Home Physical Sciences Crystal structure of hexaaquanickel(II) bis((E)-4-((4-(dimethylamino)phenyl)diazenyl)benzenesulfonate), C28H40N6NiO12S2
Article Open Access

Crystal structure of hexaaquanickel(II) bis((E)-4-((4-(dimethylamino)phenyl)diazenyl)benzenesulfonate), C28H40N6NiO12S2

  • In-Hwan Oh , Garam Park and Seong-Hun Park EMAIL logo
Published/Copyright: July 21, 2017

Abstract

C28H40N6NiO12S2, monoclinic, P21/c (no. 14), a = 6.202(1) Å, b = 7.126(1) Å, c = 38.499(2) Å, β = 91.258(2)°, V = 1701.1(4) Å3, Z = 2, Rgt(F) = 0.0698, wRref(F2) = 0.1515, T = 300 K.

CCDC no.:: 1560153

The cation and the anion forming the title crystal structure are shown in the figure. Tables 1 and 2 contain details of the measurement method and a list of the atoms including atomic coordinates and displacement parameters.

Table 1

Data collection and handling.

Crystal:Red-brown prism
Size:0.57 × 0.48 × 0.37 mm
Wavelength:Mo Kα radiation (0.71073 Å)
μ:7.6 cm−1
Diffractometer, scan mode:Bruker APEX-II, φ and ω
2θmax, completeness:50°, >99%
N(hkl)measured, N(hkl)unique, Rint:34163, 3000, 0.119
Criterion for Iobs, N(hkl)gt:Iobs > 2 σ(Iobs), 2062
N(param)refined:283
Programs:SHELX [1], Bruker programs [2], SIR92 [3], DIAMOND [4], publCIF [5]
Table 2

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyzUiso*/Ueq
Ni11.00000.50000.50000.0265(3)
S10.61159(17)−0.0048(2)0.43946(3)0.0311(3)
O10.7066(6)0.4952(7)0.47613(11)0.0443(10)
H1O10.654(12)0.588(10)0.4697(19)0.066*
H2O10.641(12)0.410(10)0.4665(19)0.066*
O21.1044(7)0.2850(7)0.46915(14)0.0510(14)
H1O21.007(12)0.209(11)0.4599(19)0.077*
H2O21.213(13)0.261(12)0.465(2)0.077*
O30.8978(8)0.3037(7)0.53500(15)0.0494(13)
H1O30.783(13)0.256(11)0.535(2)0.074*
H2O30.958(13)0.234(12)0.538(2)0.074*
O40.8461(5)−0.0042(6)0.44346(9)0.0405(9)
O50.5172(7)−0.1773(6)0.45212(11)0.0444(11)
O60.5158(6)0.1616(6)0.45484(10)0.0413(10)
N10.4072(8)0.0013(8)0.28748(12)0.0491(12)
N20.2172(8)0.0427(5)0.27879(12)0.0403(12)
N3−0.0081(7)0.0152(8)0.13739(11)0.0467(12)
C10.5524(7)0.0051(8)0.39443(13)0.0329(11)
C20.3503(9)0.0698(8)0.38326(16)0.0389(14)
H20.255(10)0.095(8)0.4010(15)0.047*
C30.2987(10)0.0709(9)0.34817(16)0.0448(15)
H30.159(10)0.115(9)0.3399(16)0.054*
C40.4466(9)0.0127(9)0.32395(14)0.0393(12)
C50.6476(10)−0.0542(8)0.33564(16)0.0430(15)
H50.738(10)−0.084(9)0.3192(16)0.052*
C60.7007(9)−0.0555(8)0.37060(15)0.0394(14)
H60.845(10)−0.091(8)0.3788(15)0.047*
C70.1724(9)0.0309(8)0.24258(14)0.0405(14)
C8−0.0348(11)0.0781(10)0.23174(17)0.0489(16)
H8−0.135(10)0.107(9)0.2493(17)0.059*
C9−0.0968(10)0.0725(9)0.19712(15)0.0435(15)
H9−0.250(10)0.101(9)0.1916(15)0.052*
C100.0481(9)0.0158(8)0.17194(14)0.0386(12)
C110.2549(10)−0.0420(9)0.18356(16)0.0462(16)
H110.337(10)−0.103(9)0.1699(16)0.055*
C120.3165(10)−0.0368(8)0.21804(16)0.0430(15)
H120.444(10)−0.051(9)0.2238(16)0.052*
C13−0.2199(12)0.0699(12)0.1255(2)0.059(2)
H13A−0.330(13)−0.018(12)0.133(2)0.088*
H13B−0.257(13)0.180(12)0.134(2)0.088*
H13C−0.244(13)0.020(11)0.104(2)0.088*
C140.1426(14)−0.0469(12)0.11170(19)0.061(2)
H14A0.270(13)0.032(12)0.111(2)0.092*
H14B0.183(13)−0.170(12)0.115(2)0.092*
H14C0.061(13)−0.048(11)0.092(2)0.092*

Source of materials

NiCl2⋅6H2O (0.364 g) was added to a solution of C14H14N3NaO3S (0.491 g) in methanol (200 mL) and the mixture was slowly evaporated. Small red-brown crystals were obtained after approximately 1 week.

