Startseite Thermal constitutive matrix applied to asynchronous electrical machine using the cell method
Artikel Open Access

Thermal constitutive matrix applied to asynchronous electrical machine using the cell method

  • Pablo Ignacio González Domínguez EMAIL logo , José Miguel Monzón-Verona , Leopoldo Simón Rodríguez und Adrián de Pablo Sánchez
Veröffentlicht/Copyright: 8. März 2018

Abstract

This work demonstrates the equivalence of two constitutive equations. One is used in Fourier’s law of the heat conduction equation, the other in electric conduction equation; both are based on the numerical Cell Method, using the Finite Formulation (FF-CM). A 3-D pure heat conduction model is proposed. The temperatures are in steady state and there are no internal heat sources. The obtained results are compared with an equivalent model developed using the Finite Elements Method (FEM). The particular case of 2-D was also studied. The errors produced are not significant at less than 0.2%. The number of nodes is the number of the unknowns and equations to resolve. There is no significant gain in precision with increasing density of the mesh.

1 Introduction

The Heat Transmission Equation in FF-CM (consult [1, 3, 5]) is expressed in Eq. (1) as:

GTMλGτ+MCpdτdt=W(1)

Two constitutive matrices are observed: [Mλ] and [MCp]. The constitutive matrix [Mλ] belongs to Fourier’s law of the heat conduction equation. The constitutive matrix [MCp] belongs to the Heat transmission equation with change of temperature.

Fourier’s law of the heat conduction equation applied to stator-airgap-rotor is:

GTMλGτ=D~qλ(2)

The heat sources, corresponding to Joule effects and magnetic hysteresis and eddy currents, are represented as the vector [W].

The heat produced by mechanical friction is not studied in this work.

The changes in the internal energy, dependent on the component materials of the asynchronous machines, are represented in the following expression:

MCpdτdt(3)

We establish an analogy between thermal conduction and electrical conduction as is indicated in Eq. (4).

GTMλGτ=D~qλGTMσGv=D~I(4)

The Fourier heat transmission equation is treated in 2-D and 3-D. The cartesian absolute coordinates of the cell are converted to local standardized coordinates. The origin is one of the four vertices of the tetrahedron used as cell [1,2,3]. The dual variables are projected to the primal using geometrical methods. Planar symmetries and axisymmetric symmetries are used. Quadratic interpolations are applied to obtain distributions of temperature [1,2,3,4, 5].

The main parameters used in this work are the following:

Assuming the analogy indicated in Eq. (4) gives:

MλMσ(5)

SymbolNameunit
D, Primal and dual discrete divergence operators.-
dτdtTemperature variation.°C·s–1
G, Primal and dual discrete gradient operators.-
IElectric current.A
[Mλ]Constitutive matrix in Fourier’s Law of Heat ConductionW·K–1
[MCp]Constitutive matrix in heat transition in transitory state.J·K–1
[Mσ]Constitutive matrix in electrical conduction.Ω–1
[qλ]Heat flow crossing a surface.W
S, Primal and dual surfaces.m2
VTTetrahedron volume.m3
V, Primal and dual volumes.m3
[v]Electrical potential matrix.V
[W]Heat generated during a process.W
λkVolumetric thermal conductivity.W·K–1·m–1
σElectrical conductivity.Ω–1·m–1

Using the expression proposed by [6], the matrices exposed in Eq. (5) are topological equivalent:

λ1VtS~iS~jσ1VtS~iS~j(6)

Where matrix [S] is defined according to (8), following Specogna and F. Trevisan [6],

[S]6×6=S~0S~0S~0S~5S~2S~2S~5S~0S~5S~5(7)

is the dot product of the vectors that define the dual faces of the cell and (VT) is the volume of the tetrahedron, see Figure 1.

Figure 1 Dual faces vectors of a tetrahedrical cell with baricentric
Figure 1

Dual faces vectors of a tetrahedrical cell with baricentric

The matrix [Mσ] must be calculated for the electro-thermal phenomena occurring in the asynchronous machine. So why do the calculations twice? Several numerical experiments were designed to confirm this assumption.

The obtained results were contrasted with the results obtained from the same model developed with Finite Element Methods (FEM). The particular caseof 2-D was also studied.

2 Numerical experiments

2.1 Numerical experiments description

In the numerical experiments, pure conduction of heat is assumed, there are no inner heat sources, and temperatures are stationary, as shown in Eq. (8).

