Home Hydrothermal synthesis and crystal structure of a poly[aqua-(μ4-4-(carboxylatomethyl)benzoato-κ4O:O′:O′′:O′′′)-(μ2-1-(4-(1H-imidazol-1-yl)benzyl)-1H-1,2,4-triazole-κ2N:N′) dimanganese(II)], [Mn2(C9H6O4)2(C12H11N5)(H2O)]
Article Open Access

Hydrothermal synthesis and crystal structure of a poly[aqua-(μ4-4-(carboxylatomethyl)benzoato-κ4O:O′:O′′:O′′′)-(μ2-1-(4-(1H-imidazol-1-yl)benzyl)-1H-1,2,4-triazole-κ2N:N′) dimanganese(II)], [Mn2(C9H6O4)2(C12H11N5)(H2O)]

  • Yin Wei-Dong and Li Gui-Lian EMAIL logo
Published/Copyright: August 1, 2017

Abstract

C30H25N5O9Mn2, monoclinic, P21/c (no. 14), a = 15.5012(6) Å, b = 9.3423(3) Å, c = 19.7517(6) Å, β = 95.966(3)°, V = 2844.90(18) Å3, Z = 4, Rgt(F) = 0.0362, wRref(F2) = 0.0971, T = 293(2) K.

CCDC no.:: 1560963

The asymmetric unit and additional atoms completing the coordination sphere of the manganese atoms is shown in the figure. Table 1 and 2 contain details on crystal structure and measurement conditions as well as a list of atoms including atomic coordinates and displacement parameters.

Table 1

Data collection and handling.

Crystal:Colourless block
Size:0.42 × 0.33 × 0.26 mm
Wavelength:Mo Kα radiation (0.71073 Å)
μ:9.6 cm−1
Diffractometer, scan mode:Bruker CCD, φ and ω
2θmax, completeness:56.0°, >99%
N(hkl)measured, N(hkl)unique, Rint:11611, 5284, 0.025
Criterion for Iobs, N(hkl)gt:Iobs > 2 σ(Iobs), 4462
N(param)refined:415
Programs:Bruker [1], SHELX [2, 3]
Table 2

