Home Physical Sciences Multi-level encryption algorithm for user-related information across social networks
Article Open Access

Multi-level encryption algorithm for user-related information across social networks

  • Lijie Yin EMAIL logo and Nasruddin Hassan
Published/Copyright: December 31, 2018

Abstract

The traditional RSA information encryption algorithm uses one-dimensional chaotic equations to generate pseudo-random sequences that meet the encryption requirements. This encryption method is too simple and the security performance is poor. A multi-level encryption algorithm for user-related information across social networks is proposed, and a user association model across social networks is constructed to obtain user-related information across social networks. This multi-level chaotic encryption algorithm based on neural network is used to select three different chaotic mapping models based on user-related information, and a multi-level chaotic encryption algorithm is designed. According to the characteristics of error sensitivity of chaotic system, the neural network is used to inversely propagate the error. A chaotic encryption algorithm that implements multi-level encryption of user-related information across social networks is optimized. The experimental results show that the average rate for which the proposed algorithm correctly identified the user-related information across social networks was 97.6%, the highest frequency of average character distribution probability in cipher text was 0.021, and the average time for encryption was 18.45 Mbps. The average time for decryption was 21.90Mbps.

1 Introduction

With the rapid development of Internet technology, the Internet has become popular on a large scale. As of the end of December 2015, the number of Internet users in China reached 688 million and the Internet penetration rate was 50.3%. The Internet ushered in the Web 2.0 era. Along with the advent of the Web 2.0 era, a large number of excellent Internet products based on the UGC (User Generated Content) model were born, the fastest growing of which was the Online Social Network application [1]. According to statistics, the number of Chinese netizens using social networking sites, Weibo and various vertical social applications reached 530 million, and the usage rate of QQ space and Weibo was 65.1% and 33.5%, respectively. When studying the behavior of users on different social networking sites, there is a challenge: the inability to efficiently encrypt information associated with users across social networks [2]. A user has individual social accounts on different social networks and the behavior on these social networks may be different. It is impossible to effectively identify whether the accounts are from the same user. Thus the user-related information across social networks cannot be further encrypted and can easily be disclosed, which brings inconvenience and harm to the social network users. The identification and encryption of the user-related information across social networks is the key to solving these problems.

At present, there are few association studies for domestic social networking users. Li Xia et al proposed a user recognition model of subjective vector-driven objective weights based on the similarity weight method [3]. Haw LK et al proposed a two-stage associated entity recognition model and an incremental verification algorithm based on the pattern characteristics and attribute characteristics of the users [4]. This method can be applied to user identification across social networks. Chaos is a seemingly irregular movement; a random process that occurs in deterministic systems. Due to the complex pseudorandomness exhibited bya chaotic system and its extreme sensitivity to initial values, it can be used for encryption. In recent years, this application of the chaotic principle has received more and more attention and many scholars are studying it and applying it to image encryption, voice encryption and many other aspects.

Wang et al used a simple one-dimensional chaotic equation to generate a pseudo-random sequence that satisfies the encryption requirements [5]. This encryption method was too simple and the encryption effect (security performance) was poor. A traditional chaotic synchronization scheme was used to realize the secure communication of digital signals [6]. Parpas group proposed that on the basis of real values [7] the symbol matrix and permutation matrix were generated by discrete mapping. The digital image was encrypted, and the two encryption methods respectively encrypted the communication of the digital signal and the digital image, and the limitation was high. Lai et al proposed a symmetric encryption scheme based on a chaotic iterative system[8],which required inter-node communication for each iteration, and the efficiency was low. Other than those, two synchronous sequence cryptographic algorithms based on composite discrete chaotic systems have been created [9]. Encryption and decryption were the same iterative process of a composite discrete chaotic system. The algorithm has fewer types of operations. It does not support operations of any number, and its homomorphism was poor.

Aiming at the problems in previous studies, a multilevel encryption algorithm for user-related information across social networks is proposed. The user association model across social networks is used to determine whether different social network accounts are from the same user. After obtaining the corresponding information, the third-level chaotic encryption algorithm is used to encrypt social network user-related information. Onthis basis, the neural network is used to improve the multi-level chaotic encryption algorithm, so that the error is transmitted in reverse, and the security of the chaotic algorithm is improved.

2 Multi-level encryption algorithm for user-related information across social networks

The multi-level encryption algorithm for user-related information across social networks obtains the user-related information through the cross-social network user association model and then uses neural network-based multilevel chaotic encryption algorithm based on the association information to realize multi-level encryption of user-related information across social networks.

2.1 Construction of the cross-social network user association model

The candidate user set selected according to the seed data set [10] is utilized to restore the social relationship. First the algorithm calculates the similarity between the fields of the corresponding user pairs in the Weibo and QQ and combines the similarities between the fields as the similarity feature vector as follows:

(1)S=V0V1V2V3V4V5V6V7V8V9

In formula (1), V0 represents the similarity of the user nickname, V1 represents the similarity of the user’s gender, and the different dimensions represent the similarity between the different attributes.

When confirming the user across social networks, the confirmation of classification is regarded as a two-category problem; that is, the confirmation of the same entity user and the different entity user is a two-category problem.

The logistic regression model is a commonly used classification model [11]. The most commonly used logistic regression is binomial logistic regression. There are only two types of the classification. Therefore, this paper uses the logistic regression model to confirm the association information of social network users. For classification, the results are positive (represented by 1) and negative (represented by 0), and the conditional probability of binomial logistic regression is:

(2)PY=1x,w=ewTx+b1+ewTx+b=11+ewTx+b
(3)PY=0x,w=11+ewTx+b

In formula (2) and (3), xRn is an input representing the characteristics of the instance; Y {0, 1} is the output with only two types, simply represented as yes or no. xRn and PR represent parameters, where the weight vector is represented by w, the corresponding value representing the weight of the input feature, and b representing the offset. At the time of classification, according to the input example, formula (2) and formula (3), P (Y = 1x, w) and P (Y = 0x, w) can be obtained separately, the two conditional probabilities are compared by logistic regression, and the input instance is divided into the type of relatively large probability values.

