Abstract
An azido-terminated polyhedral oligomeric silsesquioxane (POSS) compound, octakis(azidopropyl-3-oxycarbonyl-1-decyl-10-thiopropyl-3-)POSS (OADTP), is synthesized and characterized. POSS-polytriazole (PTA) resins are prepared from an azide, an alkyne monomer, and OADTP. The toughening effect of OADTP on PTA resins is analyzed by impact performance test and electronic microscope characterization, and the thermal performance of resins is measured by thermogravimetric analysis and dynamic mechanical analysis. The results show that the addition of the POSS can improve the mechanical properties of PTA resins. The impact strength of POSS-PTA resins first increases and then decreases with the increase in the POSS compound, and the maximum one arrives at 54.8 kJ m−2 which increases by 44.2% as compared to 38 kJ m−2 of the PTA resin. A good thermal stability remains in POSS-PTA resins.
1 Introduction
Polytriazole (PTA) resins have shown potential application as matrices in advanced composites owing to their good thermal performance and mechanical properties. The PTA resins could be cured at low temperature through Click reaction of alkyne and azide compounds without curing agent (1), which has good designability and effectiveness to prepare various triazole polymers (2,3,4,5,6,7). Huang group (8,9,10,11) had developed a series of thermosetting PTA resins by 1,3-dipolar cycloaddition reaction of azides and alkynes since 2002. Wan’s investigation (12) showed that the glass transition temperature and thermal decomposition temperature of the cured PTA resin prepared from p-xylylene diazide and N,N,N′,N′-tetrapropargyl-p,p′-diaminodiphenylmethane (TPDDM) are 218°C and 350°C, respectively. Chisca et al. (13) reported the synthesis of organic solvent resistant PTA membranes using a sustainable process and investigated the mechanical properties by measuring the creep recovery. Tang et al. (14) successfully synthesized hyperbranched PTAs with excellent adhesive properties on copper, aluminum, and iron. In recent years, with the rapid development in the aeronautics and astronautics fields, there are great requirements of advanced polymeric composites with high toughness. Ma et al. (15) modified the PTA resins with PEGs to prepare the EPTA resins and the impact strength of EPTA resins increased by 100.8%, but the flexural strength and thermal stability decreased.
Polyhedral oligomeric silsesquioxane (POSS) is an organic–inorganic cage-like structure containing Si and O elements. Each silicon atom can be connected to an organic functional group. The three-dimensional size of a POSS is about 1–3 nm (16,17), and the nanoscale structure with functional organic groups makes POSS well integrated into the resin matrix through chemical action. Laine et al. (18,19) found that POSS with different organic groups have influence on the dynamic mechanical properties, fracture toughness, and thermal stability of the material produced from POSS. New organic–inorganic hybrid functional materials could be obtained using POSS as a nano-structured unit to modify polymers. Mohamed et al. (20) reported some prepared mono-functionalized BZ ring-containing hybrid organic/inorganic (POSS) materials, and this polybenzoxazines (PBZ-POSS) displayed a higher value of T g and a higher char yield. Nie et al. (21) synthesized unsaturated polyester resins (UPR) containing [(6-oxide-6H-dibenz(c,e)(1,2)oxaphosphorin-6-yl)methyl]butanedioic (DDP) (DDP-UPR) and UPR containing both DDP and (2,3-propanediol)propoxy-heptaisobutyl substituted-POSS (PSS-POSS) (DDP-PSS-POSS-UPR series) and showed that the PSS-POSS enhanced the flame retardance of DDP-UPR. Nowadays, POSS has been combined with several resins as a toughening agent to prepare a new material, such as epoxy resin (22,23), poly(methyl methacrylate) (24), polyimide (25), and poly(lactic acid) (26,27). Song et al. (28) successfully synthesized a series of hybrid thermoplastic polyurethanes by incorporation of bi-functional POSS with the polyurethanes. Fan’s group (29) blended POSS-(PDMAEMA-b-PDLA)8 with polylactic acid (PLLA) and the blend showed high mechanical properties when appropriate amount of POSS-(PDMAEMA-b-PDLA)8 was added. Bu et al. (30) modified poly(silicane arylacetylene) (PSA) resin with octa(proparagyl propyl sulfide) POSS (OPPSP) and the flexural and impact strength of OPPSP-PSA thermosets are increased by 80.5% and 92.8%, respectively.
The addition of POSS nanoparticles into a resin can improve the mechanical properties of the produced resin while maintaining thermal properties of the resin. In this paper, a new kind of POSS attached flexible organic chain (OADTP) is synthesized and incorporated into a PTA resin to produce OADTP-PTA resins. The structure, mechanical properties, and thermal properties of the OADTP-PTA resins are investigated.
2 Experimental
2.1 Materials
3-Merraptnpropyltrimethnxysilane, 1-chloropropanol, azodiisobutyronitrile (AIBN), 4-dimethylaminopyridine (DMAP), N,N-dimethylformamide (DMF), hydrochloric acid, methanol, and magnesium sulfate are purchased from Shanghai Titan Technology Co. Ltd. 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDCl) is purchased from Dibai Co. Ltd. 10-Undecenioc acid is purchased from Acros Co., Ltd. 1,1-Bisazidomethyl-4,4′-biphenyl (BAMBP), and TPDDM are synthesized in our lab.
2.2 Synthesis of octakis(azidopropyl-3-oxycarbonyl-1-decyl-10-thiopropyl) POSS (OADTP)
The reaction process for the synthesis of OADTP is shown in Figure 1. Octakis(mercaptopropyl) POSS (POSS-SH) was synthesized by the similar procedure reported by Lin et al. (31). 3-Merraptnpropyltrimethoxysilane (30 g, 0.15 mol) was added into a mixed solution of concentrated HCl (40 mL) and methanol (700 mL) and stirred at 65°C for 24 h to obtain a white paste precipitate. After washing thrice with methanol, the precipitate was dissolved in dichloromethane and washed with water. The organic phase separated and dried over MgSO4 was concentrated by distillation and POSS-SH was obtained in 83% yield. FT-IR (KBr): 2,560 (ms, vs(S–H)); 2,924 (s, vs(C–H)); 1H NMR (400 MHz, CDCl3, δ): 0.7 (t, 2H, Si–CH2–), 1.3 (t, H, S–H), 1.6 (m, 2H, –CH2–), 2.5 (q, 2H,–CH2–S–).