MλGτ=qλ(8)

Two boundary conditions, of type Dirichlet, were established. Two temperatures, τout = 30 °C and τin = 80 °C were fixed on two faces of a tube, which represents the rotor or stator of an electric machine.

These faces are axial sides to thetube. The other top face and down face of the tube were considered as perfect heat insulators.

The temperatures are considered in steady state. There are no internal heat sources. Various structural materials with different volumetric thermal conductivity coefficients were reviewed. The volumetric thermal conductivity is λ1 = 50 Wm–1K–1 for the inner tube and λ2 = 193 Wm–1K–1 for the outer one. As there is no heat source inside the domain, the heat flows in a radial direction.

Temperatures are measured in a parametric cut line as shown in Figure 3.

An example square in 2-D, is shown in Figure 2, with sides of 200 cm and a superficial thermal conductivity coefficient equal to 1 WK–1. The rectangular perforations have assigned a temperature τin = 150 °C to their edges. The outer square edge has a temperature τout = 50 °C.The temperatures are considered in steady state.

Figure 2 (a) Square 2-D with three holes. Dimensions are in meters. (b) FF-CM model. (c) FEM model
Figure 2

(a) Square 2-D with three holes. Dimensions are in meters. (b) FF-CM model. (c) FEM model

Figure 3 Tube, as stator of an electric machine, with two different structural materials, also two different thermal conductivity coefficients
Figure 3

Tube, as stator of an electric machine, with two different structural materials, also two different thermal conductivity coefficients

Temperatures are measured in a horizontal parametric cut line at 1 meter from the base of the square, see Figure 2(a).

2.2 Results

Different meshes have been used in the model and the temperatures calculated with FF-CM. The meshing and the post-processing of the model in CM have been performed with Gmsh software [7]. The resulting temperatures are compared with the temperatures obtained with a 2-D axisymmetric FEM model using the software FEMM [8]. For a tube in 3-D, the results are showed in Figures 4 and 6.

Figure 4 Temperatures in a tube with two thermal conductivity
Figure 4

Temperatures in a tube with two thermal conductivity

For a square in 2-D, with one superficial thermal conductivity coefficient, the results are showed in Figure 5.

Figure 5 Temperatures in square 2-D with three holes
Figure 5

Temperatures in square 2-D with three holes

The difference between the normal distribution and the distribution obtained in the error histogram is due to the measurement method (see Figure 6). A parametric cutline is used in the FF-MC model and in the FEMM model, too. Although both parametric cut lines are made at the same distance, the meshes do not match exactly.

Figure 6 (a) 2-D axisymmetric FEM model using the software FEMM of a stator with two different structural materials, also two different thermal conductivity coefficients. (b) Errors histogram when are compared FF-CM model with FEM model
Figure 6

(a) 2-D axisymmetric FEM model using the software FEMM of a stator with two different structural materials, also two different thermal conductivity coefficients. (b) Errors histogram when are compared FF-CM model with FEM model

Unfortunately, the interpolations between the values of the nodes of the mesh and the values in the points of the cutline disagree. This is because the mesher of the GMSH is not the same as that of the FEMM.

3 Conclusions

The FF-CM is a strong method because we face a 3-D model in FF-CM, with a not very dense tetrahedral mesh, with a planar axisymmetric model calculated with FEM and very dense triangular mesh. The errors produced are not significant at less than 0.2%. The number of nodes is the number of unknowns and equations to resolve. There is no significant gain in precision with increasing density of the mesh. In the Figure 4, with 9,679 nodes and 13,136 nodes the errors are similar.

Acknowledgement

The authors thank the project TEC2014-60527-C2-1-R “SURF: Sistema Subacuático RFID para Acuicultura” from Ministerio de Economía y Competitividad (MINECO) for their contribution to the realization of this work.

References

[1] Bullo M., D’Ambrosio V., Dughiero F., Guarnieri M., Coupled electrical and thermal transient conduction problems with a quadratic interpolation cell method approach, Magnetics, IEEE Transactions on, 2006, 42(4), 1003-1006.10.1109/TMAG.2006.872471Suche in Google Scholar

[2] Bullo M., D’Ambrosio V., Dughiero F., Guarnieri M., A 3D Cell Method Formulation for Coupled Electric and Thermal Problems, b). Miami, FL, USA, IEEE, 2006, 7-7.10.1109/CEFC-06.2006.1632800Suche in Google Scholar