The classification model flow is shown in Figure 1.

Figure 1 Classification model process
Figure 1

Classification model process

To use the model for the prediction of classifications, it is necessary to train the model first, obtain the feature weight parameter, and then calculate the input feature

vector according to the feature weight, and compare and judge according to the calculated result and the classification threshold. When the result of the logistic regression calculation is greater than the threshold, the result is positive, indicating that the users of the two social network platforms belong to the same entity user; otherwise, the result is negative, indicating that they are not directed to the same entity user.

Through this cross-social network user association model, it is possible to determine whether different social network accounts are from the same entity user, and then obtain user-related information across social networks. On the basis of this, a multi-level chaotic encryption algorithm based on neural networks is used to realize multi-level encryption processing of user-related information across social networks.

2.2 Multi-level chaotic encryption algorithm based on neural network

Based on the user association information obtained in the previous section, three different chaotic mapping models are selected to design a multi-level chaotic encryption algorithm. The neural network is used to improve the multilevel chaotic encryption algorithm to achieve multi-level encryption of user-related information across social networks.

2.2.1 Chaotic Mapping Model

Chaotic mapping model 1: A hybrid optical bistable model is selected [12] and its iterative equation is:

(4)Xn+1=ASin2XnXb

In equation (4)Xn and Xb represent user-related information across social networks at time n and b, and A is used to describe chaotic correlation between information. When A = 6 and Xb = 3, the model is known to be in a chaotic state. In the proposed multi-level encryption algorithm, the model is used to generate a permutation matrix to replace the input plaintext.

Chaotic mapping model 2: A piecewise linear chaotic mapping model is utilized [13]:

(5)Xn+1=Xn/pXn0,p1Xn/1pXnp,1

In equation (5)p represents the piecewise linearity of the information. When 0 < p < 1, the Lyapunov exponent of the model is positive and in a chaotic state. In the proposed multi-level encryption algorithm, the model acts as the first-order chaotic system for generating the key stream, and uses it to determine the number of iterations of the next-order chaotic system (the second-order chaotic system that generates the key stream).

Chaotic mapping model 3: The chaotic mapping model adopts the most widely used logistic mapping model [15]:

(6)Xn+1=μXn1Xn

In equation (6)μ represents the Lyapunov exponent of the information. When the map is 3.5699456 < μ < 4, its Lyapunov exponent is positive and in a chaotic state. In the proposed multi-level encryption algorithm, the model is used to generate the final key stream; the second-order chaotic system that generates the key stream mentioned above.

2.2.2 Design of multi-level chaotic encryption algorithm

Implementation steps of algorithm

The multi-level encryption algorithm for user-related information across social networks proposed in this paper combines the above three chaotic models. The initial values and parameters of each chaotic model (a total of 7) can be used as keys. However, in order to ensure that the designed algorithm is in chaos [15], the parameter A = 6 Xb = 3 in the hybrid optical bistability model is defined, and the remaining four values of the parameter μ = 4 in the logistic mapping are defined as the initial key of the algorithm and entered by the user. So the initial key is a 4-tuple: Key = (X, P, Y, Z). Among them:

X: initial value of model I, requires 0 < X < A

P: initial value of model II, requires 0 < P < 1

Y: initial value of model II, requires 0 < Y < 1

Z: initial value of model III, requires 0 < Z < 1

The multi-level chaotic encryption algorithm is described as follows:

First, enter the key Key (X, P, Y, Z).

Second, open the file and take out 2 characters (or a Chinese character) for a total of 16 bits, and then feed into the variable C1, C2.

Third, the 16-bit information is expanded to 32 bits by sequentially inserting a binary digit 1, 0 between adjacent two bits.

Fourth, iterate 32 times according to the input key X and the chaotic model 1, and 32 values are obtained. These 32 values are respectively taken to the remainder of 32, and the same remainder is processed to ensure that 32 different results are obtained, which are sequentially stored in the array P in the order of generation.

Fifth, the 32-bit data generated in the third step is replaced according to the array P [16].

Sixth, according to the input key P, Y and chaotic model 2, the Yn+1 is obtained through iteration. Since the value of Yn+1 is in [0, 1], this range is equally divided, and Yn+1 is quantized into an integer K accordingly. The algorithm in this paper is quantized into 10 levels, that is, K is an integer between 1 and 10.

Seventh, according to the input key Z, the chaotic model 3 is iterated K times to generate the encrypted key Key1.

Eighth, the 32-bit information after the fifth is replaced with Key1 to generate the ciphertext C.

Ninth, the 32-bit ciphertext C is processed into 4 character outputs. The next 2 characters are read until the end of the file.

The input of this encryption algorithm is 16 bits and the output is 32 bits. The 16-bit plaintext is extended, replaced, and then interacted with the key stream Key1 to generate ciphertext. The original key entered is 4 real numbers; one is used to generate the permutation matrix and the other 3 are generated by the level 2 chaotic system to produce the key stream Key1.

Discussion of algorithm

The multi-level chaotic encryption algorithm proposed in this paper is designed in C language [17] and the specific implementation of the algorithm is discussed as follows: First of all, in the fourth step of the algorithm design, the chaotic model 1 is iterated 32 times to obtain 32 values. In order to obtain better pseudo-randomness [18], the values from the initial iterations should be discarded and the iteration values from the first k + 1 to the k + 32 times are chosen. The iteration of chaotic model 2 in step 6 should also be the same.

Then, in the fourth step of the algorithm, the 32 numbers obtained are used for the remainder operation. When the result of the remainder of 32 is the same, the linear detection method is adopted; that is, the remainder is incremented by 1. If the number obtained is not the same, it is stored in the array, otherwise it is incremented by 1 (when it is full, it will be 0 again).