Synthesis of octakis(azidopropyl-3-oxycarbonyl-1-decyl-10-thiopropyl-3-)POSS (OADTP).
AIBN (0.1 g, 0.6 mmol) and 10-undecenioc acid (1.84 g, 0.01 mol) dissolved in tetrahydrofuran (25 mL) and POSS-SH (1.02 g, 1 mmol) were poured into a three-necked round bottom flask. The mixture was kept at room temperature for 1 day under vigorous stirring, followed by vacuum distillation and a white paste was obtained. The paste was poured into methanol, and then a solid precipitated out, filtered under reduced pressure to obtain octakis(carboxylic acid-1-decyl-10-thiopropyl) POSS (POSS-COOH) as a white solid (yield: 53%). FT-IR (KBr): 1,099 (s, vs(SiOSi)), 1,705 (s, vs(C═O)), 2,930 (s, vs(C–H)); 1H NMR (400 MHz, DMSO, δ): 0.8 (t, 2H, Si–CH2–), 1.3 (m, 16H, –CH2–), 1.5 (m, 2H, –CH2–), 1.6 (m, 2H, S–CH2–), 2.6 (q, 2H, –CH2–S–), 3.4 (s, 2H, CH2–C), 12 (s, H, –OH).
POSS-COOH (2.49 g, 1 mmol), 1-chloropropanol (0.95 g, 0.01 mol), DMAP (1.22 g, 0.01 mol), and dichloromethane (15 mL) were charged in a 100 mL four-necked flask; then, EDCl (1.92 g, 0.01 mol) was slowly added in a drop-wise manner within 30 min at 0°C. The mixture was kept at room temperature for 24 h. Then, the organic product was washed with deionized water several times until pH value of the washed water solution is near 7. After the mixture was dried over MgSO4, the organic phase was concentrated by distillation and octakis(chloropropyl-3-oxycarbonyl-1-decyl-10-thiopropyl) POSS (POSS-Cl) was obtained in 48% yield. FT-IR (KBr): 1,099 (s, vs(SiOSi)), 1,735 (s, vs(C═O)), 2,930 (s, vs(C–H)); 1H NMR (400 MHz, CDCl3, δ): 0.7 (t, 2H, Si–CH2–), 1.2 (m, 16H, –CH2–), 1.5 (m, 2H, –CH2–), 2.0 (m, 2H, –CH2–), 2.2(t, 2H, –S–CH2–), 2.4 (q, 4H, –CH2–S–, –CH2–C═O), 3.5(t, 2H, CH2–Cl), 4.1 (t, 2H, –O–CH2–).
POSS-Cl (12.5 g, 4 mmol), sodium azide (5.2 g, 0.08 mol), and DMF (200 mL) were mixed in a three-necked flask and then kept at 80°C for 24 h with vigorous stirring. The mixture was poured into water and extracted with ethyl acetate (200 mL). Organic layer was washed with water for several times. After the mixture dried over MgSO4, the organic phase was concentrated by distillation and the product OADTP was obtained in the yield of 40%.
2.3 Preparation of OADTP-PTA resins
The OADTP-PTA resins were prepared by the reaction of TPDDM with BAMBP and OADTP. OADTP was incorporated into the resins in different molar ratios. TPDDM and BAMBP together with OADTP with the molar ratio 1.02:1.00 of alkyne group to azide group ([C≡C]/[N3]) were mixed in acetone with a solid content of 70% and stirred at 60°C for 6 h. Acetone was removed by a rotary evaporator at 60°C and then the light yellow resins were dried in vacuum. The obtained resins were cured in the following procedure: 80°C/6 h + 120°C/2 h + 150°C/2 h + 180°C/2 h + 210°C/2 h. The synthesis reactions of OADTP-PTA resins are shown in Figure 2. The names of the resins with various content of OADTP are listed in Table 1.

Schematic route of synthesis and curing reactions of OADTP-PTA resins.
The formulation of reactants for the synthesis of POSS-PTA
Resin | OADTP (mmol) | BAMBP (mmol) | TPDDM (mmol) |
---|---|---|---|
PTA | — | 4.00 | 2.04 |
OADTP-PTA-03 | 0.03 | 3.88 | 2.04 |
OADTP-PTA-06 | 0.06 | 3.76 | 2.04 |
OADTP-PTA-10 | 0.10 | 3.60 | 2.04 |
OADTP-PTA-13 | 0.13 | 3.48 | 2.04 |
OADTP-PTA-16 | 0.16 | 3.36 | 2.04 |
OADTP-PTA-22 | 0.22 | 3.12 | 2.04 |
OADTP-PTA-34 | 0.34 | 2.64 | 2.04 |
OADTP-PTA-46 | 0.46 | 2.16 | 2.04 |
2.4 Instrumentation and characterization
Nuclear magnetic resonance (NMR) measurements were carried out on a Bruker Advance 400 MHz Spectrometer (Bruker, USA) using tetramethylsilane as an internal standard in DMSO or CDCl3. FT-IR spectrum measurements were carried out on a Nicolet iS10 infrared spectrometer (Madison, USA) in the region of 4,000–400 cm−1 using KBr pallets. Differential scanning calorimetry (DSC) analyses were performed with a Q2000 (TA, USA) at a heating rate of 10°C min−1 in a nitrogen atmosphere. Dynamic mechanical analysis (DMA) was carried out on a DMA1 (Mettler Toledo, Switzerland) in the dual cantilever clamp mode under nitrogen at the frequency of 11 Hz with a programmed heating rate of 3°C min−1 from room temperature to 350°C. Thermogravimetric analysis (TGA) was conducted on a TGA/DSC 1 (Mettler Toledo, Switzerland) under nitrogen at a heating rate of 10°C min−1 from RT to 800°C, and the gas flow rate was 60 mL min−1. The impact test was carried out on the Italy CEAST9050 cantilever beam impact testing machine, and the pendulum energy impact range was 0.55–22.5 J. No notch impact was tested when the pendulum energy was 4 J with the sample size of 80 × 10 × 4 mm on reference to GB/T2571-1995 standard. Scanning electron microscopy (SEM) observation was performed using the S-4800 scanning electron microscope (Hitachi, Japan) with an acceleration voltage of 15 kV.