Experimental details

All H atoms were located in a difference Fourier map and refined with Uiso(H) = 1.2 of their parent atoms with the exception of H atoms in the methyl groups and water molecules. H atoms in methyl groups and water molecules were refined using Uiso(H) = 1.5Ueq(C) or 1.5Ueq(O).

Comment

Recently, owing to the various properties, for example, a low-dimensional magnetism, photovoltaic effects, and thermoelectric applications, inorganic-organic hybrid systems have attracted considerable interest [6], [7], [8]. As a part of this approach, we prepared a series of inorganic-organic layered materials [9], [10], [11].

In the layered title structure Ni(H2O)6 layers are placed between organic bilayers. The crystal structure is similar to the previously reported Mn analogue [11]. Many crystal structures containing methyl-orange have been reported [12], [13], [14], [15]. Through the hydrogen bonds all water ligands are linked and as a result hydrogen bonded layers are in an ab plane. Based on the bond lengths, each nickel(II) is almost octahedrally surrounded by six water molecules. The distances between Ni—O range from 2.02(3) Å to 2.052(5) Å. Compared to the Mn compound, the difference is very tiny. Organic chains are parallel to the c axis. The hydrogen bonds in the title compound are classified as medium strong [16, 17] . Similar to the Mn compound, the C—N bond lengths are shorter than the sum of the covalent radii, 1.47 Å (N1—C4 = 1.422 Å, N2—C7 = 1.418 Å, N3—C10 = 1.367 Å). Some ‘sacrificial’ structures can explain this shortening of the bond lengths [11, 18, 19, 20].

Acknowledgement

The work at KAERI was supported by the Nuclear R&D Programs (NRF-2012M2A2A6004261).

References

Sheldrick, G. M.: Crystal structure refinement with SHELXL. Acta Crystallogr. C71 (2015) 3–8.10.1107/S2053229614024218Search in Google Scholar PubMed PubMed Central

Bruker. SMART, SADABS and SAINT. Bruker AXS Inc., Madison, WI (2007).Search in Google Scholar

Altomare, A.; Cascarano, G.; Giavcovazzo, C.; Guagliardi, A.; Burla, M. C.; Plidori, G.; Camali, M.: SIR92. J. Appl. Crystallogr. 36 (1994) 435.10.1107/S002188989400021XSearch in Google Scholar

Brandenburg, K.: DIAMOND. Visual Crystal Structure Information System. Version 3.2i. Crystal Impact, Bonn, Germany (2012).Search in Google Scholar

Westrip, S. P.: publCIF: software for editing, validating and formating crystallographic informations files. J. Appl. Cryst. 43 (2010) 920–925.10.1107/S0021889810022120Search in Google Scholar

De Jongh, L. J.: In magnetic properties of layered transition metal compounds. Dordrecht: Kluwer (1990); ISBN:0-7923-0236-9.10.1007/978-94-009-1860-3Search in Google Scholar

Mitzi, D. B.: Synthesis, structure, and properties of organic-inorganic perovskites and related materials. Prog. Inorg. Chem. 48 (1999) 1–121.10.1002/9780470166499.ch1Search in Google Scholar

He, Y.; Galli, G.: Perovskites for solar thermoelectric applications: a first principle study of CH3NH3AI3 (A = Pb and Sn). Chem. Mat. 26 (2014) 5394–5400.10.1021/cm5026766Search in Google Scholar

Oh, I. H.; Kim, D.; Huh, Y. D.; Park, Y.; Park, J. M. S.; Park, S. H.: Bis(2-phenylethylammonium) tetrachloridocobaltate(II). Acta Crystallogr. E67 (2011) m522–m523.10.1107/S1600536811011603Search in Google Scholar PubMed PubMed Central

Park, S. H.; Oh, I. H.; Park, S.; Park, Y.; Kim, J. H.; Huh, Y. D.: Canted antiferromagnetism and spin reorientation transition in layered inorganic-organic perovskite (C6H5CH2NH3)2MnCl4. Dalton Trans. 41 (2012) 1237–1242.10.1039/C1DT11544HSearch in Google Scholar