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyzUiso*/Ueq
Mn10.18825(2)0.43301(4)0.772156(19)0.02070(12)
Mn20.18330(3)0.04032(4)0.788712(19)0.02107(12)
N10.28336(16)0.5039(3)0.86187(12)0.0319(6)
N20.40409(15)0.5982(3)0.91189(11)0.0289(5)
N30.74980(14)0.9789(2)0.99272(11)0.0250(5)
N40.7368(2)1.1196(3)1.00114(13)0.0511(8)
N50.79267(16)1.0208(3)1.09943(11)0.0295(6)
O10.31300(12)0.1169(2)0.80289(10)0.0333(5)
O20.30030(12)0.3206(2)0.74380(10)0.0313(5)
O30.76940(13)0.1139(2)0.78621(9)0.0298(5)
O40.80634(12)0.3159(2)0.73664(9)0.0264(4)
O50.10780(13)0.3311(2)0.69144(9)0.0297(5)
O60.14822(13)0.1012(2)0.68653(9)0.0319(5)
O70.13766(12)0.2288(2)0.33976(9)0.0267(4)
O80.04882(12)0.4067(2)0.30999(10)0.0308(5)
O9W0.08538(13)0.5842(2)0.79658(10)0.0325(5)
H2W0.04290.58530.76570.049*
H1W0.11100.66470.79640.049*
C10.34375(18)0.2283(3)0.77824(14)0.0254(6)
C20.44020(18)0.2498(3)0.79057(13)0.0236(6)
C30.48222(18)0.3407(3)0.74929(14)0.0266(6)
H30.45030.38850.71370.032*
C40.57103(18)0.3615(3)0.76015(14)0.0273(6)
H40.59830.41900.73040.033*
C50.61996(17)0.2974(3)0.81501(13)0.0238(6)
C60.57768(19)0.2075(3)0.85668(14)0.0307(7)
H60.60920.16360.89360.037*
C70.48906(18)0.1817(3)0.84431(14)0.0320(7)
H70.46240.11880.87200.038*
C80.71597(17)0.3283(3)0.82925(14)0.0264(6)
H8A0.73560.30080.87560.032*
H8B0.72580.43030.82480.032*
C90.76825(17)0.2473(3)0.78033(13)0.0204(6)
C100.11354(17)0.2147(3)0.66125(13)0.0228(6)
C110.07718(17)0.2077(3)0.58712(12)0.0226(6)
C120.10314(18)0.1013(3)0.54466(13)0.0252(6)
H120.14020.02940.56260.030*
C130.07455(18)0.1010(3)0.47590(13)0.0267(6)
H130.09310.02940.44810.032*
C140.01843(18)0.2066(3)0.44796(13)0.0255(6)
C15−0.01006(19)0.3095(3)0.49120(14)0.0317(7)
H15−0.04970.37840.47380.038*
C160.01969(19)0.3112(3)0.56017(14)0.0302(7)
H160.00090.38220.58820.036*
C17−0.00769(19)0.2130(4)0.37170(13)0.0313(7)
H17A−0.06150.26570.36260.038*
H17B−0.01680.11680.35380.038*
C180.06330(17)0.2862(3)0.33733(12)0.0217(6)
C190.35541(19)0.5703(3)0.85222(15)0.0317(7)
H190.37130.59530.80970.038*
C200.2861(2)0.4865(3)0.93125(15)0.0367(7)
H200.24360.44090.95340.044*
C210.3591(2)0.5448(4)0.96250(15)0.0387(8)
H210.37560.54811.00910.046*
C220.48620(18)0.6711(3)0.91947(13)0.0273(6)
C230.4977(2)0.7878(4)0.96204(17)0.0427(8)
H230.45340.81770.98710.051*
C240.5763(2)0.8601(4)0.96711(17)0.0424(8)
H240.58470.93800.99640.051*
C250.64216(18)0.8185(3)0.92947(13)0.0257(6)
C260.63036(19)0.6972(3)0.88982(13)0.0303(7)
H260.67550.66430.86640.036*
C270.55228(19)0.6236(3)0.88430(14)0.0313(7)
H270.54480.54260.85690.038*
C280.72518(18)0.9037(3)0.92877(13)0.0291(6)
H28A0.77170.83940.91970.035*
H28B0.71800.97300.89200.035*
C290.7826(2)0.9230(3)1.05119(15)0.0395(8)
H290.79690.82691.05750.047*
C300.7641(2)1.1387(3)1.06597(15)0.0460(9)
H300.76341.22781.08690.055*
C130.5926(3)−0.8622(3)−0.5939(3)0.0207(7)
H13A0.6780−0.9025−0.57280.025*

Source of material

A mixture of Mn(OAc)2 ⋅ 4H2O (24.5 mg, 0.1 mmol), homoterephthalic acid (H2htpa, 36.0 mg, 0.2 mmol), 1-(imidazolyl)-4-(1,2,4-triazol-1-ylmethyl)benzene (itmb, 22.5 mg, 0.1 mmol) and H2O (7 mL) were placed in a 23 mL Teflon-lined autoclave at 393 K for 4 days, then cooled to room temperature. Colourless block crystals were obtained in ca. 86% yield. Elemental analysis calcd. (%) for C30H25N5O9Mn2: C, 50.74; H, 3.59; N, 9.88. Found: C, 50.79; H, 3.55; N, 9.87.

Experimental details

All hydrogen atoms were modelled at their calculated positions and included in the refinement via the riding model. The Uiso of the H-atoms were constrained to 1.2 times Ueq of their bonding carbon atoms and 1.5 times Ueq for the hydrogen atoms at water.

Discussion

Metal-organic frameworks (MOFs) are one of the most rapidly developing fields in chemical and material sciences and emerging as an important family of porous materials not only because of their fascinating structures, but also due to their excellent properties in the fields of luminescence, magnetism, gas adsorption and catalysis [4], [5], [6], [7], [8]. Although rapid progress in the construction of MOFs has been made, it is still a considerable challenge to control the final structures, because many factors, such as temperature [9, 10] , solvent [11, 12] , metal/ligand ratios [13], pH values [14, 15] , influence the formation of the final structure. O-donor organic ligands, rigid benzene multicarboxylate ligands have attracted considerable attention due to their various coordination modes (monodentate, bridging, chelating). In principle, the multicarboxylate ligands with the flexible functional groups may result in uncontrollable structures because of the rotation about the C—C bond and high sensitivity to reaction conditions [16].