3 Results and discussion
3.1 Synthesis and characterization of octakis(azidopropyl-3-oxycarbonyl-1-decyl-10-thiopropyl-3-)POSS
Figure 3 shows the FT-IR and 1H-NMR spectra of the POSS-Cl and OADTPS. In Figure 3a, the strong absorption at 1,092 cm−1 is the characteristic mode of Si–O–Si in the silsesquioxane cage (32,33). The stretching absorption at 1,735 cm−1 belongs to the characteristic absorptions of the ester group C═O and the azide –N3 stretching vibration is located at 2,095 cm−1. The C–H asymmetric stretching vibration of the CH2 is at 2,853 and 2,930 cm−1. In Figure 3b, for POSS–Cl, the signals of resonance at 0.65, 1.53, and 2.42 ppm are, respectively, assignable to methylene protons at positions a, b, and c. The strong signal of resonance at 1.21 ppm is assigned to the methylene protons marked e, and the resonances at 2.42 (d) and 2.24 (f) ppm correspond to the methylene protons of S–CH2 and CH2–C═O. The protons marked c and d are in similar circumstance so that the signal appeared at same position. The characteristic signal appearing at 2.04, 3.55, and 4.14 ppm corresponds to protons in chloropropyl marked h, i, and g, respectively. As shown in Figure 3b, the resonance signals for most protons of OADTP are similar with those of POSS–Cl, except that the h′, i′, and g′ shift to 1.83, 3.32, and 4.00 ppm because of the different electron attracting effect of chlorine atom and azide group.

The FT-IR (a) and 1H-NMR (b) spectra of POSS-Cl and OADTP.
3.2 Solubility of OADTP-PTA resins
For thermosetting resins, solubility has an impact on the process of the resin. The test for solubility is to place 10 mg resin in 1 mL solvent and then the mixture is stirred at room temperature. The results show that the resin has good solubility. The resin can be dissolved in solvents such as acetone, ethyl acetate, chloroform, dichloromethane, dimethyl sulfoxide, and ethyl acetate except for non-polar solvents, which is beneficial to the subsequent processing of the resin.
3.3 Curing behavior of OADTP-PTA resin
The curing behavior of OADTP-PTA resins was investigated by DSC at a heating rate of 10℃ min−1 under nitrogen atmosphere, and the obtained DSC curves of the OADTP-PTA-16 and PTA are shown in Figure 4. The results of DSC analyses for all OADTP-PTA resins are tabulated in Table 2.

DSC curve of PTA and OADTP-PTA.
DSC analysis results of OADTP-resins
Resin | T i (°C) | T p (°C) | T e (°C) | ΔH (J/g) |
---|---|---|---|---|
PTA | 80 | 141 | 189 | 826.0 |
OADTP-PTA-03 | 69 | 141 | 196 | 822.9 |
OADTP-PTA-06 | 74 | 145 | 196 | 597.9 |
OADTP-PTA-10 | 72 | 145 | 198 | 552.4 |
OADTP-PTA-13 | 68 | 142 | 196 | 859.4 |
OADTP-PTA-16 | 74 | 143 | 199 | 781.0 |
OADTP-PTA-22 | 66 | 142 | 193 | 777.8 |
OADTP-PTA-34 | 71 | 144 | 194 | 758.8 |
OADTP-PTA-46 | 69 | 142 | 205 | 904.1 |
As shown in Figure 4 and Table 2, the DSC curves show two exothermic peaks: one big peak between 70°C and 195°C and one small peak between 200°C and 215°C. The initial exothermal temperature (T i) of the big peaks for all resins is around 70°C, the top peak temperature is around 142°C, and the end exothermal temperature is around 195°C. This indicates that the “Click” reaction of alkyne and azide is less affected by OADTP. The first exothermic heat ΔH of the resins is high. The initial curing reaction temperature should be determined around T i to avoid explosive polymerization during curing process. A small exothermic peak from 200°C to 215°C is probably the exothermic peak of self-polymerization of alkyne groups because of a bit excessive addition of alkyne monomer.
The curing process of OADTP-PTA-16 resin is studied by FT-IR analysis. The absorption of the characteristic functional group of OADTP-PTA-16 resin changes at different curing stages in the FT-IR spectra during the process of polymerization as shown in Figure 5. The azide –N3 and alkynyl –C≡C– stretching vibration are near 2,095 cm−1. The absorption peak gradually becomes weak with the curing process, and the absorption disappears after curing temperature reaches 210°C, indicating that the curing of OADTP-PTA resin is completed.

FT-IR spectra of OADTP-PTA-16 resin at different curing stages.
According to DSC and FT-IR analyses, the curing procedure is determined: 80°C/6 h + 120°C/2 h + 150°C/2 h + 180°C/2 h + 210°C/2 h.
3.4 Mechanical properties of cured OADTP-PTA resins
The mechanical properties of cured resins are listed in Table 3 and shown in Figure 6. The impact strength of OADTP-PTA resins increases at first, then reaches maximum, and finally decreases with the increase in the amount of OADTP. The flexural strength of OADTP-PTA resins is slightly higher than that of PTA resin. It can be clearly seen that the OADTP-PTA thermoset exhibits both toughening and strengthening in comparison with PTA thermoset.
Mechanical properties of cured OADTP-PTA resins
Resins | Impact strength (kJ m−2) | Flexural strength (MPa) | Flexural modulus (GPa) |
---|---|---|---|
PTA | 38.0 ± 2.8 | 124.8 ± 1.1 | 2.89 ± 0.02 |
OADTP-PTA-03 | 40.2 ± 2.4 | 133.5 ± 4.3 | 2.80 ± 0.06 |
OADTP-PTA-06 | 42.9 ± 1.7 | 135.6 ± 1.8 | 2.73 ± 0.06 |
OADTP-PTA-10 | 43.7 ± 2.3 | 136.5 ± 1.7 | 2.79 ± 0.08 |
OADTP-PTA-13 | 48.8 ± 2.6 | 138.6 ± 3.0 | 2.77 ± 0.04 |
OADTP-PTA-16 | 54.8 ± 2.1 | 138.6 ± 3.6 | 2.92 ± 0.08 |
OADTP-PTA-22 | 52.0 ± 1.4 | 134.7 ± 1.8 | 2.90 ± 0.12 |
OADTP-PTA-34 | 44.6 ± 1.3 | 127.2 ± 2.3 | 2.69 ± 0.04 |
OADTP-PTA-46 | 33.5 ± 0.7 | 130.8 ± 2.4 | 2.68 ± 0.05 |

The mechanical properties of cured OADTP-PTA resins.
