Startseite AC/DC current ratio in a current superimposition variable flux reluctance machine
Artikel Open Access

AC/DC current ratio in a current superimposition variable flux reluctance machine

  • Akira Kohara EMAIL logo , Katsuhiro Hirata , Noboru Niguchi und Kazuaki Takahara
Veröffentlicht/Copyright: 24. Mai 2018

Abstract

We have proposed a current superimposition variable flux reluctance machine for traction motors. The torque-speed characteristics of this machine can be controlled by increasing or decreasing the DC current. In this paper, we discuss an AC/DC current ratio in the current superimposition variable flux reluctance machine. The structure and control method are described, and the characteristics are computed using FEA in several AC/DC ratios.

PACS: 84.50.+d

1 Introduction

Traction motors for electric vehicles and hybrid electric vehicles require wide power band characteristics. In order to increase the power band and reduce the usage of costly rare-earth permanent magnets, variable flux reluctance machines (VFRMs) have been proposed [1, 2, 3, 4]. The VFRM is composed of armature and field coils. By controlling the voltage applied on the field coils, the torque constant of the VFRM can be controlled. However, since two separate sets of coils are required, the size of the machine is large and the manufacturing process becomes more complicated. In order to solve these problems, a current superimposition variable flux reluctance machine (CSVFRM) (Figure 1) has been proposed.By using the superimposed current of AC and DC currents, the machine requires only a single set of coils that can perform both armature- and field-coil functions simultaneously [5, 6, 7, 8, 9]. By using a single set of coils, the structure is simplified.

Figure 1 Structure and winding pattern
Figure 1

Structure and winding pattern

Previously, a 6-phase half bridge inverter (Figure 2a) is used for the CSVFRM. By controlling the AC/DC current ratio, the machine can be driven with unipolar currents like a 3-phase switched reluctance machine. If the asymmetric inverter (Figure 2b) is used, there is a possibility that the inverter cost can be reduced. In this paper, we discuss the effect of the AC/DC current ratio in the CSVFRM. First, the structure and the control method are described. Next, the characteristics are computed using 2-D FEA in several AC/DC ratios. Finally, the characteristics under unipolar drive are described.

Figure 2 Drive circuit
Figure 2

Drive circuit

2 Operational principle and control

Figure 1 shows the structure and winding pattern of the CSVFRM, which consists of a 10-pole rotor and a 12-slot stator. The coils consist of 6 phases (A, B, C, D, E, and F), which correspond to 2 sets of 3 phases alternating current. Therefore, the A and D, B and E, and C and F phases correspond to the U, V, and W phases, respectively. 3-phase AC voltages (Vu, Vv, and Vw) and DC voltages (+Vdc and -Vdc) are applied to each coil as shown in Figure 1. Therefore, the phase current consists of AC and DC components. The magnetomotive force due to the DC current is modulated by the salient poles of the rotor, and the rotating magnetic field due to the 3-phase AC current synchronizes with this modulated flux.

Figure 2 shows the control diagram of the CSVFRM operated under vector control and DC current control. The relationship between the phase current amplitude Iac, d- and q- axes currents id, iq are shown in (1).

Iac=23id2+iq2(1)

Furthermore, in order to perform a unipolar drive, equation (2) must be satisfied.

IacIdc(2)

In this paper, we verify the characteristics by changing the current ratio n shown in (3).

Idc=n23id2+iq2(3)

3 Characteristics analysis

The computed characteristics, when the current ratio changes from 0.1 to 2.0, are shown in Figures 3 and 4, where, the load and rotation speed are 1 Nm and 1000 rpm, respectively. In addition, the DC supply voltage is adjusted so as to satisfy the target rotation speed. Figure 3 shows the phase current Iphase and iron loss Wi. The iron losses are calculated using the magnetic flux density distributions that are computed using FEM analysis. From this figure, it is observed that the phase current minimizes when the current ratio is 0.7. The phase current is represented in (4).

Figure 3 Control diagram
Figure 3

Control diagram

Iphase=Idc2+Iac22(4)

From this equation, it is clear that the phase current is minimized when the Idc/Iac=1/20.7. Due to the reduction of t current amplitude, the iron loss decreases.

Figure 4 shows the efficiency and power factor. The maximum efficiency is about 54%, when the current ratio is 0.7, because of the decrease of copper losses. The power factor increases as the current ratio increases. This is because the reactive power decreases with the reduction of AC component in the phase current.

