Abstract
In order to reveal the dynamic response mechanism of silo-storage-foundation system under seismic wave loading, the silo is simplified as a thin-walled cylindrical shell structure with fixed bottom and free upper part. Considering geometric nonlinearity, dynamic elastic modulus, damping and other factors, the nonlinear vibration differential equations of the silo under dynamic loading are established. The Galerkin method is used to discretize the vibration differential equations, and the definite conditions with solution ideas are given. Subsequently, the dynamic action system of tube supported reinforced concrete silos is studied by using the shaking table test method. The similarity theory of silo model test is constructed, and the experimental model of the silo storage foundation interaction system with the geometric ratio of 1:20 is established, where three seismic waves in the suitable engineering background are selected to carry out the shaking table test. The acceleration peak value at different heights of the model is measured, and the dynamic amplification factor of the silo model along the height direction is studied under different seismic intensity and different material condition. The seismic performance of the prototype structure is studied, which provides the theoretical basis and practical guidance for the design of silo system and the operation and management of silos.
1 Introduction
With the advantage of simple operation, environmental protection, land saving, less loss and the like, Silo structure has become a universal structure widely used in industry, enterprises and transportation departments [1, 2, 3]. At present, domestic and foreign scholars have done a lot of theoretical and experimental research on static characteristics of silo structure [4, 5, 6, 7]. Pieraccini et al. [8]studied the buckling of a silo with different structure types caused by the impact load during the storage loading and unloading process, and several different models were used to carry out experimental research and numerical simulation analysis. K Knebel et al. [9] studied the bending buckling problem of full bunker. The results showed that the compressive stress of bulk can greatly increase the buckling critical load of thin shell wall. C.Butenweg et al. [10] compared two methods of silo force analysis under static and dynamic equivalent load. The interaction between silos and storage materials had been considered in the analysis. Through geometric nonlinear analysis, Ji [11] researched systematically on the influence of cylindrical support steel silo’s geometric parameters such as diameter and thickness of columns, steel stall, column height, radius and ratio of pillar to width on structural stability and strength. On the basis of the interaction of silos and bulk materials, the dynamic behavior of the silo system under the earthquake action is evaluated by Durmuş, A. et al. [12], and a simplified method for the approximation of the finite element model is proposed for the analysis. The results show that the method has high accuracy. However, most of these studies only relate to the engineering mechanical properties of a single silo structure[13, 14, 15, 16], lack of the research on silo storage foundation interaction system under dynamic load. and the related mechanism is not clear, but seismic action is one of the main factors that cause instability and failure of silo structure [17, 18, 19]. Therefore, it is of great practical significance to study the dynamic characteristics of silo storage foundation interaction system under earthquake load.
In this paper, the silo-storage-foundation system is taken as the research object. Through the Shaking table simulation test, the dynamic characteristics of the silo-storage-foundation system under different storage conditions are tested, The seismic design of the existing silo-storage-foundation system is carried out, and the effectiveness of the aseismic device is verified by numerical calculation. The research results can provide some theoretical basis and reference value for the design of safe operation of silo structures under special conditions.
2 Basic equations of dynamic model
Silo storage foundation interaction system can be regarded as a composite thin-walled cylindrical shell with one end fixed and another end free. In the role of external periodic load changes, the cylindrical shell diagram and its stratification shown in Figure 1 cylindrical shell in the movement process will have a displacement of each point in the cylindrical coordinate system with u, v, w and the three displacement components are simultaneously functions of the spatial coordinates x, θ, r and time t.

Model of a circular cylindrical shell
2.1 Geometric equation
The strain component at any point of a thin-walled cylindrical shell has the following relationship with the mid-plane strain, mid-plane bending deflection, and mid-plane distortion:
In the formula:
According to the Donnell shell theory [20, 21], the first-order derivative nonlinearity of the normal deflection is taken into account in the relationship between the mid-surface strain and the mid-surface displacement.
Of these the underlined items represent the nonlinear terms.
In Donnell’s nonlinear shell theory [16, 20], the mid-plane bending strain component remains linear [15]:
2.2 Physical equations
Taking into account the elastic modulus of the composite material with the vibration frequency changes, the two have the following relationship:
Physical equation of layer K of isotropic laminated shell:
Among them
Among them: Ek (ω) is k-th elastic modulus, μk is k-th layer of Poisson’s ratio.