Oh, I. H.; Kim, J. Y.; Park, S. H.: Crystal structure of hexaaquamanganese(II) bis((E)-4((4-(dimethylamino)phenyl)diazenyl)benzenesulfonate), C28H40N6O12S2. Z. Kristallogr. − NCS 231 (2016) 369–371.10.1515/ncrs-2014-9088Search in Google Scholar

Hanson, A. W.: The crystal structure of methyl orange monohydrate monoethanolate. Acta Crystallogr. B29 (1976) 454–460.10.1107/S0567740873002748Search in Google Scholar

Shibata, H.; Sato, K.; Mizuguchi, J.: Crystal structure of methyl orange derivatives and their electronic spectra. J. Imaging Sci. Technol. 53 (2009) 50302-1–50302-4.10.2352/J.ImagingSci.Technol.2009.53.5.050302Search in Google Scholar

Burke, N. J.; Burrows, A. D.; Mahon, M. F.; Teat, S. J.: Incorporation of sulfonate dyes into hydrogen-bonded networks. CrystEngComm 6 (2004) 429–436.10.1039/b406614fSearch in Google Scholar

Burke, N. J.; Burrows, A. D.; Mahon, M. F.; Warren, J. E.: Incorporation of dyes into hydrogen-bond networks: the structures and properties of guanidinium sulfonate derivatives containg ethyl orange and 4-aminoazobenzene-4’-sulfonate. Cryst. Growth Des. 6 (2006) 546–554.10.1021/cg050499eSearch in Google Scholar

Steiner, T.: Hydrogen-bond distances to halide ions in organic and organometaallic crystal structures: up-to-date database study. Acta Crystallogr. B54 (1998) 456–463.10.1107/S0108768197014821Search in Google Scholar

Steiner, T.: The hydrogen bond in the solid state. Angew. Chem. Int. Ed. 41 (2002) 48–76.10.1002/1521-3773(20020104)41:1<48::AID-ANIE48>3.0.CO;2-USearch in Google Scholar

Sakurai, T.; Sundaralingan, M.; Jeffrey, G. A.: A nuclear quadrupole resonance and X-ray study of the crystal structure of 2,5-dichloroaniline. Acta Crystallogr. 16 (1963) 354–363.10.1107/S0365110X63000979Search in Google Scholar

Trotter, J.; Whitlow, S. H.; Zobel, T.: The crystal and molecular structure of p-chloroaniline. J. Chem Soc. (A) (1966) 353–356.10.1039/j19660000353Search in Google Scholar

Oh, I. H.; Park, S. H.: Crystal structure of (E)-4-(2-(4-(diethylamino)phenyl)diazen-1-ium-1-yl)benzenesulfonate monohydrate. Z. Kristallogr. − NCS 231 (2016) 409–410.10.1515/ncrs-2015-0042Search in Google Scholar

Received: 2017-2-21
Accepted: 2017-7-5
Published Online: 2017-7-21
Published in Print: 2017-9-26

©2017 In-Hwan Oh et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Articles in the same Issue