Figure 4 n-IPhase and n-Wi characteristics
Figure 4

n-IPhase and n-Wi characteristics

The transient characteristics of the phase current when the current ratio are 1.0 and 0.7, are shown in Figures 5 and 6. From these figures, Iac are 17.1 and 20.3A, and Idc are 17.1 and 14.2A, respectively. The phase currents are successfully controlled according to the command value. The effective values of the phase currents are 20.9Arms and 20.3Arms, respectively. The phase current waveform under a current ratio of 1.0 crosses zero in the transient state, and does not cross zero in the steady state.

Figure 5 n-Eflciency and n-PF characteristics
Figure 5

n-Eflciency and n-PF characteristics

Figure 6 Phase current waveform (n = 1.0)
Figure 6

Phase current waveform (n = 1.0)

The torque waveforms when the current ratio are 1.0 and 0.7, are shown in Figures 7 and 8. The torque ripple are about 17.8 and 18.6%, respectively.

Figure 7 Phase current waveform (n = 0.7)
Figure 7

Phase current waveform (n = 0.7)

Figure 8 Torque waveform (n = 1.0)
Figure 8

Torque waveform (n = 1.0)

4 Unipolar drive characteristics

In this section, the characteristics when the current direction is restricted assuming the unipolar drive are described. As aforementioned, it is difficult to prevent zero crossing of the current in a transient state by controlling only the current ratio. Therefore, the current is controlled not to cross zero by giving an initial DC voltage within the current density limit. Where, applied DC voltage is 2.0V.

The phase current waveform and torque waveform, when the current ratio is 1.0, are shown in Figures 9 and 10, respectively. From Figure 9, it can be observed that the phase current does not cross zero in the transient state. The torque ripple is about 17.7%. Because of a unipolar drive, the same current waveforms in the steady state, the output power and torque ripple are also the same.

Figure 9 Torque waveform (n = 0.7)
Figure 9

Torque waveform (n = 0.7)

Figure 10 Phase current waveform (n = 1.0)
Figure 10

Phase current waveform (n = 1.0)

Figure 11 shows the phase current waveform when the current ratio is 0.7. Because of the current direction restriction, sinusoidal wave cannot be obtained in each phase. The effective value of the phase current is 20.4Arms. The torque waveform is distorted as shown in Figure 12. In addition, the rotation speed in the steady state is 830 rpm, and the output power decreases with that of the bipolar drive.

Figure 11 Torque waveform (n = 1.0)
Figure 11

Torque waveform (n = 1.0)

Figure 12 Phase current waveform (n = 0.7)
Figure 12

Phase current waveform (n = 0.7)

Figure 13 Torque waveform (n = 0.7)
Figure 13

Torque waveform (n = 0.7)

5 Conclusion

In this paper, the effect of AC/DC current ratios in a current superimposition variable flux machine was described. From the results of the analysis, the phase current was minimum when the current ratio is 0.7, and the efficiency was maximum. The power factor increased along with the current ratio was increasing. However, the efficiency decreased as the current ratio was increasing. In addition, the machine can be driven with unipolar currents by controlling the AC/DC current ratio. Namely, the same driving circuit as a switched reluctance machine can be used, and there is a possibility of reducing the inverter cost.

References

[1] Kashitani Y., Shimomura S., Novel Slipring-less Winding-Excited Synchronous Machine, ICEMS, 2011, 1-6.10.1109/ICEMS.2011.6073494Suche in Google Scholar

[2] Fukami T., Matsuura Y., Shima K., Moriyama M., Kawamura M., A Multipole Synchronous Machine With Nonoverlapping Concentrated Armature and Field Windings on the Stator, IEEE Trans. Industrial Electronics, 2012, 59, 6, 2583-2591.10.1109/TIE.2011.2157293Suche in Google Scholar

[3] Di Wu, Jun Tao Shi, Z. Q. Zhu, Xu Liu, Electromagnetic Performance of Novel Synchronous Machines With Permanent Magnets in Stator Yoke, IEEE Trans. Magn., 2014, 50, 9.10.1109/TMAG.2014.2317794Suche in Google Scholar

[4] Fukami T., Ueno Y., Shima K., Magnet Arrangement in Novel Flux-Modulating Synchronous Machines With Permanent Magnet Excitation, IEEE Trans. Magn., 2015, 51, 11.10.1109/INTMAG.2015.7157239Suche in Google Scholar