2.3 Dynamic balance equation
According to the principle of D’Alembert, the dynamic equilibrium equation of a laminated composite cylindrical shell can be established:
Among them:
3 Model test of silo-storage-foundation dynamic interaction system
3.1 Project examples
Shenyang Jinshan Thermal Power “To the small” heating project is located in Sujiatun District, Shenyang City Hunhe South Bank. Its coal handling system needs 5 silos of 10000 tons, with a diameter of 22m and a height of 39.730 m. According to the specifications of the proposed silo construction project for the warehouse. Coal is lignite, bulk density by 10 kN/m3. Seismic fortification intensity of 7 degrees, the design of the basic seismic acceleration 0.10 g, Seismic structural measures at 7 degrees fortification, the first group of seismic sub-group design, seismic grade two; structural safety rating of two; fire rating of two; silo foundation design grade B, design life of 50 years. The base bearing layer is medium sand, and the silo wall is made of reinforced concrete.
3.2 Test materials
The model test silo material used particulate concrete and galvanized wire mesh instead of the reinforced concrete material of the prototype silo. In order to simulate the interaction between the soil and the structure, a foundation soil model was prepared using spun yarn, calcium carbonate, and gypsum to ensure a reliable connection between the model structure and the vibration table. The configuration of the foundation soil was similar to the elastic modulus and density parameters of the original soil. The original storage was lignite, and similar fine-grained coal particles were used as similar materials for the storage.
3.3 Model test similarity criteria
The similarity ratio of the experimental model is selected as 1:20, the total height of the prototype is 40 m, and the total height of the model is 2.0 m. During the construction of the model, three particle concrete cubic test blocks (70.7 mm×70.7 mm×70.7 mm) and three prism test blocks (100 mm×100 mm×300 mm) were simultaneously produced. After 28 days of curing, material performance tests were conducted to test the actual compressive strength and elastic modulus of the particulate concrete material that determine the model similarity coefficient.
The test measured the elastic modulus of the micro-particle concrete was 9.33 GPa, the bulk density of the micro-particle concrete was 24.9 kN/m3, and the geometric similarity coefficient was 1:20. Based on these three parameters, similarity coefficients of other major parameters can be derived based on the similarity criteria. The following relationship can be derived:
Finally, the model similarity coefficient is determined as shown in the Table 1:
Model dynamic similarity coefficient table
length | Weight | Elastic Modulus | stress | acceleration | speed | time | frequency |
---|---|---|---|---|---|---|---|
1/20 | 1 | 0.33 | 0.33 | 6.6 | 0.57 | 0.087 | 11.4 |
3.4 Test equipment
The vibration table used in this test is a 3 m×3 m electro-hydraulic servo shaker with a holding time of 5 minutes, Equipped with GS2000 servo controller, digitally controlled dynamic data acquisition system. Text model and equipment shown in Figure 2.

The text model and equipment
The test and measurement instruments used in this test are mainly acceleration sensors. According to the mechanical characteristics of silo-storage-foundation interaction, a total of 14 accelerometers are arranged in the key parts of the structure, as shown in Figure 3.

Accelerometer layout
3.5 Selection and adjustment of seismic waves
The three factors of ground motion are frequency, amplitude and duration. When the seismic waves are selected, the characteristics of the selected seismic waves should be met according to the category of the building site, even if the main period of the design of the earthquake is close to the excellent period of the site. The original site category is class II, and the seismic fortification intensity is 7 degrees.
Considering the comprehensive consideration, 2 natural seismic waves (EL Centro wave and Lanzhou wave) and a artificial waves are selected as experimental input seismic waves. The seismic time history curves and spectral curves are shown in Figure 4.

Time history curve and spectrum curve of seismic wave
After selecting the actual seismic wave, the amplitude of the selected seismic wave must also be adjusted. According to the regulations, the maximum value of ground motion acceleration with 7 degrees frequently earthquake is 35 cm/s2, the 7 degree fortification earthquake is 100 cm/s2 and the 7 degree rare earthquake is 220 cm/s2.
3.6 Test program
In this experiment, a multiple loading scheme is used to input two-way horizontal seismic waves at each loading. The acceleration ratio of bidirectional input seismic waves is X : Y = 1 : 0.8. Designed three conditions of empty storage, 1/2 storage and full storage. The peak acceleration of each load was gradually increased, corresponding to 7 degrees frequently earthquake, 7 degree fortification earthquake and 7 degree rare earthquake three seismic levels.