[3] Bullo M., D’Ambrosio V., Dughiero F., Guarnieri M., A 3-D Cell Method Formulation for Coupled Electric and Thermal Problems, Magnetics, IEEE Transactions on, 2007, 43(4), 1197-1200.10.1109/TMAG.2006.890955Suche in Google Scholar

[4] Tonti E., Formulazione finita delle equazioni di campo: Il Metodo delle Celle, Atti del XIII Convegno Italiano di Meccanica Computazionale, Brescia, Italy, 2000.Suche in Google Scholar

[5] Tonti E., A direct discrete formulation of field laws: The cell method, CMES-Computer Modeling in Engineering and Sciences, 2001, 2(2), 237-258.Suche in Google Scholar

[6] Specogna R., Trevisan F., Discrete constitutive equations in A-Chi geometric eddy-current formulation, IEEE Trans. Magn, 2005, 41(4), 1259-1263.10.1109/TMAG.2005.844841Suche in Google Scholar

[7] Geuzaine C., Remacle J. F., Gmsh: a three-dimensional finite element mesh generator with built-in pre-and post-processing facilities, International Journal for Numerical Methods in Engineering, 2009, 79(11), 1309-1331.10.1002/nme.2579Suche in Google Scholar

[8] Meeker D., http://www.femm.info/wiki/HomePageSuche in Google Scholar

Received: 2017-11-01
Accepted: 2017-11-24
Published Online: 2018-03-08

© 2018 Pablo Ignacio González Domínguez et al., published by De Gruyter

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

Artikel in diesem Heft

  1. Regular Articles
  2. A modified Fermi-Walker derivative for inextensible flows of binormal spherical image
  3. Algebraic aspects of evolution partial differential equation arising in the study of constant elasticity of variance model from financial mathematics
  4. Three-dimensional atom localization via probe absorption in a cascade four-level atomic system
  5. Determination of the energy transitions and half-lives of Rubidium nuclei
  6. Three phase heat and mass transfer model for unsaturated soil freezing process: Part 1 - model development
  7. Three phase heat and mass transfer model for unsaturated soil freezing process: Part 2 - model validation
  8. Mathematical model for thermal and entropy analysis of thermal solar collectors by using Maxwell nanofluids with slip conditions, thermal radiation and variable thermal conductivity
  9. Constructing analytic solutions on the Tricomi equation
  10. Feynman diagrams and rooted maps
  11. New type of chaos synchronization in discrete-time systems: the F-M synchronization
  12. Unsteady flow of fractional Oldroyd-B fluids through rotating annulus
  13. A note on the uniqueness of 2D elastostatic problems formulated by different types of potential functions
  14. On the conservation laws and solutions of a (2+1) dimensional KdV-mKdV equation of mathematical physics
  15. Computational methods and traveling wave solutions for the fourth-order nonlinear Ablowitz-Kaup-Newell-Segur water wave dynamical equation via two methods and its applications
  16. Siewert solutions of transcendental equations, generalized Lambert functions and physical applications
  17. Numerical solution of mixed convection flow of an MHD Jeffery fluid over an exponentially stretching sheet in the presence of thermal radiation and chemical reaction
  18. A new three-dimensional chaotic flow with one stable equilibrium: dynamical properties and complexity analysis
  19. Dynamics of a dry-rebounding drop: observations, simulations, and modeling
  20. Modeling the initial mechanical response and yielding behavior of gelled crude oil
  21. Lie symmetry analysis and conservation laws for the time fractional simplified modified Kawahara equation
  22. Solitary wave solutions of two KdV-type equations
  23. Applying industrial tomography to control and optimization flow systems
  24. Reconstructing time series into a complex network to assess the evolution dynamics of the correlations among energy prices
  25. An optimal solution for software testing case generation based on particle swarm optimization
  26. Optimal system, nonlinear self-adjointness and conservation laws for generalized shallow water wave equation
  27. Alternative methods for solving nonlinear two-point boundary value problems
  28. Global model simulation of OH production in pulsed-DC atmospheric pressure helium-air plasma jets
  29. Experimental investigation on optical vortex tweezers for microbubble trapping
  30. Joint measurements of optical parameters by irradiance scintillation and angle-of-arrival fluctuations
  31. M-polynomials and topological indices of hex-derived networks
  32. Generalized convergence analysis of the fractional order systems
  33. Porous flow characteristics of solution-gas drive in tight oil reservoirs
  34. Complementary wave solutions for the long-short wave resonance model via the extended trial equation method and the generalized Kudryashov method
  35. A Note on Koide’s Doubly Special Parametrization of Quark Masses
  36. On right-angled spherical Artin monoid of type Dn
  37. Gas flow regimes judgement in nanoporous media by digital core analysis