[5] Niguchi N., Hirata K., Ohno Y., Kohara A., VARIABLE FLUX RELUCTANCE MOTOR USING A SINGLE SET OF COILS, ISEF, 2015, P2-JP009.Suche in Google Scholar

[6] Kohara A., Hirata K., Niguchi N., Ohno Y., Finite-element analysis and experiment of Current Superimposition Variable Flux Machine Using Permanent Magnet, IEEE Trans. Magn., 2016, 52, 9, 8107807.10.1109/TMAG.2016.2572659Suche in Google Scholar

[7] Kohara A., Hirata K., Niguchi N., Ohno Y., Study on a current superimposition variable flux reluctance machine with distributed winding, ICEM, 2016, 2498-2503.10.1109/ICELMACH.2016.7732872Suche in Google Scholar

[8] Niguchi N., Hirata K., Kohara A., Characteristics of a wide power band variable flux reluctance motor, ICEM, 2016, 180-185.10.1109/ICELMACH.2016.7732524Suche in Google Scholar

[9] Kohara A., Hirata K., Niguchi N., DC Current Control Method of a Current Superimposition Variable Flux Reluctance Machine, COMPUMAG, 2017, PD-M3-3.10.1002/eej.22894Suche in Google Scholar

Received: 2017-11-02
Accepted: 2017-12-06
Published Online: 2018-05-24

© 2018 A. Kohara et al., published by De Gruyter

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

Artikel in diesem Heft

  1. Regular Articles
  2. A modified Fermi-Walker derivative for inextensible flows of binormal spherical image
  3. Algebraic aspects of evolution partial differential equation arising in the study of constant elasticity of variance model from financial mathematics
  4. Three-dimensional atom localization via probe absorption in a cascade four-level atomic system
  5. Determination of the energy transitions and half-lives of Rubidium nuclei
  6. Three phase heat and mass transfer model for unsaturated soil freezing process: Part 1 - model development
  7. Three phase heat and mass transfer model for unsaturated soil freezing process: Part 2 - model validation
  8. Mathematical model for thermal and entropy analysis of thermal solar collectors by using Maxwell nanofluids with slip conditions, thermal radiation and variable thermal conductivity
  9. Constructing analytic solutions on the Tricomi equation
  10. Feynman diagrams and rooted maps
  11. New type of chaos synchronization in discrete-time systems: the F-M synchronization
  12. Unsteady flow of fractional Oldroyd-B fluids through rotating annulus
  13. A note on the uniqueness of 2D elastostatic problems formulated by different types of potential functions
  14. On the conservation laws and solutions of a (2+1) dimensional KdV-mKdV equation of mathematical physics
  15. Computational methods and traveling wave solutions for the fourth-order nonlinear Ablowitz-Kaup-Newell-Segur water wave dynamical equation via two methods and its applications
  16. Siewert solutions of transcendental equations, generalized Lambert functions and physical applications
  17. Numerical solution of mixed convection flow of an MHD Jeffery fluid over an exponentially stretching sheet in the presence of thermal radiation and chemical reaction
  18. A new three-dimensional chaotic flow with one stable equilibrium: dynamical properties and complexity analysis
  19. Dynamics of a dry-rebounding drop: observations, simulations, and modeling
  20. Modeling the initial mechanical response and yielding behavior of gelled crude oil
  21. Lie symmetry analysis and conservation laws for the time fractional simplified modified Kawahara equation
  22. Solitary wave solutions of two KdV-type equations
  23. Applying industrial tomography to control and optimization flow systems
  24. Reconstructing time series into a complex network to assess the evolution dynamics of the correlations among energy prices
  25. An optimal solution for software testing case generation based on particle swarm optimization
  26. Optimal system, nonlinear self-adjointness and conservation laws for generalized shallow water wave equation
  27. Alternative methods for solving nonlinear two-point boundary value problems
  28. Global model simulation of OH production in pulsed-DC atmospheric pressure helium-air plasma jets
  29. Experimental investigation on optical vortex tweezers for microbubble trapping
  30. Joint measurements of optical parameters by irradiance scintillation and angle-of-arrival fluctuations
  31. M-polynomials and topological indices of hex-derived networks
  32. Generalized convergence analysis of the fractional order systems
  33. Porous flow characteristics of solution-gas drive in tight oil reservoirs
  34. Complementary wave solutions for the long-short wave resonance model via the extended trial equation method and the generalized Kudryashov method
  35. A Note on Koide’s Doubly Special Parametrization of Quark Masses
  36. On right-angled spherical Artin monoid of type Dn
  37. Gas flow regimes judgement in nanoporous media by digital core analysis
  38. 4 + n-dimensional water and waves on four and eleven-dimensional manifolds
  39. Stabilization and Analytic Approximate Solutions of an Optimal Control Problem