3.7 Model test results
The maximum measured acceleration value of the acceleration sensor in the base position of the silo model is taken as the reference value, and the magnification coefficient of the model under the same working condition can be obtained by comparing the measured maximum value of the acceleration sensor at the different heights of the model.
The change law of structural dynamic amplification factor is relatively complex, which is related to the characteristics of the model structure, the development of inelastic deformation, and the input seismic spectrum characteristics of the vibratory table, which can reflect the changes and destruction of the dynamic response of the model. In order to investigate the changes of the model’s dynamic amplification along its height direction, the change law of the acceleration magnification factor along the height direction of the model is analyzed. The acceleration peaks and the changing trend of dynamic amplification factor under various operating conditions are shown in Figures 5–7.

Dynamic magnification coefficient of the 7 degrees frequently earthquake

Dynamic magnification coefficient of the 7 degree fortification earthquake

Dynamic magnification coefficient of the 7 degree rare earthquake
4 Conclusions
The peak acceleration measured from the foundation model shows that the input seismic load is reduced in the foundation, and the acceleration peak to the base surface is reduced to about 65%∼ 75% of the input peak. It is necessary to consider the interaction of silo foundation and consider the interaction of silo foundation, which is more suitable for engineering practice.
Under the action of seismic intensity at the design levels, the peak acceleration of the model gradually enlarges from the base to the top, and the maximum acceleration response occurs at the top of the model structure, indicating that the model structure is the first mode of vibration. At the same time, the top of the top has certain whiplash effect, which indicates the existence of higher mode shapes.
Under the condition of the same material, the acceleration magnification coefficient decreases with the increase of seismic intensity, indicating that the structure gradually enters the nonlinear stage, and the stiffness of the structure gradually decreases. Under the action of 7 degree rare earthquake intensity wave, the acceleration magnification coefficient has a larger decrease, indicating that the damage inside the silo model begins to occur.
With the increase of storage materials, the acceleration amplification coefficient of the model clearly decreases. The X acceleration magnification factor of the 7 degree rare warehouse top is 4.60, 4.01 and 2.56 respectively in empty storage, 1/2 storage and full storage. This indicates that the movement of the storage material is not synchronous with the movement of the silo body, and there is phase difference. The interaction between the silo and the storage tank plays a role of damping energy dissipation for the model structure.
Acknowledgement
This research was substantially funded by the National Natural Science Foundation of China (51504123).
References
[1] Xuecheng J.X.D., The Physical Model of Pile-Soil and Structure- Pile-Soil Interaction System, J. Vibr. Eng., 1993, 2, 005.Search in Google Scholar
[2] Zongda J.X.Y., Earthquake Response Analysis of Building Foundation Building Interaction System, J. Vibr. Eng., 1998, 1, 23-28.Search in Google Scholar
[3] Wójcik M., Sondej M., Rejowski K., Tejchman J., Full-scale experiments on wheat flowin steel silo composed of corrugated walls and columns, Powder Techn., 2017, 311, 537-555.10.1016/j.powtec.2017.01.066Search in Google Scholar
[4] Ayuga F., Some unresolved problems in the design of steel cylindrical silos, Int. Conf. on structures and granular solids-from scientific principles to engineering applications, The Royal Society of Edinburgh, Scotland, UK, 2008, 6, 123-133.10.1201/9780203884447.ch12Search in Google Scholar
[5] Toma A.E., Atanasiu G.M., Specific Behavior of Circular Metal Silo, Advanced Engineering Forum, Trans Tech Publications, 2017, 21, 65-72.10.4028/www.scientific.net/AEF.21.65Search in Google Scholar
[6] Tu P., Vimonsatit V., Silo quaking of iron ore train load out bin–A time-varying mass structural dynamic problem, Adv. Powder Techn., 2017, 28(11), 3014-3025.10.1016/j.apt.2017.09.012Search in Google Scholar
[7] Yu X., Raeesi A., Ghaednia H., Heydariha J., Das S., Xie S., Behavior of a Large Steel Field Silo Structure Subject to Grain Loading, J. Perf. Constr. Fac., 2017, 31(5), 401-407.10.1061/(ASCE)CF.1943-5509.0001037Search in Google Scholar
[8] Pieraccini L., Silvestri S., Trombetti T., Refinements to the Silvestri’s theory for the evaluation of the seismic actions in flat-bottom silos containing grain-like material, Bulletin Earthquake Eng., 2015, 13(11), 3493-3525.10.1007/s10518-015-9786-2Search in Google Scholar