From Figure 6, it is clearly shown that the impact strength peaks and reaches to 54.8 kJ m−2 when the molar content of OADTP is 0.16 mmol. The impact strength of OADTP-PTA-16 resin increases by 44.2% compared with 38 kJ m−2 of the PTA resin. Then, as the content of POSS compound continues to increase after exceeding 0.16 mmol the impact strength begins to decrease slowly and is lower than that of PTA resin at 0.46 mmol.
The result indicates that the POSS compound could increase the impact strength of PTA resin. On one hand, the POSS is organically combined with PTA resin through covalent bonds. OADTP contains eight active functional groups, which increases the crosslinking density of the material and improves the mechanical properties of the materials. POSS is a hollow inorganic nanoscale particle. When the cured OADTP-PTA resins are damaged, the silver streak caused by the impact will deflect when it encounters the POSS nanoparticles in the resin, thereby absorbing a large amount of fracture energy. Uniformly distributed nanoparticles can produce micro-cracks in the resin when subjected to a force, triggering a stress concentration effect, and absorbing part of the energy to toughen the resin. On the other hand, OADTP has long flexible chains, which also could absorb and dissipate energy more efficiently than that with a rigid chain. Thereby, the toughness of the cured OADTP-PTA resins is improved. The increase in the amount of the addition leads to the decrease in performance, which is because too many nanoparticles will lead micro-cracks to crack, which has the opposite effect. Therefore, the amount of OADTP needs to be controlled within a certain range.
3.5 Microstructure analysis of cured POSS-PTA resins
The fracture morphology of resins observed by SEM could provide necessary information for the properties and modification of the resins. The SEM images for the fracture surfaces of the cured resins are shown in Figure 7. Figure 7a shows that the fracture surface of the cured PTA resin is smooth, and there are few shallow stress streaks, which presents a bit brittle fracture of the thermosetting materials. Figure 7b shows that the cracks possess branches, increasing the energy dissipation pathway of the matrix resin. With the high-speed impact, more energy could be absorbed and effectively disperses the stress concentration which demonstrates that the addition of OADTP gives the ODATP-PTA resin better toughness. However, when the addition OADTP exceeds a certain amount, the fracture surface of the OADTP-PTA-46 resin becomes smooth again with few stress streaks, as shown in Figure 7c, which supports that the impact strength decreases.

SEM images of PTA resin and POSS-PTA resins: (a) PTA, (b) OADTP-PTA-16, (c) OADTP-PTA-46.
3.6 Thermal properties of cured OADTP-PTA resins
The effect of OADTP content on the thermal properties of cured POSS-PTA resins was evaluated with DMA and TGA, and the typical DMA and TGA curves are shown in Figures 8 and 9. All analysis results are tabulated in Table 4. The glass transition temperatures (T g) of the cured resins were determined from the peak of tan δ. The result shows that the T g of OADTP-PTA resins are slightly lower and decreased by 5–20°C, compared with PTA resin. With the addition of OADTP, the network has more flexible chain segment, so that the glass transition temperature of the OADTP-PTA resins reduces a little.

DMA curves of cured PTA and OADTP-PTA-16 resin.

TGA curves of cured PTA and OADTP-PTA resins.
Thermal properties of cured PTA and OADTP-PTA resins
Cured resin | T g (°C) | T d5 (°C) | Y 800 (%) |
---|---|---|---|
PTA | 235 | 355 | 40.25 |
OADTP-PTA-03 | 228 | 345 | 49.34 |
OADTP-PTA-06 | 221 | 356 | 42.54 |
OADTP-PTA-10 | 226 | 359 | 39.42 |
OADTP-PTA-13 | 229 | 357 | 39.72 |
OADTP-PTA-16 | 224 | 355 | 38.40 |
OADTP-PTA-22 | 221 | 357 | 39.27 |
OADTP-PTA-34 | 217 | 355 | 40.90 |
OADTP-PTA-46 | 207 | 354 | 37.81 |
The thermal stability of the cured OADTP-PTA resins with different contents of OADTP was investigated by TGA, as shown in Figure 9 and summarized in Table 4. The char yield at 800°C first increases to 49.34% and then decreases to 38.40% because of the organic chain of the POSS. The temperature at 5% weight loss (T d5) of OADTP-PTA resins is almost the same as PTA resin. The OADTP-PTA resin maintains thermal stability of PTA because of the thermal stability of POSS.
4 Conclusion
A new kind of N3-terminated POSS (OADTP) is synthesized and characterized, and related OADTP-PTA resins with different amount of OADTP are prepared via thermal reaction. The addition of OADTP can improve the mechanical properties. The mechanical properties of OADTP-PTA resins reach a maximum when the content of OADTP arrives at 0.16 mmol. The impact strength of OADTP-PTA resins increases first and then decreases with the increase in the amount of OADTP. The impact strength and flexural strength of OADTP-PTA-16 resin reach 54.8 kJ m−2 and 138.6 MPa, increased by 44.2% and 11.1%, respectively. Simultaneously, the OADTP-PTA resins maintain a good thermal stability of PTA resin. The temperature at 5% weight loss (T d5) and the char yield at 800°C (Y 800) of OADTP-PTA-16 resin are 355°C and 38.40%, respectively.
Acknowledgment
The authors gratefully acknowledge the support of the Fundamental Research Funds for the Central Universities (No. JKD01211701).
-
Funding information: The Fundamental Research Funds for the Central Universities (No. JKD01211701).
-
Author contributions: Zhuoer Yu: writing – original draft, writing – review and editing, methodology, formal analysis, conceptualization, data curation, investigation; Jun Zhang: formal analysis, visualization; Bangqiang Wu: validation, visualization; Liqiang Wan: investigation, methodology, project administration; Farong Huang: conceptualization, funding acquisition, project administration, resources, supervision, writing – review and editing.
-
Conflict of interest: The authors state no conflict of interest.
-
Data availability statement: The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.