At last, the key Key1 obtained in step 7 of the algorithm; because 0 < Key1 < 1, Key1 will be XORed with a 32-bit number in the eighth step. The data type of Key1 is float. In order to ensure that the binary code circumference of the long type is as large as possible, it should be transformed: Key1 = Key1 * 1000000000.

2.2.3 Improving multi-level encryption algorithm with neural network

The core of the above multi-level chaotic encryption algorithm lies in the key stream generated by the chaotic mapping model 2 and the model 3. According to Shannon’s theory, a one-time pad is a truly safe system [19]. However, due to the limitation of computer precision, it is difficult to achieve a one-time pad using a chaotic system. Gong et al pointed out that communication systems based on low-dimensional chaos are vulnerable to adaptive synchronization control and do not have high confidentiality [20, 21, 22, 23, 24, 25, 26]. However, the hyperchaotic system is quite complicated in iterative calculation and implementation details, which makes greatly reduced the efficiency of the algorithm. Therefore, according to the error sensitivity of the chaotic system between the encryptor and the decryptor, the neural network is used to improve the multilevel chaotic encryption algorithm such that the error is reversely transmitted and the security of the chaotic system is improved. Accurate encryption of information associated with users across social networks.

Neural network model

In this paper, the BP algorithm in the neural network is used to realize the learning and generation of chaotic sequences. If one selects n inputs: XK+1, XK+2, · · · , XK+n, their corresponding weights are: V1, V2, · · · , Vn. Each time m steps are predicted, m values are output: XK+n+1, XK+n+2, · · · , XK+n+m. The predicted value is Xk+n+j = fixiviθi(i = 1, 2, · · · , n; j = 1, 2, · · · , m). And XK+1, XK+2, · · · , XK+m (m <= n) is replaced with XK+n+1, XK+n+2, · · · , XK+n+m at the iteration, along with Xk+m+1, · · · , Xk+n as the second input to predict the new m values, and iterate again. This is a neural network with a feedback structure, as shown in Figure 2.

Figure 2 Neural network structure diagram
Figure 2

Neural network structure diagram

Improved algorithm of neural network model

The neural network model of the above structure is applied to the chaotic mapping model 3, Logistic chaotic model, in the algorithm of this paper, which is used to assist the Logistic model to generate the key stream. The original key Z entered generates Z1, Z2, · · · , Zn after n iterations. Using these n values as the first input, Zn+1, · · · , Zn+m is generated by the hidden layer calculation, and they are looped back to the input layer. The second time, Zm+1, · · · , Zn, Zn+1, · · · , Zn+mis used as input to generate a new round of m outputs. In this cycle, the neural network is used to cycle K rounds (K is the result of the chaotic mapping model 2).

In the neural network of the algorithm, there aren inputs of each neuron: Xk+1, X k+2, X k+n, whose weights are 1, 2, · · · , n, respectively. That is, each time the neural network pushes forward, the corresponding weight of the input Xi is decremented by 1 until it is 0. In the specific implementation of the algorithm, the ratio of the number of neurons in the input layer, the hidden layer, and the output layer is 5:1:2.

At this time, the complete structure of the multi-level chaotic encryption algorithm based on neural network is shown in Figure 3.

Figure 3 A complete multi-level chaotic encryption algorithm based on a neural network
Figure 3

A complete multi-level chaotic encryption algorithm based on a neural network

3 Results

3.1 Accuracy of user information recognition across social networks

In order to evaluate the multi-level encryption algorithm of social network user association information proposed in this paper, the information of 1000 different social network users is randomly divided into 10 groups. Each group is different, and the algorithm is used for determination of the related information. According to the information to identify the exact number of people, and obtain the identification accuracy of the related information of different groups, the results are shown in Table 1.

Table 1

Information distribution accuracy rate of cross social network users

Group numberNumber of groups / groupsIdentifying the exact number of people / peopleAccuracy rate /%
110710497.2
2969497.9
3989799.0
412211896.7
5898696.6
610610397.1
7928996.7
8969599.0
911010898.2
10848398.8
Average97.6
accuracy

Analysis of Table 1 shows that the lowest accuracy of information related to 1000 cross-social network users using the algorithm is 96.6%, the highest is 99.0%, and the average accuracy is 97.6%.

3.2 Validity of the proposed algorithm

The algorithm is used to test the above plaintext 1, and the probability statistics are obtained, as shown in Figure 4 and Figure 5. The plaintext 2 is tested, and the probability statistics before and after the encryption are obtained as shown in Figure 6 and Figure 7. In the figures, the abscissa indicates the code value of the ACSII code, and the ordinate indicates the frequency at which the corresponding code value appears.

Figure 4 Statistical probability of 1 characters in plaintext (up to 0.118)
Figure 4

Statistical probability of 1 characters in plaintext (up to 0.118)

Figure 5 Plaintext 1 statistical probability of ciphertext characters (up to 0.021)
Figure 5

Plaintext 1 statistical probability of ciphertext characters (up to 0.021)

Figure 6 Statistical probability of 2 characters in plaintext (maximum 0.25)
Figure 6

Statistical probability of 2 characters in plaintext (maximum 0.25)

Figure 7 Statistical probability of ciphertext characters in plaintext 2 (up to 0.024)
Figure 7

Statistical probability of ciphertext characters in plaintext 2 (up to 0.024)

Figure 4 and Figure 5 shows that the highest frequency in plaintext 1 is 0.118, after encryption, the probability distribution of characters in the ciphertext is averaged, the highest frequency is only 0.021. Therefore, it can be considered that plaintext 1 is randomly spread into the entire ciphertext, and no plaintext information is retained in the ciphertext. In Figure 6 and Figure 7, the four characters that appear consecutively are encrypted, the frequency is spread, and the highest appearance frequency of ciphertext characters is only 0.024. The experimental results show that the proposed algorithm can effectively prevent the frequency attack method based on probability statistics.