  40. On the equations of electrodynamics in a flat or curved spacetime and a possible interaction energy
  41. New prediction method for transient productivity of fractured five-spot patterns in low permeability reservoirs at high water cut stages
  42. The collinear equilibrium points in the restricted three body problem with triaxial primaries
  43. Detection of the damage threshold of fused silica components and morphologies of repaired damage sites based on the beam deflection method
  44. On the bivariate spectral quasi-linearization method for solving the two-dimensional Bratu problem
  45. Ion acoustic quasi-soliton in an electron-positron-ion plasma with superthermal electrons and positrons
  46. Analysis of projectile motion in view of conformable derivative
  47. Computing multiple ABC index and multiple GA index of some grid graphs
  48. Terahertz pulse imaging: A novel denoising method by combing the ant colony algorithm with the compressive sensing
  49. Characteristics of microscopic pore-throat structure of tight oil reservoirs in Sichuan Basin measured by rate-controlled mercury injection
  50. An activity window model for social interaction structure on Twitter
  51. Transient thermal regime trough the constitutive matrix applied to asynchronous electrical machine using the cell method
  52. On the zagreb polynomials of benzenoid systems
  53. Integrability analysis of the partial differential equation describing the classical bond-pricing model of mathematical finance
  54. The Greek parameters of a continuous arithmetic Asian option pricing model via Laplace Adomian decomposition method
  55. Quantifying the global solar radiation received in Pietermaritzburg, KwaZulu-Natal to motivate the consumption of solar technologies
  56. Sturm-Liouville difference equations having Bessel and hydrogen atom potential type
  57. Study on the response characteristics of oil wells after deep profile control in low permeability fractured reservoirs
  58. Depiction and analysis of a modified theta shaped double negative metamaterial for satellite application
  59. An attempt to geometrize electromagnetism
  60. Structure of traveling wave solutions for some nonlinear models via modified mathematical method
  61. Thermo-convective instability in a rotating ferromagnetic fluid layer with temperature modulation
  62. Construction of new solitary wave solutions of generalized Zakharov-Kuznetsov-Benjamin-Bona-Mahony and simplified modified form of Camassa-Holm equations
  63. Effect of magnetic field and heat source on Upper-convected-maxwell fluid in a porous channel
  64. Physical cues of biomaterials guide stem cell fate of differentiation: The effect of elasticity of cell culture biomaterials
  65. Shooting method analysis in wire coating withdrawing from a bath of Oldroyd 8-constant fluid with temperature dependent viscosity
  66. Rank correlation between centrality metrics in complex networks: an empirical study
  67. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering
  68. Modeling of electric and heat processes in spot resistance welding of cross-wire steel bars
  69. Dynamic characteristics of triaxial active control magnetic bearing with asymmetric structure
  70. Design optimization of an axial-field eddy-current magnetic coupling based on magneto-thermal analytical model
  71. Thermal constitutive matrix applied to asynchronous electrical machine using the cell method
  72. Temperature distribution around thin electroconductive layers created on composite textile substrates
  73. Model of the multipolar engine with decreased cogging torque by asymmetrical distribution of the magnets
  74. Analysis of spatial thermal field in a magnetic bearing
  75. Use of the mathematical model of the ignition system to analyze the spark discharge, including the destruction of spark plug electrodes
  76. Assessment of short/long term electric field strength measurements for a pilot district
  77. Simulation study and experimental results for detection and classification of the transient capacitor inrush current using discrete wavelet transform and artificial intelligence
  78. Magnetic transmission gear finite element simulation with iron pole hysteresis
  79. Pulsed excitation terahertz tomography – multiparametric approach
  80. Low and high frequency model of three phase transformer by frequency response analysis measurement
  81. Multivariable polynomial fitting of controlled single-phase nonlinear load of input current total harmonic distortion
  82. Optimal design of a for middle-low-speed maglev trains
  83. Eddy current modeling in linear and nonlinear multifilamentary composite materials
  84. The visual attention saliency map for movie retrospection
  85. AC/DC current ratio in a current superimposition variable flux reluctance machine
  86. Influence of material uncertainties on the RLC parameters of wound inductors modeled using the finite element method