[9] Knebel K., Schweizerhof K., Buckling of cylindrical shells containing granular solids, Thin-walled struct., 1995, 23, 295-312.10.1016/0263-8231(95)00018-9Search in Google Scholar
[10] Butenweg C., Rosin J., Holler S., Analysis of Cylindrical Granular Material Silos under Seismic Excitation, Buildings, 2017, 7(3), 61-66.10.3390/buildings7030061Search in Google Scholar
[11] Yu J., Study on stability behavior and strength of column supported steel silos with engaged column, 2005, Zhejiang University, (in Chinese)Search in Google Scholar
[12] Durmus A., Livaoglu R., A simplified 3 DOF model of A FEM model for seismic analysis of a silo containing elastic material accounting for soil–structure interaction, Soil Dynam. Earthquake Eng., 2015, 77, 1-14.10.1016/j.soildyn.2015.04.015Search in Google Scholar
[13] Wang X., Yang Z., Shu X., Feng J., The static contact statuses between granularmaterials and flat-bottomed steel silos, Powder Techn., 2013, 35, 1053-1059.10.1016/j.powtec.2012.10.052Search in Google Scholar
[14] Kanyilmaz A., Castiglioni C.A., Reducing the seismic vulnerability of existing elevated silos by means of base isolation devices, Eng. Struct., 2017, 143, 477-497.10.1016/j.engstruct.2017.04.032Search in Google Scholar
[15] Llibre J., Centers: their integrability and relations with the divergence J. Applied Mathematics and Nonlinear Sciences, 2016,1(1), 79-86.10.21042/AMNS.2016.1.00007Search in Google Scholar
[16] Khellat F., Khormizi M.B., A global solution for a reaction diffusion equation on bounded domains, Appl. Math. Nonlin. Sci., 2018, 3(1), 15-22.10.21042/AMNS.2018.1.00002Search in Google Scholar
[17] Livaoglu R., Durmus A., A simplified approximation for seismic analysis of silo–bulk material system, Bulletin of Earthquake Eng., 2016, 14(3), 863-887.10.1007/s10518-015-9851-xSearch in Google Scholar
[18] Kermiche S., Boussaid O., Redjel B., Amirat A., FEM investigation of concrete silos damaged and reinforced externally with CFRP, Mech. Industry, 2017, 18(6), 609.10.1051/meca/2017038Search in Google Scholar
[19] Palermo M., Stefano S., Trombetti T., On the Fundamental Periods of Vibration of Flat-Bottom Ground-Supported Circular Silos containing Gran-like Material, Procedia Eng., 2017, 199, 248-253.10.1016/j.proeng.2017.09.015Search in Google Scholar
[20] Simón C.B., López J.C.C., Altuzar L.V., Micó R.J.V., Mean square calculus and random linear fractional differential equations: Theory and applications, Appl. Math. Nonlin. Sci., 2017, 2(2), 317-328.10.21042/AMNS.2017.2.00001Search in Google Scholar
[21] Dewasurendra M., Vajravelu K., On the Method of Inverse Mapping for Solutions of Coupled Systems of Nonlinear Differential Equations Arising in Nanofluid Flow, Heat and Mass Transfer, Appl. Math. Nonlin. Sci., 2018, 3(1), 1-14.10.21042/AMNS.2018.1.00001Search in Google Scholar
© 2018 Li Shuwei et al., published by De Gruyter
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
Articles in the same Issue
- Regular Articles
- A modified Fermi-Walker derivative for inextensible flows of binormal spherical image
- Algebraic aspects of evolution partial differential equation arising in the study of constant elasticity of variance model from financial mathematics
- Three-dimensional atom localization via probe absorption in a cascade four-level atomic system
- Determination of the energy transitions and half-lives of Rubidium nuclei
- Three phase heat and mass transfer model for unsaturated soil freezing process: Part 1 - model development
- Three phase heat and mass transfer model for unsaturated soil freezing process: Part 2 - model validation
- Mathematical model for thermal and entropy analysis of thermal solar collectors by using Maxwell nanofluids with slip conditions, thermal radiation and variable thermal conductivity
- Constructing analytic solutions on the Tricomi equation
- Feynman diagrams and rooted maps
- New type of chaos synchronization in discrete-time systems: the F-M synchronization
- Unsteady flow of fractional Oldroyd-B fluids through rotating annulus
- A note on the uniqueness of 2D elastostatic problems formulated by different types of potential functions
- On the conservation laws and solutions of a (2+1) dimensional KdV-mKdV equation of mathematical physics
- Computational methods and traveling wave solutions for the fourth-order nonlinear Ablowitz-Kaup-Newell-Segur water wave dynamical equation via two methods and its applications
- Siewert solutions of transcendental equations, generalized Lambert functions and physical applications
- Numerical solution of mixed convection flow of an MHD Jeffery fluid over an exponentially stretching sheet in the presence of thermal radiation and chemical reaction