3.3 Comparative analysis of security features of different algorithms

The experiment analyzes the security features of the algorithm from the following seven aspects, and compares and analyzes with the existing algorithms. The analysis results are summarized in Table 2.

Table 2

Comparison and analysis of security characteristics

Safety characteristicsSMM encryption algorithmMCS encryption algorithmLCS encryption algorithmRSA encryption algorithm based on PKCSkipjack encryption algorithmAlgorithm in this paper
Extensibility encryption algorithmfocus SymmetricDispersed SymmetricDispersed Symmetricblend RSAblend IBEblend Symmetric, IBE
Self destruction of datanoyesyesyesyesYes
Existing equipment and facilitiesyesyesyesnoyesYes
Secret key managementcomplexcomplexcomplexcomplexHigh efficiencyHigh efficiency
Fine-grained access controlyesnononoyesYes
Multilevel securitynononononoYes

It can be concluded that both the proposed algorithm and the Skipjack encryption algorithm use KGC to support the IBE encryption/decryption symmetric key, and the DHT distributed storage mixed ciphertext component is a completely decentralized way with good scalability. The key management of the proposed algorithm is simple and efficient. This algorithm implements multi-level security while further improving the efficiency of key management.

3.4 File processing speed and efficiency analysis

In order to verify the specific function of the algorithm, a simulation experiment is carried out. Different network information data is utilized to decrypt and encrypt the operation. The experimental data is shown in Table 3.

Table 3

Encrypted / decrypted file processing speed test

Experiment timesRSAalgorithmSMMalgorithmAlgorithm in this paper
encryption /MbpsDecrypt /Mbpsencryption /MbpsDecrypt /Mbpsencryption /MbpsDecrypt /Mbps
127.2327.2323.3221.4418.7923.25
225.5625.3424.3324.2320.5521.29
327.5627.5625.3424.2318.3621.31
426.8720.8724.3324.7717.5622.77
524.2925.4424.2323.5817.9321.27
627.3124.3925.1522.6919.2222.04
726.5426.2222.5922.3419.6420.82
826.8925.6523.6824.0617.5122.07
924.9627.0122.7123.8116.8721.69
1025.7722.5824.0622.9418.0222.53
Average value26.3025.2323.9723.4118.4521.90

When the algorithm performs a large amount of information processing, the average speed of encryption is 18.45 Mbps. Compared with the average speed of the other two algorithms, 26.30 Mbps and 23.97 Mbps, the algorithm has a higher processing speed.

Figure 8 shows the comparison of the encryption efficiency of different algorithms.

Figure 8 Comparison of encryption efficiency
Figure 8

Comparison of encryption efficiency

Analysis of the above figure shows that with increasing data processing, the encryption efficiency of this algorithm is significantly higher than the other two algorithms.

3.5 Homomorphism analysis of different algorithms

It is difficult for existing encryption algorithms to achieve full homomorphism, and there may be cases where the scheme is not applicable, such as the type of operation or the number of operations. Plaintext is selected randomly and different algorithms are employed to encrypt and perform operations. If the result satisfies the homomorphism of operation in the plaintext space, one can continue to select plaintext encryption and calculate until the result does not satisfy the homomorphism of operation in the plaintext space or the operation result exceeds the plain-text space. By selecting different operations, the application of each scheme to these operations can be obtained, as shown in Table 4.

The analysis of the results in Table 4 shows that the algorithm in this paper has more types of operations. Further, it not only supports any number of addition and multiplication and mixture of addition and multiplication operations, but also supports multiple subtraction operations and division operations. The algorithm can still support an average of 72.23 addition, subtraction, multiplication and mixing operations.

4 Discussion

4.1 Accuracy analysis of user information identification across social networks

By analysis of Table 1, one can obtain the accuracy of the association information identification of the social network users by the multi-level encryption algorithm of user-related information proposed in this paper. The data in Table 1 indicates that the lowest accuracy for the proposed algorithm to identify the cross-social network user association information is 96.6%, the highest accuracy is 99.0%, and the average accuracy is 97.6%. The accuracy of more than half of the group is higher than the average value, which indicates that the algorithm has strong ability to identify related information of social network users. Users with similar features in the data set are highly likely to be identified, which is mainly because the method for acquiring user association information is based on the social network user association model. Firstly, the model is trained to obtain feature weight parameters, and then it calculates the input feature vector according to the feature weight and compares the calculated result with the classification threshold to determine whether different social network accounts are from the same entity user. It then obtains cross-social network user association information. It can be seen that the proposed method for obtaining user association information is rigorous and logical and improves the accuracy of user information recognition across social networks.

4.2 Analysis of validity of the algorithm

Encryption experiments are performed on the two sets of plaintext using the Matlab tool. The plaintext of the experiment is as follows: Cryptology it’s the scrence of over writing (cry ptog raphy), of its authorized decryption (cry ptanaly Sis), and of the rules which are in tum intended to make that unauthorized decryption difficult (encryption security). The plaintext 2 of the experiment is: aaaaaaaaAAAAAAAAuuuuuuuuLLLLLLLL. As shown in Figures 4 and 5, the highest frequency in plaintext 1 is 0.118. After encryption, the probability of character distribution in ciphertext is averaged, and the highest frequency is only 0.021. In Figure 6 and Figure 7, the four characters that appear consecutively are encrypted, the frequency is spread, and the highest frequency of ciphertext characters is only 0.024. A comprehensive analysis of these results can lead to the algorithm proposed in this paper, so as to

Table 4

Comparison of different algorithms for different operations

ExperimentAlgorithm in this paperRSA algorithm
times/secondaddition /secondsubtraction /secondmultiplication /seconddivision /secondMultiple operations /secondaddition /secondsubtraction /secondmultiplication /seconddivision /secondMultiple operations /second
10101010910899710
2020202018201818191620
3030293028302728272629
4040394036403538373537
5050475046504545464547
6060576053605555565455
7070677063706363666462
8080758073807170757270
9090849080908077838277
10010094100881008885918986
ExperimentSMM algorithmSkipjack encryption algorithm
times/secondaddition /secondsubtraction /secondmultiplication /seconddivision /secondMultiple operations /secondaddition /secondsubtraction /secondmultiplication /seconddivision /secondMultiple operations /second
1091010881079910
2019192018171715181520
3028292727262625282327
4036393536353632373136
5045474446454640474046
6053565256545548555054
7063666162646557645762
8072756772727365716370
9080827579808172807377
100889183879089808781

effectively prevent the frequency attack method based on probability statistics.