  38. 4 + n-dimensional water and waves on four and eleven-dimensional manifolds
  39. Stabilization and Analytic Approximate Solutions of an Optimal Control Problem
  40. On the equations of electrodynamics in a flat or curved spacetime and a possible interaction energy
  41. New prediction method for transient productivity of fractured five-spot patterns in low permeability reservoirs at high water cut stages
  42. The collinear equilibrium points in the restricted three body problem with triaxial primaries
  43. Detection of the damage threshold of fused silica components and morphologies of repaired damage sites based on the beam deflection method
  44. On the bivariate spectral quasi-linearization method for solving the two-dimensional Bratu problem
  45. Ion acoustic quasi-soliton in an electron-positron-ion plasma with superthermal electrons and positrons
  46. Analysis of projectile motion in view of conformable derivative
  47. Computing multiple ABC index and multiple GA index of some grid graphs
  48. Terahertz pulse imaging: A novel denoising method by combing the ant colony algorithm with the compressive sensing
  49. Characteristics of microscopic pore-throat structure of tight oil reservoirs in Sichuan Basin measured by rate-controlled mercury injection
  50. An activity window model for social interaction structure on Twitter
  51. Transient thermal regime trough the constitutive matrix applied to asynchronous electrical machine using the cell method
  52. On the zagreb polynomials of benzenoid systems
  53. Integrability analysis of the partial differential equation describing the classical bond-pricing model of mathematical finance
  54. The Greek parameters of a continuous arithmetic Asian option pricing model via Laplace Adomian decomposition method
  55. Quantifying the global solar radiation received in Pietermaritzburg, KwaZulu-Natal to motivate the consumption of solar technologies
  56. Sturm-Liouville difference equations having Bessel and hydrogen atom potential type
  57. Study on the response characteristics of oil wells after deep profile control in low permeability fractured reservoirs
  58. Depiction and analysis of a modified theta shaped double negative metamaterial for satellite application
  59. An attempt to geometrize electromagnetism
  60. Structure of traveling wave solutions for some nonlinear models via modified mathematical method
  61. Thermo-convective instability in a rotating ferromagnetic fluid layer with temperature modulation
  62. Construction of new solitary wave solutions of generalized Zakharov-Kuznetsov-Benjamin-Bona-Mahony and simplified modified form of Camassa-Holm equations
  63. Effect of magnetic field and heat source on Upper-convected-maxwell fluid in a porous channel
  64. Physical cues of biomaterials guide stem cell fate of differentiation: The effect of elasticity of cell culture biomaterials
  65. Shooting method analysis in wire coating withdrawing from a bath of Oldroyd 8-constant fluid with temperature dependent viscosity
  66. Rank correlation between centrality metrics in complex networks: an empirical study
  67. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering
  68. Modeling of electric and heat processes in spot resistance welding of cross-wire steel bars
  69. Dynamic characteristics of triaxial active control magnetic bearing with asymmetric structure
  70. Design optimization of an axial-field eddy-current magnetic coupling based on magneto-thermal analytical model
  71. Thermal constitutive matrix applied to asynchronous electrical machine using the cell method
  72. Temperature distribution around thin electroconductive layers created on composite textile substrates
  73. Model of the multipolar engine with decreased cogging torque by asymmetrical distribution of the magnets
  74. Analysis of spatial thermal field in a magnetic bearing
  75. Use of the mathematical model of the ignition system to analyze the spark discharge, including the destruction of spark plug electrodes
  76. Assessment of short/long term electric field strength measurements for a pilot district
  77. Simulation study and experimental results for detection and classification of the transient capacitor inrush current using discrete wavelet transform and artificial intelligence
  78. Magnetic transmission gear finite element simulation with iron pole hysteresis
  79. Pulsed excitation terahertz tomography – multiparametric approach
  80. Low and high frequency model of three phase transformer by frequency response analysis measurement
  81. Multivariable polynomial fitting of controlled single-phase nonlinear load of input current total harmonic distortion
  82. Optimal design of a for middle-low-speed maglev trains
  83. Eddy current modeling in linear and nonlinear multifilamentary composite materials
  84. The visual attention saliency map for movie retrospection
  85. AC/DC current ratio in a current superimposition variable flux reluctance machine