- A new three-dimensional chaotic flow with one stable equilibrium: dynamical properties and complexity analysis
- Dynamics of a dry-rebounding drop: observations, simulations, and modeling
- Modeling the initial mechanical response and yielding behavior of gelled crude oil
- Lie symmetry analysis and conservation laws for the time fractional simplified modified Kawahara equation
- Solitary wave solutions of two KdV-type equations
- Applying industrial tomography to control and optimization flow systems
- Reconstructing time series into a complex network to assess the evolution dynamics of the correlations among energy prices
- An optimal solution for software testing case generation based on particle swarm optimization
- Optimal system, nonlinear self-adjointness and conservation laws for generalized shallow water wave equation
- Alternative methods for solving nonlinear two-point boundary value problems
- Global model simulation of OH production in pulsed-DC atmospheric pressure helium-air plasma jets
- Experimental investigation on optical vortex tweezers for microbubble trapping
- Joint measurements of optical parameters by irradiance scintillation and angle-of-arrival fluctuations
- M-polynomials and topological indices of hex-derived networks
- Generalized convergence analysis of the fractional order systems
- Porous flow characteristics of solution-gas drive in tight oil reservoirs
- Complementary wave solutions for the long-short wave resonance model via the extended trial equation method and the generalized Kudryashov method
- A Note on Koide’s Doubly Special Parametrization of Quark Masses
- On right-angled spherical Artin monoid of type Dn
- Gas flow regimes judgement in nanoporous media by digital core analysis
- 4 + n-dimensional water and waves on four and eleven-dimensional manifolds
- Stabilization and Analytic Approximate Solutions of an Optimal Control Problem
- On the equations of electrodynamics in a flat or curved spacetime and a possible interaction energy
- New prediction method for transient productivity of fractured five-spot patterns in low permeability reservoirs at high water cut stages
- The collinear equilibrium points in the restricted three body problem with triaxial primaries
- Detection of the damage threshold of fused silica components and morphologies of repaired damage sites based on the beam deflection method
- On the bivariate spectral quasi-linearization method for solving the two-dimensional Bratu problem
- Ion acoustic quasi-soliton in an electron-positron-ion plasma with superthermal electrons and positrons
- Analysis of projectile motion in view of conformable derivative
- Computing multiple ABC index and multiple GA index of some grid graphs
- Terahertz pulse imaging: A novel denoising method by combing the ant colony algorithm with the compressive sensing
- Characteristics of microscopic pore-throat structure of tight oil reservoirs in Sichuan Basin measured by rate-controlled mercury injection
- An activity window model for social interaction structure on Twitter
- Transient thermal regime trough the constitutive matrix applied to asynchronous electrical machine using the cell method
- On the zagreb polynomials of benzenoid systems
- Integrability analysis of the partial differential equation describing the classical bond-pricing model of mathematical finance
- The Greek parameters of a continuous arithmetic Asian option pricing model via Laplace Adomian decomposition method
- Quantifying the global solar radiation received in Pietermaritzburg, KwaZulu-Natal to motivate the consumption of solar technologies
- Sturm-Liouville difference equations having Bessel and hydrogen atom potential type
- Study on the response characteristics of oil wells after deep profile control in low permeability fractured reservoirs
- Depiction and analysis of a modified theta shaped double negative metamaterial for satellite application
- An attempt to geometrize electromagnetism
- Structure of traveling wave solutions for some nonlinear models via modified mathematical method
- Thermo-convective instability in a rotating ferromagnetic fluid layer with temperature modulation
- Construction of new solitary wave solutions of generalized Zakharov-Kuznetsov-Benjamin-Bona-Mahony and simplified modified form of Camassa-Holm equations
- Effect of magnetic field and heat source on Upper-convected-maxwell fluid in a porous channel
- Physical cues of biomaterials guide stem cell fate of differentiation: The effect of elasticity of cell culture biomaterials
- Shooting method analysis in wire coating withdrawing from a bath of Oldroyd 8-constant fluid with temperature dependent viscosity
- Rank correlation between centrality metrics in complex networks: an empirical study
- Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering
- Modeling of electric and heat processes in spot resistance welding of cross-wire steel bars