4.3 File processing speed and efflciency analysis

The file processing speed and efficiency results of the algorithm described in Table 3 are analyzed. We can conclude that the average speed of encryption with this algorithm is 18.45Mbps when processing a large amount of information. Therefore, this type of encryption method not only has certain security performance, but also can quickly process various network information.

When the proposed algorithm is compared with the RSA algorithm and the SMM algorithm, we can clearly see that the higher the efficiency, the higher the utilization value of the algorithm. The specific comparison results are shown in Figure 8. From Figure 8, we can clearly conclude that although the operating speeds of the three algorithms are in a slow state in the early stage of system operation, the number of data processing increases with the passage of time. The advantage of the proposed algorithm is obvious. Although there has been a tendency to speed up in the early period for the RSA algorithm, it becomes very slow in the later stage. The proposed algorithm adopts a multi-level chaotic encryption algorithm to encrypt the user-related information, and the neural network is used to inversely propagate the error based on the error-sensitive characteristics of the chaotic system. This improves the multi-level chaotic encryption algorithm and improves the efficiency of multi-level encryption of user-associated information.

4.4 Homomorphism analysis of different algorithms

The homomorphism of different encryption algorithms in Table 4 is analyzed. Compared with other algorithms, the proposed algorithm has more types of operations, not only supporting any number of addition, multiplication, and mixture operations, but also supporting multiple subtraction operations and division operations when the number can be divided without any reminder, so that it can satisfy the needs of practical applications. Although the algorithm does not support subtractions of random times, in the test the proposed algorithm can still support an average of 72.23 times of addition, subtraction and multiplication. Therefore, for applications with a small amount of subtraction, the algorithm proposed in this paper can also be applied.

Based on the results of all experiments, the proposed algorithm solves the problem that the existing encryption algorithm does not support multiple multiplication and addition and mixture operations. In addition, compared with the existing homomorphic encryption algorithm, the overall efficiency of the algorithm is higher, and the key and ciphertext length are smaller, so it is more suitable for practical applications.

5 Conclusion

Traditional encryption algorithms such as SMM encryption algorithm, RSA encryption algorithm and Skipjack encryption algorithm have the disadvantages of slow speed, high limitation and poor homomorphism. In order to solve the shortcomings in the above algorithms, this paper proposes a multi-level chaotic encryption algorithm, which uses three different chaotic models to transform and spread the plaintext. Based on this, a neural network model is introduced, and the BP algorithm of the neural network model is used to make the error transmit reversely, further confusing the plaintext. Through experiments, the average accuracy of using the proposed algorithm to identify the user-related information across social networks is 97.6%. The highest frequency obtained by averaging the probability distribution of characters in the ciphertext is only 0.021. After encrypting the four consecutive characters, the highest appearance frequency of ciphertext characters is only 0. 024; the average time for encryption using this algorithm is 18.45 Mbps, and the average decryption time is 21.90 Mbps. The experimental results show that the key management of the proposed algorithm is simple and efficient, the encryption speed is fast, and the homomorphism is good. At the same time, the algorithm is a symmetric encryption algorithm. When decrypting, the inverse operation of the encryption and the addition according to the initial key can realize correct decryption and restore the original information.

Acknowledgement

Soft science research project of Hebei science and Technology Department (No. 17456001D); the key project of Hebei Federation of Social Sciences (No. 201701501; No. 201802020211).

References

[1] Liu Q., Zeng J., Yang G., Mr DIRECT: A Multilevel Robust Direct Algorithm for Global Optimization Problems, J. Global Optim., 2015, 62(2), 205-227.10.1007/s10898-014-0241-8Search in Google Scholar

[2] Woldemariam A.T., Kassa S.M., Systematic Evolutionary Algorithm for General Multilevel Stackelberg Problems with Bounded Decision Variables (SEAMSP), Annals Oper. Res., 2015, 229(1), 771-790.10.1007/s10479-015-1842-4Search in Google Scholar

[3] Li X., Wang L., Wang J., Multi-Focus Image Fusion Algorithm Based On Multilevel Morphological Component Analysis and Support Vector Machine, IET Image Proces., 2017, 11(10), 919-926.10.1049/iet-ipr.2016.0661Search in Google Scholar

[4] Haw L.K., Dahidah M.S.A., Almurib H.A.F., A New Reactive Current Reference Algorithm for the STATCOM System Based on Cascaded Multilevel Inverters, IEEE Trans. Power Electr., 2015, 30(7), 3577-3588.10.1109/TPEL.2014.2341318Search in Google Scholar

[5] Wang X., Zhang H.L., A Novel Image Encryption Algorithm Based on Genetic Recombination and Hyper-Chaotic Systems. Nonlinear Dynamics, 2016, 83(1-2), 333-346.10.1007/s11071-015-2330-8Search in Google Scholar

[6] Vaisman R., Roughan M., Kroese D.P. The Multilevel Splitting Algorithm for Graph Colouring With Application to the Potts Model, Phil. Mag., 2017, 97(19), 1646-1673.10.1080/14786435.2017.1312023Search in Google Scholar

[7] Parpas P. A. Multilevel Proximal Gradient Algorithm for a Class of Composite Optimization Problems, Siam J. Sci. Comp., 2016, 39(5), S681-S701.10.1137/16M1082299Search in Google Scholar