References
(1) Wan L, Luo Y, Xue L, Tian J, Chen X. Preparation and properties of a novel polytriazole resin. J Appl Polym Sci. 2010;104(2):1038–42. 10.1002/app.24849.Search in Google Scholar
(2) Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. A stepwise Huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. ChemInform. 2002;41(14):2596–9. 10.1002/chin.200243045.Search in Google Scholar
(3) Ponce ML, Roeder J, Gomes D, Nunes SP. Stability of sulfonated polytriazole and polyoxadiazole membranes. Asia-Pacific J Chem Eng. 2010;5(1):235–41. 10.1002/apj.370.Search in Google Scholar
(4) Thibault RJ, Takizawa K, Lowenheilm L, Helms B, Hawker CJ. A versatile new monomer family: functionalized 4-vinyl-1,2,3-triazoles via click chemistry. J Am Chem Soc. 2006;128(37):12084–85. 10.1021/ja0648209.Search in Google Scholar PubMed
(5) Li H, Li L, Wu H, Lam JWY, Sun JZ, Qin A, et al. Ferrocene-based poly(aroxycarbonyltriazole)s: synthesis by metal-free click polymerization and use as precursors to magnetic ceramics. Polym Chem. 2013;4(22):5537–41. 10.1039/c3py00892d.Search in Google Scholar
(6) Tang J, Wan L, Zhou Y, Pan H, Huang F. Strong and efficient self-healing adhesives based on dynamic quaternization cross-links. J Mater Chem A. 2017;5(40):21169–77. 10.1039/C7TA06650C.Search in Google Scholar
(7) Austin B, Byul SH, Mathew M, Patricia F, Christopher N. Thermomechanical formation-structure-property relationships in photopolymerized cooper-catalyzed azide-alkyne (CuAAC) networks. Macromolecules. 2016;49(4):1191–200. 10.1021/acs.macromol.6b00137.Search in Google Scholar PubMed PubMed Central
(8) Li Y, Zhou HEY, Wan L, Huang F, Du L. Synthesis and characterization of a new series of rigid polytriazole resins. Des Monomers Polym. 2013;16(6):556–63. 10.1080/15685551.2013.771308.Search in Google Scholar
(9) Wang Y, Wan L, Han D, Ye L, Huang F. Investigation of novel polytriazole resins. Des Monomers Polym. 2016;19(7):688–95. 10.1080/15685551.2016.1209628.Search in Google Scholar
(10) Huang F, Wan L, Du L, Li Y. The effects of structures on properties of new polytriazole resins. High performance polymers and engineering plastics. Hoboken, NJ: John Wiley & Sons, Ltd; 2011.10.1002/9781118171950.ch8Search in Google Scholar
(11) Xue L, Wan L, Hu Y, Shen X, Huang F, Du L. Thermal stability of a novel polytriazole resin. Thermochim Acta. 2006;448(2):147–53. 10.1016/j.tca.2006.07.012.Search in Google Scholar
(12) Wan L, Luo Y, Lian X, Tian J, Chen X. Preparation and properties of a novel polytriazole resin. J Appl Polym Sci. 2010;104(2):1038–42. 10.1002/app.24849.Search in Google Scholar
(13) Chisca S, Marchesi T, Falca G, Musteata V, Huang T, Abou-Hamad E, et al. Organic solvent and thermal resistant polytriazole membranes with enhanced mechanical properties cast from solutions in non-toxic solvents. J Membr Sci. 2020;597(C):117634. 0.1016/j.memsci.2019.117634.Search in Google Scholar
(14) Tang Y, Jim CKW, Liu Y, Ye L, Qin A, Lam JWY, et al. Synthesis and curing of hyperbranched poly(triazole)s with click polymerization for improved adhesion strength. ACS Appl Mater Inter. 2010;2(2):566–74. 10.1021/am9008727.Search in Google Scholar PubMed
(15) Ma M, Wang X, Yu Z, Wan L, Huang F. High impact polytriazole resins for advanced composites. Des Monomers Polym. 2020;23:50–8. 10.1080/15685551.2020.1761584.Search in Google Scholar PubMed PubMed Central
(16) Laine RM. Nanobuilding blocks based on the [OSiO1.5]x (x = 6, 8, 10) octasilsesquioxanes. J Mater Chem. 2005;35(15):3725–44. 10.1039/b506815k.Search in Google Scholar
(17) Pielichowski K, Njuguna J, Janowski B, Pielichowski J. Polyhedral oligomeric silsesquioxanes (POSS)-containing nanohybrid polymers. Adv Polym Sci. 2006;201:225–96. 10.1007/12_077.Search in Google Scholar
(18) Choi J, Harcup J, Yee AF, Zhu Q, Laine RM. Organic/inorganic hybrid composites from cubic silsesquioxanes. J Am Chem Soc. 2001;123(46):11420–30. 10.1021/ja010720l.Search in Google Scholar PubMed
(19) Choi J, Kim SG, Laine RM. Organic/inorganic hybrid epoxy nanocomposites from aminophenylsilsesquioxanes. Macromolecules. 2004;37(1):48–55. 10.1021/ma030172r.Search in Google Scholar
(20) Mohamed M, Kuo SW. Functional silica and carbon nanocomposites based on polybenzoxazines. Macromol Chem Phys. 2018;220(1). 10.1002/macp.201800306.Search in Google Scholar
(21) Nie Y, Leng X, Jiang Y, Chai S, Zhang J, Zou Q. Influence of reactive POSS and DDP on thermal stability and flame retardance of UPR nanocomposites. e-Polymers. 2017;17(6):463–70. 10.1515/epoly-2016-0316.Search in Google Scholar
(22) Chandramohan A, Alagar M. Preparation and characterization of cyclohexyl moiety toughened POSS-reinforced epoxy nanocomposites. Int J Polym Anal Char. 2013;18(1):73–81. 10.1080/1023666X.2013.747253.Search in Google Scholar
(23) Kim GM, Qin H, Fang X, Sun FC, Mather PT. Hybrid epoxy-based thermosets based on polyhedral oligosilsesquioxane: Cure behavior and toughening mechanisms. J Polym Sci Part B Polym Phys. 2003;41(24):3299–313. 10.1002/polb.10703.Search in Google Scholar
(24) Kopesky ET, McKinley GH, Cohen RE. Toughened poly(methyl methacrylate) nanocomposites by incorporating polyhedral oligomeric silsesquioxanes. Polymer. 2007;48:530–41. 10.1016/j.polymer.2005.10.143.Search in Google Scholar
(25) Mohamed MG, Kuo SW. Functional polyimide/polyhedral oligomeric silsesquioxane nanocomposites. Polymers. 2019;11(1):26. 10.3390/polym11010026.Search in Google Scholar PubMed PubMed Central
(26) Yilmaz S, Kodal M, Yilmaz T, Ozkoz G. Fracture toughness analysis of O-POSS/PLA composites assessed by essential work of fracture method. Compos Part B Eng. 2014;56:527–35. 10.1016/j.compositesb.2013.08.081.Search in Google Scholar
(27) Kulinski Z, Piorkowska E. Crystallization, structure and properties of plasticized poly(l-lactide). Polymer. 2005;46:10290–300. 10.1016/j.polymer.2005.07.101.Search in Google Scholar
(28) Song X, Zhang X, Li T, Li Z, Chi H. Mechanically robust hybrid POSS thermoplastic polyurethanes with enhanced surface hydrophobicity. Polymers. 2019;11(2):373. 10.3390/polym11020373.Search in Google Scholar PubMed PubMed Central
(29) Fan X, Cao M, Zhang X, Li Z. Synthesis of star-like hybrid POSS-(PDMAEMA-b-PDLA)8 copolymer and its stereocomplex properties with PLLA. Mater Sci Eng. 2017;76(Jul):211–6. 10.1016/j.msec.2017.03.108.Search in Google Scholar PubMed
(30) Bu X, Zhou Y, Huang F. The strengthening and toughening effects of a novel octa(propargyl propyl sulfide) POSS (OPPSP) on silicon-containing arylacetylene (PSA). Mater Lett. 2016;174:21–3. 10.1016/j.matlet.2016.03.067.Search in Google Scholar