- Dynamic characteristics of triaxial active control magnetic bearing with asymmetric structure
- Design optimization of an axial-field eddy-current magnetic coupling based on magneto-thermal analytical model
- Thermal constitutive matrix applied to asynchronous electrical machine using the cell method
- Temperature distribution around thin electroconductive layers created on composite textile substrates
- Model of the multipolar engine with decreased cogging torque by asymmetrical distribution of the magnets
- Analysis of spatial thermal field in a magnetic bearing
- Use of the mathematical model of the ignition system to analyze the spark discharge, including the destruction of spark plug electrodes
- Assessment of short/long term electric field strength measurements for a pilot district
- Simulation study and experimental results for detection and classification of the transient capacitor inrush current using discrete wavelet transform and artificial intelligence
- Magnetic transmission gear finite element simulation with iron pole hysteresis
- Pulsed excitation terahertz tomography – multiparametric approach
- Low and high frequency model of three phase transformer by frequency response analysis measurement
- Multivariable polynomial fitting of controlled single-phase nonlinear load of input current total harmonic distortion
- Optimal design of a for middle-low-speed maglev trains
- Eddy current modeling in linear and nonlinear multifilamentary composite materials
- The visual attention saliency map for movie retrospection
- AC/DC current ratio in a current superimposition variable flux reluctance machine
- Influence of material uncertainties on the RLC parameters of wound inductors modeled using the finite element method
- Cogging force reduction in linear tubular flux switching permanent-magnet machines
- Modeling hysteresis curves of La(FeCoSi)13 compound near the transition point with the GRUCAD model
- Electro-magneto-hydrodynamic lubrication
- 3-D Electromagnetic field analysis of wireless power transfer system using K computer
- Simplified simulation technique of rotating, induction heated, calender rolls for study of temperature field control
- Design, fabrication and testing of electroadhesive interdigital electrodes
- A method to reduce partial discharges in motor windings fed by PWM inverter
- Reluctance network lumped mechanical & thermal models for the modeling and predesign of concentrated flux synchronous machine
- Special Issue Applications of Nonlinear Dynamics
- Study on dynamic characteristics of silo-stock-foundation interaction system under seismic load
- Microblog topic evolution computing based on LDA algorithm
- Modeling the creep damage effect on the creep crack growth behavior of rotor steel
- Neighborhood condition for all fractional (g, f, n′, m)-critical deleted graphs
- Chinese open information extraction based on DBMCSS in the field of national information resources
- 10.1515/phys-2018-0079
- CPW-fed circularly-polarized antenna array with high front-to-back ratio and low-profile
- Intelligent Monitoring Network Construction based on the utilization of the Internet of things (IoT) in the Metallurgical Coking Process
- Temperature detection technology of power equipment based on Fiber Bragg Grating
- Research on a rotational speed control strategy of the mandrel in a rotary steering system
- Dynamic load balancing algorithm for large data flow in distributed complex networks
- Super-structured photonic crystal fiber Bragg grating biosensor image model based on sparse matrix
- Fractal-based techniques for physiological time series: An updated approach
- Analysis of the Imaging Characteristics of the KB and KBA X-ray Microscopes at Non-coaxial Grazing Incidence
- Application of modified culture Kalman filter in bearing fault diagnosis
- Exact solutions and conservation laws for the modified equal width-Burgers equation
- On topological properties of block shift and hierarchical hypercube networks
- Elastic properties and plane acoustic velocity of cubic Sr2CaMoO6 and Sr2CaWO6 from first-principles calculations
- A note on the transmission feasibility problem in networks
- Ontology learning algorithm using weak functions
- Diagnosis of the power frequency vacuum arc shape based on 2D-PIV
- Parametric simulation analysis and reliability of escalator truss
- A new algorithm for real economy benefit evaluation based on big data analysis
- Synergy analysis of agricultural economic cycle fluctuation based on ant colony algorithm
- Multi-level encryption algorithm for user-related information across social networks
- Multi-target tracking algorithm in intelligent transportation based on wireless sensor network
- Fast recognition method of moving video images based on BP neural networks
- Compressed sensing image restoration algorithm based on improved SURF operator