  86. Influence of material uncertainties on the RLC parameters of wound inductors modeled using the finite element method
  87. Cogging force reduction in linear tubular flux switching permanent-magnet machines
  88. Modeling hysteresis curves of La(FeCoSi)13 compound near the transition point with the GRUCAD model
  89. Electro-magneto-hydrodynamic lubrication
  90. 3-D Electromagnetic field analysis of wireless power transfer system using K computer
  91. Simplified simulation technique of rotating, induction heated, calender rolls for study of temperature field control
  92. Design, fabrication and testing of electroadhesive interdigital electrodes
  93. A method to reduce partial discharges in motor windings fed by PWM inverter
  94. Reluctance network lumped mechanical & thermal models for the modeling and predesign of concentrated flux synchronous machine
  95. Special Issue Applications of Nonlinear Dynamics
  96. Study on dynamic characteristics of silo-stock-foundation interaction system under seismic load
  97. Microblog topic evolution computing based on LDA algorithm
  98. Modeling the creep damage effect on the creep crack growth behavior of rotor steel
  99. Neighborhood condition for all fractional (g, f, n′, m)-critical deleted graphs
  100. Chinese open information extraction based on DBMCSS in the field of national information resources
  101. 10.1515/phys-2018-0079
  102. CPW-fed circularly-polarized antenna array with high front-to-back ratio and low-profile
  103. Intelligent Monitoring Network Construction based on the utilization of the Internet of things (IoT) in the Metallurgical Coking Process
  104. Temperature detection technology of power equipment based on Fiber Bragg Grating
  105. Research on a rotational speed control strategy of the mandrel in a rotary steering system
  106. Dynamic load balancing algorithm for large data flow in distributed complex networks
  107. Super-structured photonic crystal fiber Bragg grating biosensor image model based on sparse matrix
  108. Fractal-based techniques for physiological time series: An updated approach
  109. Analysis of the Imaging Characteristics of the KB and KBA X-ray Microscopes at Non-coaxial Grazing Incidence
  110. Application of modified culture Kalman filter in bearing fault diagnosis
  111. Exact solutions and conservation laws for the modified equal width-Burgers equation
  112. On topological properties of block shift and hierarchical hypercube networks
  113. Elastic properties and plane acoustic velocity of cubic Sr2CaMoO6 and Sr2CaWO6 from first-principles calculations
  114. A note on the transmission feasibility problem in networks
  115. Ontology learning algorithm using weak functions
  116. Diagnosis of the power frequency vacuum arc shape based on 2D-PIV
  117. Parametric simulation analysis and reliability of escalator truss
  118. A new algorithm for real economy benefit evaluation based on big data analysis
  119. Synergy analysis of agricultural economic cycle fluctuation based on ant colony algorithm
  120. Multi-level encryption algorithm for user-related information across social networks
  121. Multi-target tracking algorithm in intelligent transportation based on wireless sensor network
  122. Fast recognition method of moving video images based on BP neural networks
  123. Compressed sensing image restoration algorithm based on improved SURF operator
  124. Design of load optimal control algorithm for smart grid based on demand response in different scenarios
  125. Face recognition method based on GA-BP neural network algorithm
  126. Optimal path selection algorithm for mobile beacons in sensor network under non-dense distribution
  127. Localization and recognition algorithm for fuzzy anomaly data in big data networks
  128. Urban road traffic flow control under incidental congestion as a function of accident duration
  129. Optimization design of reconfiguration algorithm for high voltage power distribution network based on ant colony algorithm
  130. Feasibility simulation of aseismic structure design for long-span bridges
  131. Construction of renewable energy supply chain model based on LCA
  132. The tribological properties study of carbon fabric/ epoxy composites reinforced by nano-TiO2 and MWNTs
  133. A text-Image feature mapping algorithm based on transfer learning
  134. Fast recognition algorithm for static traffic sign information
  135. Topical Issue: Clean Energy: Materials, Processes and Energy Generation
  136. An investigation of the melting process of RT-35 filled circular thermal energy storage system
  137. Numerical analysis on the dynamic response of a plate-and-frame membrane humidifier for PEMFC vehicles under various operating conditions
  138. Energy converting layers for thin-film flexible photovoltaic structures
  139. Effect of convection heat transfer on thermal energy storage unit
Heruntergeladen am 23.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/phys-2018-0005/html
Button zum nach oben scrollen