[8] Lai C.G. Short Communication: A Note on Optimal Hybrid V-Cycle Multilevel Algorithms for Mixed Finite Element Systems with Penalty Term, Num. Lin. Algebr. Appl., 2015, 4(6), 491-498.10.1002/(SICI)1099-1506(199711/12)4:6<491::AID-NLA116>3.0.CO;2-KSearch in Google Scholar

[9] Dekka A., Wu B., Zargari N.R. Dynamic Voltage Balancing Algorithm for Modular Multilevel Converter: A Unique Solution, IEEE Trans. Pow. Electr., 2015, 31(2), 952-963.10.1109/TPEL.2015.2419881Search in Google Scholar

[10] Wu Y., Yan C.G., Liu L., An Adaptive Multilevel Indexing Method for Disaster Service Discovery, IEEE Trans. Comp., 2015, 64(9), 2447-2459.10.1109/TC.2014.2378273Search in Google Scholar

[11] Wenig S., Rojas F., Schönleber K. Simulation Framework for DC Grid Control and ACDC Interaction Studies Based on Modular Multilevel Converters, IEEE Trans. Pow. Deliv., 2016, 31(2), 780-788.10.1109/TPWRD.2015.2417681Search in Google Scholar

[12] Hu J.S., Lin J.N., Chen H.C. A Discontinuous Space Vector PWM Algorithm in abc Reference Frame for Multilevel Three-Phase Cascaded H-Bridge Voltage Source Inverters. IEEE Trans. Industr. Electr., 2017, 64(11), 8406-8414.10.1109/TIE.2017.2703675Search in Google Scholar

[13] Dekka A., Wu B., Zargari N.R., A Novel Modulation Scheme and Voltage Balancing Algorithm for Modular Multilevel Converter, IEEE Trans. Industr. Appl., 2016, 52(1), 432-443.10.1109/TIA.2015.2477481Search in Google Scholar

[14] Wang M., Xu C., Wang Q., Research of a New Reliability Analysis Method Based on Multilevel Flow Model and Its Application on the Gas Turbine Compressor, J. Chem, Eng. Jap., 2015, 48(8), 656-661.10.1252/jcej.14we311Search in Google Scholar

[15] Zampini S., Tu X., Multilevel Balancing Domain Decomposition by Constraints Deluxe Algorithms with Adaptive Coarse Spaces for Flow in Porous Media., Siam J. Sci. Comp., 2017, 39(4), A1389-A1415.10.1137/16M1080653Search in Google Scholar

[16] Kaur S., Bharadwaj P., Mankotia S., Study of Multi-Level Cryptography Algorithm: Multi-Prime RSA and DES, Autom. Instr., 2017, 9(9), 22-29.10.5815/ijcnis.2017.09.03Search in Google Scholar

[17] Li D.S., Chen Z.G. A New Method to Prevent Trojan-in Node Based on Inner Secure Tunnel, J. China Acad. Electr. Inform. Techn., 2015, 10(4), 379-382.Search in Google Scholar

[18] Alnesarawi A.N., Al-Tamimi M.S.H. An Improve Image Encryption Algorithm Based on Multi-level of Chaotic Maps and Lagrange Interpolation, J. Power Supply, 2018, 59(1A), 179-188.10.24996/ijs.2018.59.1A.19Search in Google Scholar

[19] Hua T., Chen J., Pei D., Quantum Image Encryption Algorithm Based on Image Correlation Decomposition, Int. J. Theor. Phys., 2015, 54(2), 526-537.10.1007/s10773-014-2245-zSearch in Google Scholar

[20] Gong L.H., He X.T., Cheng S., Quantum Image Encryption Algorithm Based on Quantum Image XOR Operations, Int. J. Theor. Phys., 2016, 55(7), 3234-32.10.1007/s10773-016-2954-6Search in Google Scholar

[21] Fu H., Liu X., Research on the Phenomenon of Chinese Residents’ Spiritual Contagion for the Reuse of Recycled Water Based On Sc-Iat., Water, 2017, 9(84611).10.3390/w9110846Search in Google Scholar

[22] Rosa M., Núńez M.L.G., Multiplier Method and Exact Solutions for a Density Dependent Reaction-Diffusion Equation, Appl. Math. Nonlin. Sci., 2016, 1(2), 311-320.10.21042/AMNS.2016.2.00026Search in Google Scholar

[23] Martinez-Lara M.J., Paez Melo M.I., Design of Experiments Applied in the Optimization of the Extraction Method Quechers for the Determination of Organoclorated and Organophospho-ric Pesticides in Soils, Rev. Int. Contamin. Ambient., 2017, 33(4), 559-573.10.20937/RICA.2017.33.04.02Search in Google Scholar

[24] Thorenz A.,Wietschel L., Stindt D., Tuma A. Assessment of Agro-forestry Residue Potentials for the Bioeconomy in the European Union, J. Clean. Prod., 2018, 176, 348-359.10.1016/j.jclepro.2017.12.143Search in Google Scholar PubMed PubMed Central

[25] Sardar M.S., Zafar S., Zahid Z., Computing Topological Indices of the Line Graphs of Banana Tree Graph and Firecracker Graph, Appl. Math. Nonlin. Sci., 2017, 2(1), 83-92.10.21042/AMNS.2017.1.00007Search in Google Scholar

[26] Gao W., Zhu L., Guo Y.,Wang K., Ontology Learning Algorithm for Similarity Measuring and Ontology Mapping Using Linear Programming, J. Intel. Fuzzy Sys., 2017, 33(5), 3153-3163.10.3233/JIFS-169367Search in Google Scholar

