystal structure of 1,1′-bisisoquinoline, C18H12N2
  51. Crystal structure of bis(hydroxydi(pyridin-2-yl)methanolato-κ3N,N′,O)cobalt(III) perchlorate dihydrate, C22H22ClCoN4O10
Heruntergeladen am 20.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2017-0005/html
Button zum nach oben scrollen