The asymmetry unit of the title structure contains two Mn(II) atoms, two htpa dianions, one itmb molecule, and one coordinated water, as shown in the Figure. The central Mn1 is six-coordinated with distorted octahedral [MnNO5] geometry, and is coordinated by three O atoms from three symmetry-related htpa ligands and one coordinated water O atom (O9W) in the equatorial plane, one carboxylic O5 atom from one htpa dianion and one N1 atom from itmb coligand at the axial positions. The Mn2 ion is also six coordinated by five O atoms from three symmetry-related htpa ligands, and, one N atom from one itmb coligand (cf. the figure). Among them, the Mn—O bond lengths are in the range of 2.113(18) to 2.225(2) Å, and two Mn—N bond lengths are 2.282(2) Å and 2.275(2) Å, respectively. The adjacent Mn1 and Mn2 ions are connected by three carboxylato groups from three htpa ligands adopting triple-bridging coordination mode to form binuclear units [Mn2(COO)3N2O3] with the Mn1⋯Mn2 distance of 3.6847(5) Å. Adjacent binuclear units are extended by carboxylato ligands along b direction to expand into a metal-carboxylate chain with the Mn1⋯Mn2 distance = 5.6841(6) Å. The adjacent metal-carboxylate chains are further connected by htpa ligands adopting triple-bridging coordination mode with through-ligand Mn1⋯Mn2 separation of 9.5444(6) and 10.2142(6) Å to form infinite two-dimensional metal-carboxylate layers. Neighboring metal-carboxylate layers are linked together through htpa and itmb to produce a two-dimensional thick bilayer. The adjacent bilayers are stacked parallel along a direction by interlayer H-bond interactions between the coordinating water ligands and the carboxylate O atoms of htpa anions (O9W—H1W⋯O4: d = 2.857(3) Å; O9W—H2W⋯O8: d = 2.803(3) Å) to accomplish its entire three-dimensional supramolecular network. Stronger edge-to-face π-π interactions are observed between the benzene rings of htpa dianions and itmb coligands with the C—H⋯p distance of 2.7364(1) Å (the shortest C⋯C distance: 3.50 Å). It is obvious that the H-bonding bonds and π-π interactions among the coordination polymers play very important roles in the self-assembly and enhanced stability of the structure.

Acknowledgement

This work was supported by the Foundation of Science and Technology of Henan Province (grant no. 162102210304).

References

Bruker AXS Inc., SMART, SAINT, SHELXTL, Madison, Wisconsin, USA, (2001).Search in Google Scholar

Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112–122.10.1107/S0108767307043930Search in Google Scholar PubMed

Sheldrick, G. M.: Crystal structure refinement with SHELXL. Acta Crystallogr. C71 (2015) 3–8.10.1107/S2053229614024218Search in Google Scholar PubMed PubMed Central

O’Keeffe, M.: Design of MOFs and intellectual content in reticular chemistry: a personal view. Chem. Soc. Rev. 38 (2009) 1215–1217.10.1039/b802802hSearch in Google Scholar PubMed

Xuan, W. M.; Zhu, C. F.; Liu, Y.; Cui, Y.: Mesoporous metal-organic framework materials. Chem. Soc. Rev. 41 (2012) 1677–1695.10.1039/C1CS15196GSearch in Google Scholar PubMed

Xie, S. L.; Wang, H. F.; Liu, Z. H.; Dai, R.; Huang, L. Z.: Fluorescent metal-organic framework based on pyrene chromophore for sensing of nitrobenzene. RSC Adv. 5 (2015) 7121–7124.10.1039/C4RA10835CSearch in Google Scholar

McGuirk, C. M.; Katz, M. J.; Stern, C. L.; Sarjeant, A. A.; Hupp, J. T.; Farha, O. K.; Mirkin, C. A.: Turning on Catalysis: Incorporation of a hydrogen-bond-donating squaramide moiety into a Zr metal-organic Framework. J. Am. Chem. Soc. 137 (2015) 919–925.10.1021/ja511403tSearch in Google Scholar PubMed

Lin, X. M.; Gao, G. M.; Zheng, L. Y.; Chi, Y. W.; Chen, G. N.: Encapsulation of strongly fluorescent carbon quantum dots in metal-organic frameworks for enhancing chemical sensing. Anal. Chem. 86 (2014) 1223–1228.10.1021/ac403536aSearch in Google Scholar PubMed

Zhang, J. J.; Wojtas, L.; Larsen, R. W.; Eddaoudi, M.; Zaworotko, M. J.: Temperature and concentration control over interpenetration in a Metal-Organic Material. J. Am. Chem. Soc. 131 (2009) 17040–17041.10.1021/ja906911qSearch in Google Scholar PubMed