  87. Cogging force reduction in linear tubular flux switching permanent-magnet machines
  88. Modeling hysteresis curves of La(FeCoSi)13 compound near the transition point with the GRUCAD model
  89. Electro-magneto-hydrodynamic lubrication
  90. 3-D Electromagnetic field analysis of wireless power transfer system using K computer
  91. Simplified simulation technique of rotating, induction heated, calender rolls for study of temperature field control
  92. Design, fabrication and testing of electroadhesive interdigital electrodes
  93. A method to reduce partial discharges in motor windings fed by PWM inverter
  94. Reluctance network lumped mechanical & thermal models for the modeling and predesign of concentrated flux synchronous machine
  95. Special Issue Applications of Nonlinear Dynamics
  96. Study on dynamic characteristics of silo-stock-foundation interaction system under seismic load
  97. Microblog topic evolution computing based on LDA algorithm
  98. Modeling the creep damage effect on the creep crack growth behavior of rotor steel
  99. Neighborhood condition for all fractional (g, f, n′, m)-critical deleted graphs
  100. Chinese open information extraction based on DBMCSS in the field of national information resources
  101. 10.1515/phys-2018-0079
  102. CPW-fed circularly-polarized antenna array with high front-to-back ratio and low-profile
  103. Intelligent Monitoring Network Construction based on the utilization of the Internet of things (IoT) in the Metallurgical Coking Process
  104. Temperature detection technology of power equipment based on Fiber Bragg Grating
  105. Research on a rotational speed control strategy of the mandrel in a rotary steering system
  106. Dynamic load balancing algorithm for large data flow in distributed complex networks
  107. Super-structured photonic crystal fiber Bragg grating biosensor image model based on sparse matrix
  108. Fractal-based techniques for physiological time series: An updated approach
  109. Analysis of the Imaging Characteristics of the KB and KBA X-ray Microscopes at Non-coaxial Grazing Incidence
  110. Application of modified culture Kalman filter in bearing fault diagnosis
  111. Exact solutions and conservation laws for the modified equal width-Burgers equation
  112. On topological properties of block shift and hierarchical hypercube networks
  113. Elastic properties and plane acoustic velocity of cubic Sr2CaMoO6 and Sr2CaWO6 from first-principles calculations
  114. A note on the transmission feasibility problem in networks
  115. Ontology learning algorithm using weak functions
  116. Diagnosis of the power frequency vacuum arc shape based on 2D-PIV
  117. Parametric simulation analysis and reliability of escalator truss
  118. A new algorithm for real economy benefit evaluation based on big data analysis
  119. Synergy analysis of agricultural economic cycle fluctuation based on ant colony algorithm
  120. Multi-level encryption algorithm for user-related information across social networks
  121. Multi-target tracking algorithm in intelligent transportation based on wireless sensor network
  122. Fast recognition method of moving video images based on BP neural networks
  123. Compressed sensing image restoration algorithm based on improved SURF operator
  124. Design of load optimal control algorithm for smart grid based on demand response in different scenarios
  125. Face recognition method based on GA-BP neural network algorithm
  126. Optimal path selection algorithm for mobile beacons in sensor network under non-dense distribution
  127. Localization and recognition algorithm for fuzzy anomaly data in big data networks
  128. Urban road traffic flow control under incidental congestion as a function of accident duration
  129. Optimization design of reconfiguration algorithm for high voltage power distribution network based on ant colony algorithm
  130. Feasibility simulation of aseismic structure design for long-span bridges
  131. Construction of renewable energy supply chain model based on LCA
  132. The tribological properties study of carbon fabric/ epoxy composites reinforced by nano-TiO2 and MWNTs
  133. A text-Image feature mapping algorithm based on transfer learning
  134. Fast recognition algorithm for static traffic sign information
  135. Topical Issue: Clean Energy: Materials, Processes and Energy Generation
  136. An investigation of the melting process of RT-35 filled circular thermal energy storage system
  137. Numerical analysis on the dynamic response of a plate-and-frame membrane humidifier for PEMFC vehicles under various operating conditions
  138. Energy converting layers for thin-film flexible photovoltaic structures
  139. Effect of convection heat transfer on thermal energy storage unit
Heruntergeladen am 22.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/phys-2018-0031/html
Button zum nach oben scrollen