  1. Cover and Frontmatter
  2. Crystal structure of 2-(2-ethoxyphenyl)-7-propyl-5-methylimidazo[5,1-f][1,2,4]triazin-4(3H)-one, C17H20N4O2
  3. Crystal structure of catena-poly[aqua-(μ3-1,3,5-benzenetricarboxylato-κ3O:O′:O′′)-[μ3hydroxy-(1,3-di-(μ2-1,2,4-triazole-4-yl)benzoato-κ2N:N′)copper(II)], C19H16Cu2N6O9
  4. Crystal structure of poly[aqua-(μ3-3,5-di(4H-1,2,4-triazolyl-4-κ3N,N′:N′′)benzenecarboxylato)silver(I)], C11H9AgN6O3
  5. Crystal structure of tetrapropylammonium hydrogen carbonate, C13H29NO3
  6. Crystal structure of poly[μ2-acetato-κ3-O,O′:O′)diaqua(μ3-isophthalato-κ4O,O′:O′′:O′′′)yttrium(III)] monohydrate, C20H24O17Y2
  7. Crystal structure of catena-poly[dichlorido-(μ2-4-(1H-pyrazol-3-yl)-pyridine-κ2N,N′)]cadmium(II), C48H42Cd3Cl16N18
  8. Crystal structure of bis(tetraethylammonium) [1,1′-biphenyl]-2,2′-dicarboxylate trihydrate, C30H54N2O7
  9. Crystal structure of poly[(thiophene-3,4-dicarboxylato-κ1O)bis[1,2-bis(4-pyridyl)ethane-κ2N:N′]silver(I)] octahydrate, C30H42Ag2N4O12S
  10. The crystal structure of amine-(4-(1H-1,2,4-triazol-1-yl)benzoato-κN)silver(I) dihydrate, C9H13AgN4O4
  11. Crystal structure of poly[tetrakis(μ2-cyanido-κ2N:O)-cyanido-tris(pyridine)dicobalt(II/III)], C20H15Co2N8
  12. Crystal structure of bis(pyridine)-bis(2-formyl-4,6-dichlorophenolato)cobalt(II), C24H16Cl4CoN2O4
  13. Crystal structure of (E)-1-(4-(((E)-5-bromo-2-hydroxybenzylidene)amino)phenyl)ethan-1-one O-methyl oxime, C16H15BrN2O2
  14. Crystal structure of catena-poly[(μ2-3-(1H-pyrazol-4-yl)-5-(pyridin-4-yl)-1,2,4-triazole-κ N:N′)-bis(benzoato-κO)zinc(II)], C24H18N6O4Zn
  15. Hydrothermal synthesis and crystal structure of a poly[aqua-(μ4-4-(carboxylatomethyl)benzoato-κ4O:O′:O′′:O′′′)-(μ2-1-(4-(1H-imidazol-1-yl)benzyl)-1H-1,2,4-triazole-κ2N:N′) dimanganese(II)], [Mn2(C9H6O4)2(C12H11N5)(H2O)]
  16. Crystal structure of diaqua-catena-poly[diaqua-bis(μ2-5-(4-(1H-1,2,4-triazol-1-yl)phenyl)tetrazol-2-ido-κ2N:N′)cobalt(II)] dihydrate, C20H24CoN14O4
  17. Crystal structure of bis(μ3-2,2′-azanediylbis(ethan-1-olato)-κ5O:O,N,O′:O′)-tetrachlorido-bis(μ2-2-((2-hydroxyethyl)amino)ethan-1-olato-κ3N,O:O)dicobalt(II)dicobalt(III), C16H38Cl4Co4N4O8
  18. Crystal structure of poly[μ4-(4-(carboxylatomethyl)benzoato-κ4O:O′:O′′:O′′′)-(2-(4-(1H-imidazol-1-yl)phenyl)-1H-benzo[d]imidazole-κN)manganese(II)] [Mn(C9H6O4)(C16H12N4)]
  19. Crystal structure of 4-chloro-6-phenylpyrimidine, C10H7ClN2
  20. The crystal structure of [6-methoxy-2-(2,2,2-trifluoroacetyl)-3,4-dihydronaphthalen-1(2H)-one]difluoroborane, C13H10BF5O3
  21. Crystal structure of 3,3′-(butane-1,4-diylbis(azanylylidene))bis(1-phenylbut-1-en-1-olato)-κ4N,N′,O,O′]copper(II), C24H26N2O2Cu
  22. Crystal structure of tetraaqua-bis((E)-N′-(2-bromobenzylidene)isonicotinohydrazide-κN)zinc(II) dinitrate, C26H28N8O12Br2Zn
  23. Crystal structure of 2-amino-4-(4-bromophenyl)-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile, C16H13BrN2O2
  24. A single crystal study on tert-butyl-4-((4-(4-bromo-2-fluorophenylamino)-6-methoxyquinazolin-7-yloxy)methyl)piperidine-1-carboxylate, C26H30BrFN4O4
  25. Crystal structure of 1,1′-((1E,1′E)-(((ethane-1,2-diylbis(oxy))bis(2,1-phenylene))bis(azanylylidene))bis(methanylylidene))bis(naphthalen-2-olato-κ3O,O′,N)zinc(II), C36H26N2O4Zn
  26. Crystal structure of diaqua-bis(5′-(pyridin-1-ium-4-yl)-1H-[3,3′-bi(1,2,4-triazol)]-2′-ide-κ2N,N′)cobalt(II) — bis(5-(pyridin-4-yl-κN)-1H,1′H-3,3′-bi(1,2,4-triazole))octamolybdate – water (2/1/8), C27H33CoMo4N21O19