Received: 2018-10-03
Accepted: 2018-11-14
Published Online: 2018-12-31

© 2018 L. Yin and N. Hassan, published by De Gruyter

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

Articles in the same Issue

  1. Regular Articles
  2. A modified Fermi-Walker derivative for inextensible flows of binormal spherical image
  3. Algebraic aspects of evolution partial differential equation arising in the study of constant elasticity of variance model from financial mathematics
  4. Three-dimensional atom localization via probe absorption in a cascade four-level atomic system
  5. Determination of the energy transitions and half-lives of Rubidium nuclei
  6. Three phase heat and mass transfer model for unsaturated soil freezing process: Part 1 - model development
  7. Three phase heat and mass transfer model for unsaturated soil freezing process: Part 2 - model validation
  8. Mathematical model for thermal and entropy analysis of thermal solar collectors by using Maxwell nanofluids with slip conditions, thermal radiation and variable thermal conductivity
  9. Constructing analytic solutions on the Tricomi equation
  10. Feynman diagrams and rooted maps
  11. New type of chaos synchronization in discrete-time systems: the F-M synchronization
  12. Unsteady flow of fractional Oldroyd-B fluids through rotating annulus
  13. A note on the uniqueness of 2D elastostatic problems formulated by different types of potential functions
  14. On the conservation laws and solutions of a (2+1) dimensional KdV-mKdV equation of mathematical physics
  15. Computational methods and traveling wave solutions for the fourth-order nonlinear Ablowitz-Kaup-Newell-Segur water wave dynamical equation via two methods and its applications
  16. Siewert solutions of transcendental equations, generalized Lambert functions and physical applications
  17. Numerical solution of mixed convection flow of an MHD Jeffery fluid over an exponentially stretching sheet in the presence of thermal radiation and chemical reaction
  18. A new three-dimensional chaotic flow with one stable equilibrium: dynamical properties and complexity analysis
  19. Dynamics of a dry-rebounding drop: observations, simulations, and modeling
  20. Modeling the initial mechanical response and yielding behavior of gelled crude oil
  21. Lie symmetry analysis and conservation laws for the time fractional simplified modified Kawahara equation
  22. Solitary wave solutions of two KdV-type equations
  23. Applying industrial tomography to control and optimization flow systems
  24. Reconstructing time series into a complex network to assess the evolution dynamics of the correlations among energy prices
  25. An optimal solution for software testing case generation based on particle swarm optimization
  26. Optimal system, nonlinear self-adjointness and conservation laws for generalized shallow water wave equation
  27. Alternative methods for solving nonlinear two-point boundary value problems
  28. Global model simulation of OH production in pulsed-DC atmospheric pressure helium-air plasma jets
  29. Experimental investigation on optical vortex tweezers for microbubble trapping
  30. Joint measurements of optical parameters by irradiance scintillation and angle-of-arrival fluctuations
  31. M-polynomials and topological indices of hex-derived networks
  32. Generalized convergence analysis of the fractional order systems
  33. Porous flow characteristics of solution-gas drive in tight oil reservoirs
  34. Complementary wave solutions for the long-short wave resonance model via the extended trial equation method and the generalized Kudryashov method
  35. A Note on Koide’s Doubly Special Parametrization of Quark Masses
  36. On right-angled spherical Artin monoid of type Dn
  37. Gas flow regimes judgement in nanoporous media by digital core analysis
  38. 4 + n-dimensional water and waves on four and eleven-dimensional manifolds
  39. Stabilization and Analytic Approximate Solutions of an Optimal Control Problem
  40. On the equations of electrodynamics in a flat or curved spacetime and a possible interaction energy
  41. New prediction method for transient productivity of fractured five-spot patterns in low permeability reservoirs at high water cut stages
  42. The collinear equilibrium points in the restricted three body problem with triaxial primaries
  43. Detection of the damage threshold of fused silica components and morphologies of repaired damage sites based on the beam deflection method
  44. On the bivariate spectral quasi-linearization method for solving the two-dimensional Bratu problem
  45. Ion acoustic quasi-soliton in an electron-positron-ion plasma with superthermal electrons and positrons
  46. Analysis of projectile motion in view of conformable derivative
  47. Computing multiple ABC index and multiple GA index of some grid graphs
  48. Terahertz pulse imaging: A novel denoising method by combing the ant colony algorithm with the compressive sensing
  49. Characteristics of microscopic pore-throat structure of tight oil reservoirs in Sichuan Basin measured by rate-controlled mercury injection
  50. An activity window model for social interaction structure on Twitter
  51. Transient thermal regime trough the constitutive matrix applied to asynchronous electrical machine using the cell method
  52. On the zagreb polynomials of benzenoid systems
  53. Integrability analysis of the partial differential equation describing the classical bond-pricing model of mathematical finance
  54. The Greek parameters of a continuous arithmetic Asian option pricing model via Laplace Adomian decomposition method
  55. Quantifying the global solar radiation received in Pietermaritzburg, KwaZulu-Natal to motivate the consumption of solar technologies
  56. Sturm-Liouville difference equations having Bessel and hydrogen atom potential type
  57. Study on the response characteristics of oil wells after deep profile control in low permeability fractured reservoirs
  58. Depiction and analysis of a modified theta shaped double negative metamaterial for satellite application
  59. An attempt to geometrize electromagnetism
  60. Structure of traveling wave solutions for some nonlinear models via modified mathematical method
  61. Thermo-convective instability in a rotating ferromagnetic fluid layer with temperature modulation
  62. Construction of new solitary wave solutions of generalized Zakharov-Kuznetsov-Benjamin-Bona-Mahony and simplified modified form of Camassa-Holm equations
  63. Effect of magnetic field and heat source on Upper-convected-maxwell fluid in a porous channel
  64. Physical cues of biomaterials guide stem cell fate of differentiation: The effect of elasticity of cell culture biomaterials
  65. Shooting method analysis in wire coating withdrawing from a bath of Oldroyd 8-constant fluid with temperature dependent viscosity
  66. Rank correlation between centrality metrics in complex networks: an empirical study