(31) Lin H, Wan X, Jiang X, Wang Q, Yin J. A nanoimprint lithography hybrid photoresist based on the thiol–ene system. Adv Funct Mater. 2011;21(15):2960–7. 10.1002/adfm.201100692.Search in Google Scholar
(32) Zhang W, Müller AHE. A “click chemistry” approach to linear and star-shaped telechelic POSS-containing hybrid polymers. Macromolecules. 2010;43(7):3148–52. 10.1021/ma902830f.Search in Google Scholar
(33) Niu M, Li T, Xu R, Gu X, Yu D. Synthesis of PS-g-POSS hybrid graft copolymer by click coupling via “graft onto” strategy. J Appl Polym Sci. 2013;129(4):1833–44. 10.1002/app.38877.Search in Google Scholar
© 2021 Zhuoer Yu et al., published by De Gruyter
This work is licensed under the Creative Commons Attribution 4.0 International License.
Articles in the same Issue
- Research Articles
- Research on the mechanism of gel accelerator on gel transition of PAN solution by rheology and dynamic light scattering
- Gel point determination of gellan biopolymer gel from DC electrical conductivity
- Composite of polylactic acid and microcellulose from kombucha membranes
- Synthesis of highly branched water-soluble polyester and its surface sizing agent strengthening mechanism
- Fabrication and characterization of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) modified with nano-montmorillonite biocomposite
- Fabrication of N-halamine polyurethane films with excellent antibacterial properties
- Formulation and optimization of gastroretentive bilayer tablets of calcium carbonate using D-optimal mixture design
- Sustainable nanocomposite films based on SiO2 and biodegradable poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH) for food packaging
- Evaluation of physicochemical properties of film-based alginate for food packing applications
- Electrically conductive and light-weight branched polylactic acid-based carbon nanotube foams
- Structuring of hydroxy-terminated polydimethylsiloxane filled by fumed silica
- Surface functionalization of nanostructured Cu/Ag-deposited polypropylene fiber by magnetron sputtering
- Influence of composite structure design on the ablation performance of ethylene propylene diene monomer composites
- MOFs/PVA hybrid membranes with enhanced mechanical and ion-conductive properties
- Improvement of the electromechanical properties of thermoplastic polyurethane composite by ionic liquid modified multiwall carbon nanotubes
- Natural rubber latex/MXene foam with robust and multifunctional properties
- Rheological properties of two high polymers suspended in an abrasive slurry jet
- Two-step polyaniline loading in polyelectrolyte complex membranes for improved pseudo-capacitor electrodes
- Preparation and application of carbon and hollow TiO2 microspheres by microwave heating at a low temperature
- Properties of a bovine collagen type I membrane for guided bone regeneration applications
- Fabrication and characterization of thermoresponsive composite carriers: PNIPAAm-grafted glass spheres
- Effect of talc and diatomite on compatible, morphological, and mechanical behavior of PLA/PBAT blends
- Multifunctional graphene nanofiller in flame retarded polybutadiene/chloroprene/carbon black composites
- Strain-dependent wicking behavior of cotton/lycra elastic woven fabric for sportswear
- Enhanced dielectric properties and breakdown strength of polymer/carbon nanotube composites by coating an SrTiO3 layer
- Analysis of effect of modification of silica and carbon black co-filled rubber composite on mechanical properties
- Polytriazole resins toughened by an azide-terminated polyhedral oligomeric silsesquioxane (OADTP)
- Phosphine oxide for reducing flammability of ethylene-vinyl-acetate copolymer
- Study on preparation and properties of bentonite-modified epoxy sheet molding compound
- Polyhedral oligomeric silsesquioxane (POSS)-modified phenolic resin: Synthesis and anti-oxidation properties
- Study on structure and properties of natural indigo spun-dyed viscose fiber
- Biodegradable thermoplastic copolyester elastomers: Methyl branched PBAmT
- Investigations of polyethylene of raised temperature resistance service performance using autoclave test under sour medium conditions
- Investigation of corrosion and thermal behavior of PU–PDMS-coated AISI 316L
- Modification of sodium bicarbonate and its effect on foaming behavior of polypropylene
- Effect of coupling agents on the olive pomace-filled polypropylene composite
- High strength and conductive hydrogel with fully interpenetrated structure from alginate and acrylamide
- Removal of methylene blue in water by electrospun PAN/β-CD nanofibre membrane
- Theoretical and experimental studies on the fabrication of cylindrical-electrode-assisted solution blowing spinning nanofibers
- Influence of l-quebrachitol on the properties of centrifuged natural rubber
- Ultrasonic-modified montmorillonite uniting ethylene glycol diglycidyl ether to reinforce protein-based composite films
- Experimental study on the dissolution of supercritical CO2 in PS under different agitators
- Experimental research on the performance of the thermal-reflective coatings with liquid silicone rubber for pavement applications
- Study on controlling nicotine release from snus by the SIPN membranes
- Catalase biosensor based on the PAni/cMWCNT support for peroxide sensing
- Synthesis and characterization of different soybean oil-based polyols with fatty alcohol and aromatic alcohol
- Molecularly imprinted electrospun fiber membrane for colorimetric detection of hexanoic acid
- Poly(propylene carbonate) networks with excellent properties: Terpolymerization of carbon dioxide, propylene oxide, and 4,4ʹ-(hexafluoroisopropylidene) diphthalic anhydride
- Polypropylene/graphene nanoplatelets nanocomposites with high conductivity via solid-state shear mixing
- Mechanical properties of fiber-reinforced asphalt concrete: Finite element simulation and experimental study
- Applying design of experiments (DoE) on the properties of buccal film for nicotine delivery
- Preparation and characterizations of antibacterial–antioxidant film from soy protein isolate incorporated with mangosteen peel extract
- Preparation and adsorption properties of Ni(ii) ion-imprinted polymers based on synthesized novel functional monomer
- Rare-earth doped radioluminescent hydrogel as a potential phantom material for 3D gel dosimeter