Luo, F.; Luo, M. B.; Liu, Y. H.: Temperature-controlled structure diversity observed in the Zn(II)-oxalate-4,4′-bipyridine three-member system. CrystEngComm 12 (2010) 1750–1753.10.1039/b920320fSearch in Google Scholar

Qu, L. L.; Zhu, Y. L.; Li, Y. Z.; Du, H. B.; You, X. Z.: Solvent-induced synthesis of zinc(II) and manganese(II) coordination polymers with a semirigid tetracarboxylic acid. Cryst. Growth Des. 11 (2011) 2444–2452.10.1021/cg200229hSearch in Google Scholar

Fu, A. Y.; Jiang, Y. L.; Wang, Y. Y.; Gao, X. N.; Yang, G. P.; Hou, L.; Shi, Q. Z.: DMF/H2O Volume ratio controls the syntheses and transformations of a series of cobalt complexes constructed using a rigid angular multitopic ligand. Inorg. Chem. 49 (2010) 5495–5502.10.1021/ic902548fSearch in Google Scholar PubMed

Hou, G. F.; Bi, L. H.; Li, B.; Wu, L. X.: Reaction controlled assemblies of polyoxotungstates(-molybdates) and coordination polymers. Inorg. Chem. 49 (2010) 6474–6483.10.1021/ic1001495Search in Google Scholar PubMed

Liu, G. Z.; Wang, J. G.; Wang, L. Y.: Divalent metal coordination polymers assembled from dual linkers-semirigid carboxyphenylpropionate and dipyridyl type molecule. CrystEngComm 14 (2012) 951–960.10.1039/C1CE05760JSearch in Google Scholar

Ma, L. F.; Wang, L. Y.; Lu, D. H.; Batten, S. R.; Wang, J. G.: Structural variation from 1D to 3D: effects of temperature and pH value on the construction of Co(II)-H2tbip/bpp mixed ligands system. Cryst. Growth Des. 9 (2009) 1741–1749.10.1021/cg800732eSearch in Google Scholar

Liu, G. Z.; Li, S. H.; Wang, L. Y.: Five M(II) Coordination polymers assembled from various polynuclear units spaced by semirigid carboxyphenylpropionate and N-donor coligand. CrystEngComm 14 (2012) 880–889.10.1039/C1CE05926BSearch in Google Scholar

Received: 2017-1-29
Accepted: 2017-7-10
Published Online: 2017-8-1
Published in Print: 2017-9-26

©2017 Yin Wei-Dong et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Articles in the same Issue