  67. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering
  68. Modeling of electric and heat processes in spot resistance welding of cross-wire steel bars
  69. Dynamic characteristics of triaxial active control magnetic bearing with asymmetric structure
  70. Design optimization of an axial-field eddy-current magnetic coupling based on magneto-thermal analytical model
  71. Thermal constitutive matrix applied to asynchronous electrical machine using the cell method
  72. Temperature distribution around thin electroconductive layers created on composite textile substrates
  73. Model of the multipolar engine with decreased cogging torque by asymmetrical distribution of the magnets
  74. Analysis of spatial thermal field in a magnetic bearing
  75. Use of the mathematical model of the ignition system to analyze the spark discharge, including the destruction of spark plug electrodes
  76. Assessment of short/long term electric field strength measurements for a pilot district
  77. Simulation study and experimental results for detection and classification of the transient capacitor inrush current using discrete wavelet transform and artificial intelligence
  78. Magnetic transmission gear finite element simulation with iron pole hysteresis
  79. Pulsed excitation terahertz tomography – multiparametric approach
  80. Low and high frequency model of three phase transformer by frequency response analysis measurement
  81. Multivariable polynomial fitting of controlled single-phase nonlinear load of input current total harmonic distortion
  82. Optimal design of a for middle-low-speed maglev trains
  83. Eddy current modeling in linear and nonlinear multifilamentary composite materials
  84. The visual attention saliency map for movie retrospection
  85. AC/DC current ratio in a current superimposition variable flux reluctance machine
  86. Influence of material uncertainties on the RLC parameters of wound inductors modeled using the finite element method
  87. Cogging force reduction in linear tubular flux switching permanent-magnet machines
  88. Modeling hysteresis curves of La(FeCoSi)13 compound near the transition point with the GRUCAD model
  89. Electro-magneto-hydrodynamic lubrication
  90. 3-D Electromagnetic field analysis of wireless power transfer system using K computer
  91. Simplified simulation technique of rotating, induction heated, calender rolls for study of temperature field control
  92. Design, fabrication and testing of electroadhesive interdigital electrodes
  93. A method to reduce partial discharges in motor windings fed by PWM inverter
  94. Reluctance network lumped mechanical & thermal models for the modeling and predesign of concentrated flux synchronous machine
  95. Special Issue Applications of Nonlinear Dynamics
  96. Study on dynamic characteristics of silo-stock-foundation interaction system under seismic load
  97. Microblog topic evolution computing based on LDA algorithm
  98. Modeling the creep damage effect on the creep crack growth behavior of rotor steel
  99. Neighborhood condition for all fractional (g, f, n′, m)-critical deleted graphs
  100. Chinese open information extraction based on DBMCSS in the field of national information resources
  101. 10.1515/phys-2018-0079
  102. CPW-fed circularly-polarized antenna array with high front-to-back ratio and low-profile
  103. Intelligent Monitoring Network Construction based on the utilization of the Internet of things (IoT) in the Metallurgical Coking Process
  104. Temperature detection technology of power equipment based on Fiber Bragg Grating
  105. Research on a rotational speed control strategy of the mandrel in a rotary steering system
  106. Dynamic load balancing algorithm for large data flow in distributed complex networks
  107. Super-structured photonic crystal fiber Bragg grating biosensor image model based on sparse matrix
  108. Fractal-based techniques for physiological time series: An updated approach
  109. Analysis of the Imaging Characteristics of the KB and KBA X-ray Microscopes at Non-coaxial Grazing Incidence
  110. Application of modified culture Kalman filter in bearing fault diagnosis
  111. Exact solutions and conservation laws for the modified equal width-Burgers equation
  112. On topological properties of block shift and hierarchical hypercube networks
  113. Elastic properties and plane acoustic velocity of cubic Sr2CaMoO6 and Sr2CaWO6 from first-principles calculations
  114. A note on the transmission feasibility problem in networks
  115. Ontology learning algorithm using weak functions
  116. Diagnosis of the power frequency vacuum arc shape based on 2D-PIV
  117. Parametric simulation analysis and reliability of escalator truss
  118. A new algorithm for real economy benefit evaluation based on big data analysis
  119. Synergy analysis of agricultural economic cycle fluctuation based on ant colony algorithm
  120. Multi-level encryption algorithm for user-related information across social networks
  121. Multi-target tracking algorithm in intelligent transportation based on wireless sensor network
  122. Fast recognition method of moving video images based on BP neural networks
  123. Compressed sensing image restoration algorithm based on improved SURF operator
  124. Design of load optimal control algorithm for smart grid based on demand response in different scenarios
  125. Face recognition method based on GA-BP neural network algorithm
  126. Optimal path selection algorithm for mobile beacons in sensor network under non-dense distribution
  127. Localization and recognition algorithm for fuzzy anomaly data in big data networks
  128. Urban road traffic flow control under incidental congestion as a function of accident duration
  129. Optimization design of reconfiguration algorithm for high voltage power distribution network based on ant colony algorithm
  130. Feasibility simulation of aseismic structure design for long-span bridges
  131. Construction of renewable energy supply chain model based on LCA
  132. The tribological properties study of carbon fabric/ epoxy composites reinforced by nano-TiO2 and MWNTs
  133. A text-Image feature mapping algorithm based on transfer learning
  134. Fast recognition algorithm for static traffic sign information
  135. Topical Issue: Clean Energy: Materials, Processes and Energy Generation
  136. An investigation of the melting process of RT-35 filled circular thermal energy storage system
  137. Numerical analysis on the dynamic response of a plate-and-frame membrane humidifier for PEMFC vehicles under various operating conditions
  138. Energy converting layers for thin-film flexible photovoltaic structures
  139. Effect of convection heat transfer on thermal energy storage unit
Downloaded on 16.2.2026 from https://www.degruyterbrill.com/document/doi/10.1515/phys-2018-0120/html
Scroll to top button