- Effects of cryogenic treatment and interface modifications of basalt fibre on the mechanical properties of hybrid fibre-reinforced composites
- Stable super-hydrophobic and comfort PDMS-coated polyester fabric
- Impact of a nanomixture of carbon black and clay on the mechanical properties of a series of irradiated natural rubber/butyl rubber blend
- Preparation and characterization of a novel composite membrane of natural silk fiber/nano-hydroxyapatite/chitosan for guided bone tissue regeneration
- Study on the thermal properties and insulation resistance of epoxy resin modified by hexagonal boron nitride
- A new method for plugging the dominant seepage channel after polymer flooding and its mechanism: Fracturing–seepage–plugging
- Analysis of the rheological property and crystallization behavior of polylactic acid (Ingeo™ Biopolymer 4032D) at different process temperatures
- Hybrid green organic/inorganic filler polypropylene composites: Morphological study and mechanical performance investigations
- In situ polymerization of PEDOT:PSS films based on EMI-TFSI and the analysis of electrochromic performance
- Effect of laser irradiation on morphology and dielectric properties of quartz fiber reinforced epoxy resin composite
- The optimization of Carreau model and rheological behavior of alumina/linear low-density polyethylene composites with different alumina content and diameter
- Properties of polyurethane foam with fourth-generation blowing agent
- Hydrophobicity and corrosion resistance of waterborne fluorinated acrylate/silica nanocomposite coatings
- Investigation on in situ silica dispersed in natural rubber latex matrix combined with spray sputtering technology
- The degradable time evaluation of degradable polymer film in agriculture based on polyethylene film experiments
- Improving mechanical and water vapor barrier properties of the parylene C film by UV-curable polyurethane acrylate coating
- Thermal conductivity of silicone elastomer with a porous alumina continuum
- Copolymerization of CO2, propylene oxide, and itaconic anhydride with double metal cyanide complex catalyst to form crosslinked polypropylene carbonate
- Combining good dispersion with tailored charge trapping in nanodielectrics by hybrid functionalization of silica
- Thermosensitive hydrogel for in situ-controlled methotrexate delivery
- Analysis of the aging mechanism and life evaluation of elastomers in simulated proton exchange membrane fuel cell environments
- The crystallization and mechanical properties of poly(4-methyl-1-pentene) hard elastic film with different melt draw ratios
- Review Articles
- Aromatic polyamide nonporous membranes for gas separation application
- Optical elements from 3D printed polymers
- Evidence for bicomponent fibers: A review
- Mapping the scientific research on the ionizing radiation impacts on polymers (1975–2019)
- Recent advances in compatibility and toughness of poly(lactic acid)/poly(butylene succinate) blends
- Topical Issue: (Micro)plastics pollution - Knowns and unknows (Guest Editor: João Pinto da Costa)
- Simple pyrolysis of polystyrene into valuable chemicals
- Topical Issue: Recent advances of chitosan- and cellulose-based materials: From production to application (Guest Editor: Marc Delgado-Aguilar)
- In situ photo-crosslinking hydrogel with rapid healing, antibacterial, and hemostatic activities
- A novel CT contrast agent for intestinal-targeted imaging through rectal administration
- Properties and applications of cellulose regenerated from cellulose/imidazolium-based ionic liquid/co-solvent solutions: A short review
- Towards the use of acrylic acid graft-copolymerized plant biofiber in sustainable fortified composites: Manufacturing and characterization
Articles in the same Issue
- Research Articles
- Research on the mechanism of gel accelerator on gel transition of PAN solution by rheology and dynamic light scattering
- Gel point determination of gellan biopolymer gel from DC electrical conductivity
- Composite of polylactic acid and microcellulose from kombucha membranes
- Synthesis of highly branched water-soluble polyester and its surface sizing agent strengthening mechanism
- Fabrication and characterization of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) modified with nano-montmorillonite biocomposite
- Fabrication of N-halamine polyurethane films with excellent antibacterial properties
- Formulation and optimization of gastroretentive bilayer tablets of calcium carbonate using D-optimal mixture design
- Sustainable nanocomposite films based on SiO2 and biodegradable poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH) for food packaging
- Evaluation of physicochemical properties of film-based alginate for food packing applications
- Electrically conductive and light-weight branched polylactic acid-based carbon nanotube foams
- Structuring of hydroxy-terminated polydimethylsiloxane filled by fumed silica
- Surface functionalization of nanostructured Cu/Ag-deposited polypropylene fiber by magnetron sputtering
- Influence of composite structure design on the ablation performance of ethylene propylene diene monomer composites
- MOFs/PVA hybrid membranes with enhanced mechanical and ion-conductive properties
- Improvement of the electromechanical properties of thermoplastic polyurethane composite by ionic liquid modified multiwall carbon nanotubes
- Natural rubber latex/MXene foam with robust and multifunctional properties
- Rheological properties of two high polymers suspended in an abrasive slurry jet
- Two-step polyaniline loading in polyelectrolyte complex membranes for improved pseudo-capacitor electrodes
- Preparation and application of carbon and hollow TiO2 microspheres by microwave heating at a low temperature
- Properties of a bovine collagen type I membrane for guided bone regeneration applications
- Fabrication and characterization of thermoresponsive composite carriers: PNIPAAm-grafted glass spheres
- Effect of talc and diatomite on compatible, morphological, and mechanical behavior of PLA/PBAT blends
- Multifunctional graphene nanofiller in flame retarded polybutadiene/chloroprene/carbon black composites
- Strain-dependent wicking behavior of cotton/lycra elastic woven fabric for sportswear
- Enhanced dielectric properties and breakdown strength of polymer/carbon nanotube composites by coating an SrTiO3 layer
- Analysis of effect of modification of silica and carbon black co-filled rubber composite on mechanical properties
- Polytriazole resins toughened by an azide-terminated polyhedral oligomeric silsesquioxane (OADTP)