  1. Cover and Frontmatter
  2. Crystal structure of 2-(2-ethoxyphenyl)-7-propyl-5-methylimidazo[5,1-f][1,2,4]triazin-4(3H)-one, C17H20N4O2
  3. Crystal structure of catena-poly[aqua-(μ3-1,3,5-benzenetricarboxylato-κ3O:O′:O′′)-[μ3hydroxy-(1,3-di-(μ2-1,2,4-triazole-4-yl)benzoato-κ2N:N′)copper(II)], C19H16Cu2N6O9
  4. Crystal structure of poly[aqua-(μ3-3,5-di(4H-1,2,4-triazolyl-4-κ3N,N′:N′′)benzenecarboxylato)silver(I)], C11H9AgN6O3
  5. Crystal structure of tetrapropylammonium hydrogen carbonate, C13H29NO3
  6. Crystal structure of poly[μ2-acetato-κ3-O,O′:O′)diaqua(μ3-isophthalato-κ4O,O′:O′′:O′′′)yttrium(III)] monohydrate, C20H24O17Y2
  7. Crystal structure of catena-poly[dichlorido-(μ2-4-(1H-pyrazol-3-yl)-pyridine-κ2N,N′)]cadmium(II), C48H42Cd3Cl16N18
  8. Crystal structure of bis(tetraethylammonium) [1,1′-biphenyl]-2,2′-dicarboxylate trihydrate, C30H54N2O7
  9. Crystal structure of poly[(thiophene-3,4-dicarboxylato-κ1O)bis[1,2-bis(4-pyridyl)ethane-κ2N:N′]silver(I)] octahydrate, C30H42Ag2N4O12S
  10. The crystal structure of amine-(4-(1H-1,2,4-triazol-1-yl)benzoato-κN)silver(I) dihydrate, C9H13AgN4O4
  11. Crystal structure of poly[tetrakis(μ2-cyanido-κ2N:O)-cyanido-tris(pyridine)dicobalt(II/III)], C20H15Co2N8
  12. Crystal structure of bis(pyridine)-bis(2-formyl-4,6-dichlorophenolato)cobalt(II), C24H16Cl4CoN2O4
  13. Crystal structure of (E)-1-(4-(((E)-5-bromo-2-hydroxybenzylidene)amino)phenyl)ethan-1-one O-methyl oxime, C16H15BrN2O2
  14. Crystal structure of catena-poly[(μ2-3-(1H-pyrazol-4-yl)-5-(pyridin-4-yl)-1,2,4-triazole-κ N:N′)-bis(benzoato-κO)zinc(II)], C24H18N6O4Zn
  15. Hydrothermal synthesis and crystal structure of a poly[aqua-(μ4-4-(carboxylatomethyl)benzoato-κ4O:O′:O′′:O′′′)-(μ2-1-(4-(1H-imidazol-1-yl)benzyl)-1H-1,2,4-triazole-κ2N:N′) dimanganese(II)], [Mn2(C9H6O4)2(C12H11N5)(H2O)]
  16. Crystal structure of diaqua-catena-poly[diaqua-bis(μ2-5-(4-(1H-1,2,4-triazol-1-yl)phenyl)tetrazol-2-ido-κ2N:N′)cobalt(II)] dihydrate, C20H24CoN14O4
  17. Crystal structure of bis(μ3-2,2′-azanediylbis(ethan-1-olato)-κ5O:O,N,O′:O′)-tetrachlorido-bis(μ2-2-((2-hydroxyethyl)amino)ethan-1-olato-κ3N,O:O)dicobalt(II)dicobalt(III), C16H38Cl4Co4N4O8
  18. Crystal structure of poly[μ4-(4-(carboxylatomethyl)benzoato-κ4O:O′:O′′:O′′′)-(2-(4-(1H-imidazol-1-yl)phenyl)-1H-benzo[d]imidazole-κN)manganese(II)] [Mn(C9H6O4)(C16H12N4)]
  19. Crystal structure of 4-chloro-6-phenylpyrimidine, C10H7ClN2
  20. The crystal structure of [6-methoxy-2-(2,2,2-trifluoroacetyl)-3,4-dihydronaphthalen-1(2H)-one]difluoroborane, C13H10BF5O3
  21. Crystal structure of 3,3′-(butane-1,4-diylbis(azanylylidene))bis(1-phenylbut-1-en-1-olato)-κ4N,N′,O,O′]copper(II), C24H26N2O2Cu
  22. Crystal structure of tetraaqua-bis((E)-N′-(2-bromobenzylidene)isonicotinohydrazide-κN)zinc(II) dinitrate, C26H28N8O12Br2Zn
  23. Crystal structure of 2-amino-4-(4-bromophenyl)-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile, C16H13BrN2O2
  24. A single crystal study on tert-butyl-4-((4-(4-bromo-2-fluorophenylamino)-6-methoxyquinazolin-7-yloxy)methyl)piperidine-1-carboxylate, C26H30BrFN4O4
  25. Crystal structure of 1,1′-((1E,1′E)-(((ethane-1,2-diylbis(oxy))bis(2,1-phenylene))bis(azanylylidene))bis(methanylylidene))bis(naphthalen-2-olato-κ3O,O′,N)zinc(II), C36H26N2O4Zn
  26. Crystal structure of diaqua-bis(5′-(pyridin-1-ium-4-yl)-1H-[3,3′-bi(1,2,4-triazol)]-2′-ide-κ2N,N′)cobalt(II) — bis(5-(pyridin-4-yl-κN)-1H,1′H-3,3′-bi(1,2,4-triazole))octamolybdate – water (2/1/8), C27H33CoMo4N21O19