  27. Crystal structure of 3-cyclohexyl-2-(cyclohexylimino)-2,3-dihydro-6,8-diiodo-4H-1,3-benzoxazin-4-one, C20H24I2N2O2
  28. Crystal structure of dinitrato-κO-bis(tris((1H-benzo[d]imidazol-2-yl)methyl)amine-κ4N,N′,N′′,N′′′)-(μ2-cyclohexane-1,4-dicarboxylato-κ4O,O′:O′′,O′′′)dimanganese(II) – methanol – water (1/6/2), C62H80Mn2N16O18
  29. Crystal structure of bis(2-hydroxyethyl(phenyl)carbamodithioate)nickel(II), C18H20N2NiO2S4
  30. Crystal structure of methyl 1-(4-fluorobenzyl)-4-methoxy-5-oxopyrrolidine-3-carboxylate, C14H16FNO4
  31. Crystal structure of di-μ-iodido-bis(6-(p-tolyl)-2,2′-bipyridine-κ2N,N′)dicopper(I) — 2-(diphenylphosphoryl)benzoic acid (1/2), C36H29CuIN2O3P
  32. Crystal structure of 2-amino-4-(3-bromo-4-fluoro-phenyl)-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile, C18H16BrFN2O2
  33. Crystal structure of bis(μ2-2-chlorobenzoato-κ3O,O′:O′)-(2-chlorobenzoato-κO)-(2-chlorobenzoato-κO,O′)-bis(1,10-phenanthroline-κ2N,N′)-dicadmium(II) monohydrate, C52H36Cd2Cl4N4O10
  34. Crystal structure of 2-(8a-methyl-5-oxo-hexahydroimidazo [1,2-a]pyridin-1(5H)-yl)-2-oxoethyl acetate, C12H18N2O4
  35. Crystal structure of (E)-N,N-diethyl-2-(5-nitrothiazol-2-yl)-1-phenylethen-1-amine, C15H17N3O2S
  36. Crystal structure of diazido-dimethanolato-bis(μ2-2-(((3-oxidopropyl)imino)methyl)phenolato-κ4O:O,O′,N)dimanganese(III), C22H28Mn2N8O6
  37. The crystal structure of bis(2-(2,2,2-trifluoroacetyl)-3,4-dihydronaphthalen-1-olato-κ2O,O′)copper(II), C24H16CuF6O4
  38. Crystal structure of hexaaquanickel(II) bis((E)-4-((4-(dimethylamino)phenyl)diazenyl)benzenesulfonate), C28H40N6NiO12S2
  39. Crystal structure of catena-poly[aqua-(μ2-hexamethylenetetramine-κ2N:N′)-bis(2,6-difluorobenzoato-κ2O:O′)cadmium(II)]monohydrate, C20H22CdF4N4O6
  40. Crystal structure of 3-benzyl-2,3-dihydro-2-thioxoquinazolin-4(1H)-one, C15H12N2OS
  41. Crystal structure of bis(μ2-ferrocenecarboxylato-κ2O:O′)-bis(1,10-phenanthroline-κ2N,N′)-(μ2-methanolato2O,O)dicopper(II) tetrafluoroborate – acetonitrile (1/1), C49H40BCu2F4Fe2N5O5
  42. The crystal structure of tetrakis(1,3,5-triaza-7-phosphatricyclo[3.3.1.13,7]decane-κP)silver(I) chloride dihydrate, C24H60AgClN12O6P4
  43. Crystal structure of 5-ethyl-2-(p-tolyl)-1,3-dioxane-5-carboxylic acid, C14H18O4
  44. Crystal structure of 2-(4-fluorophenyl)-1,3-dimethyl-1H-perimidin-3-ium iodide, C19H16ClIN2
  45. Crystal structure of catena-poly[(μ2-hexamethylenetetramine-κ2N:N′)-tetrakis(μ2-2,6-difluorobenzoato-κ2O:O′)dicopper(II)], C34H24Cu2F8N4O8
  46. Crystal structure of ethyl 3-hydroxy-5-methyl-2-(4-(m-tolyl)-1H-1,2,3-triazol-1-yl)-[1,1′-biphenyl]-4- carboxylate, C25H24N3O3
  47. The crystal structure of carbonyl(2-oxopyridin-1(2H)-olato-κ2O,O′)-(diphenylcyclohexylphosphine-κP)rhodium(I), C24H25NO3PRh
  48. Crystal structure of bis((pyrazin-2-ylmethyl)(pyrazine-2-carbonyl)amido-κ3N,N′,N′′)copper(II), C20H16CuN10O2
  49. Crystal structure of catena-poly[tetraaqua-(μ2-succinonitrile-κ2N:N′)cobalt(II)] dinitrate, C4H12CoN4O10
  50. The crystal structure of 1,1′-bisisoquinoline, C18H12N2
  51. Crystal structure of bis(hydroxydi(pyridin-2-yl)methanolato-κ3N,N′,O)cobalt(III) perchlorate dihydrate, C22H22ClCoN4O10
Downloaded on 20.1.2026 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2017-0051/html
Scroll to top button