- Phosphine oxide for reducing flammability of ethylene-vinyl-acetate copolymer
- Study on preparation and properties of bentonite-modified epoxy sheet molding compound
- Polyhedral oligomeric silsesquioxane (POSS)-modified phenolic resin: Synthesis and anti-oxidation properties
- Study on structure and properties of natural indigo spun-dyed viscose fiber
- Biodegradable thermoplastic copolyester elastomers: Methyl branched PBAmT
- Investigations of polyethylene of raised temperature resistance service performance using autoclave test under sour medium conditions
- Investigation of corrosion and thermal behavior of PU–PDMS-coated AISI 316L
- Modification of sodium bicarbonate and its effect on foaming behavior of polypropylene
- Effect of coupling agents on the olive pomace-filled polypropylene composite
- High strength and conductive hydrogel with fully interpenetrated structure from alginate and acrylamide
- Removal of methylene blue in water by electrospun PAN/β-CD nanofibre membrane
- Theoretical and experimental studies on the fabrication of cylindrical-electrode-assisted solution blowing spinning nanofibers
- Influence of l-quebrachitol on the properties of centrifuged natural rubber
- Ultrasonic-modified montmorillonite uniting ethylene glycol diglycidyl ether to reinforce protein-based composite films
- Experimental study on the dissolution of supercritical CO2 in PS under different agitators
- Experimental research on the performance of the thermal-reflective coatings with liquid silicone rubber for pavement applications
- Study on controlling nicotine release from snus by the SIPN membranes
- Catalase biosensor based on the PAni/cMWCNT support for peroxide sensing
- Synthesis and characterization of different soybean oil-based polyols with fatty alcohol and aromatic alcohol
- Molecularly imprinted electrospun fiber membrane for colorimetric detection of hexanoic acid
- Poly(propylene carbonate) networks with excellent properties: Terpolymerization of carbon dioxide, propylene oxide, and 4,4ʹ-(hexafluoroisopropylidene) diphthalic anhydride
- Polypropylene/graphene nanoplatelets nanocomposites with high conductivity via solid-state shear mixing
- Mechanical properties of fiber-reinforced asphalt concrete: Finite element simulation and experimental study
- Applying design of experiments (DoE) on the properties of buccal film for nicotine delivery
- Preparation and characterizations of antibacterial–antioxidant film from soy protein isolate incorporated with mangosteen peel extract
- Preparation and adsorption properties of Ni(ii) ion-imprinted polymers based on synthesized novel functional monomer
- Rare-earth doped radioluminescent hydrogel as a potential phantom material for 3D gel dosimeter
- Effects of cryogenic treatment and interface modifications of basalt fibre on the mechanical properties of hybrid fibre-reinforced composites
- Stable super-hydrophobic and comfort PDMS-coated polyester fabric
- Impact of a nanomixture of carbon black and clay on the mechanical properties of a series of irradiated natural rubber/butyl rubber blend
- Preparation and characterization of a novel composite membrane of natural silk fiber/nano-hydroxyapatite/chitosan for guided bone tissue regeneration
- Study on the thermal properties and insulation resistance of epoxy resin modified by hexagonal boron nitride
- A new method for plugging the dominant seepage channel after polymer flooding and its mechanism: Fracturing–seepage–plugging
- Analysis of the rheological property and crystallization behavior of polylactic acid (Ingeo™ Biopolymer 4032D) at different process temperatures
- Hybrid green organic/inorganic filler polypropylene composites: Morphological study and mechanical performance investigations
- In situ polymerization of PEDOT:PSS films based on EMI-TFSI and the analysis of electrochromic performance
- Effect of laser irradiation on morphology and dielectric properties of quartz fiber reinforced epoxy resin composite
- The optimization of Carreau model and rheological behavior of alumina/linear low-density polyethylene composites with different alumina content and diameter
- Properties of polyurethane foam with fourth-generation blowing agent
- Hydrophobicity and corrosion resistance of waterborne fluorinated acrylate/silica nanocomposite coatings
- Investigation on in situ silica dispersed in natural rubber latex matrix combined with spray sputtering technology
- The degradable time evaluation of degradable polymer film in agriculture based on polyethylene film experiments
- Improving mechanical and water vapor barrier properties of the parylene C film by UV-curable polyurethane acrylate coating
- Thermal conductivity of silicone elastomer with a porous alumina continuum
- Copolymerization of CO2, propylene oxide, and itaconic anhydride with double metal cyanide complex catalyst to form crosslinked polypropylene carbonate
- Combining good dispersion with tailored charge trapping in nanodielectrics by hybrid functionalization of silica
- Thermosensitive hydrogel for in situ-controlled methotrexate delivery
- Analysis of the aging mechanism and life evaluation of elastomers in simulated proton exchange membrane fuel cell environments
- The crystallization and mechanical properties of poly(4-methyl-1-pentene) hard elastic film with different melt draw ratios
- Review Articles
- Aromatic polyamide nonporous membranes for gas separation application
- Optical elements from 3D printed polymers
- Evidence for bicomponent fibers: A review
- Mapping the scientific research on the ionizing radiation impacts on polymers (1975–2019)
- Recent advances in compatibility and toughness of poly(lactic acid)/poly(butylene succinate) blends
- Topical Issue: (Micro)plastics pollution - Knowns and unknows (Guest Editor: João Pinto da Costa)
- Simple pyrolysis of polystyrene into valuable chemicals
- Topical Issue: Recent advances of chitosan- and cellulose-based materials: From production to application (Guest Editor: Marc Delgado-Aguilar)
- In situ photo-crosslinking hydrogel with rapid healing, antibacterial, and hemostatic activities
- A novel CT contrast agent for intestinal-targeted imaging through rectal administration
- Properties and applications of cellulose regenerated from cellulose/imidazolium-based ionic liquid/co-solvent solutions: A short review
- Towards the use of acrylic acid graft-copolymerized plant biofiber in sustainable fortified composites: Manufacturing and characterization