  27. Crystal structure of 3-cyclohexyl-2-(cyclohexylimino)-2,3-dihydro-6,8-diiodo-4H-1,3-benzoxazin-4-one, C20H24I2N2O2
  28. Crystal structure of dinitrato-κO-bis(tris((1H-benzo[d]imidazol-2-yl)methyl)amine-κ4N,N′,N′′,N′′′)-(μ2-cyclohexane-1,4-dicarboxylato-κ4O,O′:O′′,O′′′)dimanganese(II) – methanol – water (1/6/2), C62H80Mn2N16O18
  29. Crystal structure of bis(2-hydroxyethyl(phenyl)carbamodithioate)nickel(II), C18H20N2NiO2S4
  30. Crystal structure of methyl 1-(4-fluorobenzyl)-4-methoxy-5-oxopyrrolidine-3-carboxylate, C14H16FNO4
  31. Crystal structure of di-μ-iodido-bis(6-(p-tolyl)-2,2′-bipyridine-κ2N,N′)dicopper(I) — 2-(diphenylphosphoryl)benzoic acid (1/2), C36H29CuIN2O3P
  32. Crystal structure of 2-amino-4-(3-bromo-4-fluoro-phenyl)-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile, C18H16BrFN2O2
  33. Crystal structure of bis(μ2-2-chlorobenzoato-κ3O,O′:O′)-(2-chlorobenzoato-κO)-(2-chlorobenzoato-κO,O′)-bis(1,10-phenanthroline-κ2N,N′)-dicadmium(II) monohydrate, C52H36Cd2Cl4N4O10
  34. Crystal structure of 2-(8a-methyl-5-oxo-hexahydroimidazo [1,2-a]pyridin-1(5H)-yl)-2-oxoethyl acetate, C12H18N2O4
  35. Crystal structure of (E)-N,N-diethyl-2-(5-nitrothiazol-2-yl)-1-phenylethen-1-amine, C15H17N3O2S
  36. Crystal structure of diazido-dimethanolato-bis(μ2-2-(((3-oxidopropyl)imino)methyl)phenolato-κ4O:O,O′,N)dimanganese(III), C22H28Mn2N8O6
  37. The crystal structure of bis(2-(2,2,2-trifluoroacetyl)-3,4-dihydronaphthalen-1-olato-κ2O,O′)copper(II), C24H16CuF6O4
  38. Crystal structure of hexaaquanickel(II) bis((E)-4-((4-(dimethylamino)phenyl)diazenyl)benzenesulfonate), C28H40N6NiO12S2
  39. Crystal structure of catena-poly[aqua-(μ2-hexamethylenetetramine-κ2N:N′)-bis(2,6-difluorobenzoato-κ2O:O′)cadmium(II)]monohydrate, C20H22CdF4N4O6
  40. Crystal structure of 3-benzyl-2,3-dihydro-2-thioxoquinazolin-4(1H)-one, C15H12N2OS
  41. Crystal structure of bis(μ2-ferrocenecarboxylato-κ2O:O′)-bis(1,10-phenanthroline-κ2N,N′)-(μ2-methanolato2O,O)dicopper(II) tetrafluoroborate – acetonitrile (1/1), C49H40BCu2F4Fe2N5O5
  42. The crystal structure of tetrakis(1,3,5-triaza-7-phosphatricyclo[3.3.1.13,7]decane-κP)silver(I) chloride dihydrate, C24H60AgClN12O6P4
  43. Crystal structure of 5-ethyl-2-(p-tolyl)-1,3-dioxane-5-carboxylic acid, C14H18O4
  44. Crystal structure of 2-(4-fluorophenyl)-1,3-dimethyl-1H-perimidin-3-ium iodide, C19H16ClIN2
  45. Crystal structure of catena-poly[(μ2-hexamethylenetetramine-κ2N:N′)-tetrakis(μ2-2,6-difluorobenzoato-κ2O:O′)dicopper(II)], C34H24Cu2F8N4O8
  46. Crystal structure of ethyl 3-hydroxy-5-methyl-2-(4-(m-tolyl)-1H-1,2,3-triazol-1-yl)-[1,1′-biphenyl]-4- carboxylate, C25H24N3O3
  47. The crystal structure of carbonyl(2-oxopyridin-1(2H)-olato-κ2O,O′)-(diphenylcyclohexylphosphine-κP)rhodium(I), C24H25NO3PRh
  48. Crystal structure of bis((pyrazin-2-ylmethyl)(pyrazine-2-carbonyl)amido-κ3N,N′,N′′)copper(II), C20H16CuN10O2
  49. Crystal structure of catena-poly[tetraaqua-(μ2-succinonitrile-κ2N:N′)cobalt(II)] dinitrate, C4H12CoN4O10
  50. The crystal structure of 1,1′-bisisoquinoline, C18H12N2
  51. Crystal structure of bis(hydroxydi(pyridin-2-yl)methanolato-κ3N,N′,O)cobalt(III) perchlorate dihydrate, C22H22ClCoN4O10
Downloaded on 5.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2016-0410/html
Scroll to top button