- Design of load optimal control algorithm for smart grid based on demand response in different scenarios
- Face recognition method based on GA-BP neural network algorithm
- Optimal path selection algorithm for mobile beacons in sensor network under non-dense distribution
- Localization and recognition algorithm for fuzzy anomaly data in big data networks
- Urban road traffic flow control under incidental congestion as a function of accident duration
- Optimization design of reconfiguration algorithm for high voltage power distribution network based on ant colony algorithm
- Feasibility simulation of aseismic structure design for long-span bridges
- Construction of renewable energy supply chain model based on LCA
- The tribological properties study of carbon fabric/ epoxy composites reinforced by nano-TiO2 and MWNTs
- A text-Image feature mapping algorithm based on transfer learning
- Fast recognition algorithm for static traffic sign information
- Topical Issue: Clean Energy: Materials, Processes and Energy Generation
- An investigation of the melting process of RT-35 filled circular thermal energy storage system
- Numerical analysis on the dynamic response of a plate-and-frame membrane humidifier for PEMFC vehicles under various operating conditions
- Energy converting layers for thin-film flexible photovoltaic structures
- Effect of convection heat transfer on thermal energy storage unit
Articles in the same Issue
- Regular Articles
- A modified Fermi-Walker derivative for inextensible flows of binormal spherical image
- Algebraic aspects of evolution partial differential equation arising in the study of constant elasticity of variance model from financial mathematics
- Three-dimensional atom localization via probe absorption in a cascade four-level atomic system
- Determination of the energy transitions and half-lives of Rubidium nuclei
- Three phase heat and mass transfer model for unsaturated soil freezing process: Part 1 - model development
- Three phase heat and mass transfer model for unsaturated soil freezing process: Part 2 - model validation
- Mathematical model for thermal and entropy analysis of thermal solar collectors by using Maxwell nanofluids with slip conditions, thermal radiation and variable thermal conductivity
- Constructing analytic solutions on the Tricomi equation
- Feynman diagrams and rooted maps
- New type of chaos synchronization in discrete-time systems: the F-M synchronization
- Unsteady flow of fractional Oldroyd-B fluids through rotating annulus
- A note on the uniqueness of 2D elastostatic problems formulated by different types of potential functions
- On the conservation laws and solutions of a (2+1) dimensional KdV-mKdV equation of mathematical physics
- Computational methods and traveling wave solutions for the fourth-order nonlinear Ablowitz-Kaup-Newell-Segur water wave dynamical equation via two methods and its applications
- Siewert solutions of transcendental equations, generalized Lambert functions and physical applications
- Numerical solution of mixed convection flow of an MHD Jeffery fluid over an exponentially stretching sheet in the presence of thermal radiation and chemical reaction
- A new three-dimensional chaotic flow with one stable equilibrium: dynamical properties and complexity analysis
- Dynamics of a dry-rebounding drop: observations, simulations, and modeling
- Modeling the initial mechanical response and yielding behavior of gelled crude oil
- Lie symmetry analysis and conservation laws for the time fractional simplified modified Kawahara equation
- Solitary wave solutions of two KdV-type equations
- Applying industrial tomography to control and optimization flow systems
- Reconstructing time series into a complex network to assess the evolution dynamics of the correlations among energy prices
- An optimal solution for software testing case generation based on particle swarm optimization
- Optimal system, nonlinear self-adjointness and conservation laws for generalized shallow water wave equation
- Alternative methods for solving nonlinear two-point boundary value problems
- Global model simulation of OH production in pulsed-DC atmospheric pressure helium-air plasma jets
- Experimental investigation on optical vortex tweezers for microbubble trapping
- Joint measurements of optical parameters by irradiance scintillation and angle-of-arrival fluctuations
- M-polynomials and topological indices of hex-derived networks
- Generalized convergence analysis of the fractional order systems
- Porous flow characteristics of solution-gas drive in tight oil reservoirs
- Complementary wave solutions for the long-short wave resonance model via the extended trial equation method and the generalized Kudryashov method
- A Note on Koide’s Doubly Special Parametrization of Quark Masses
- On right-angled spherical Artin monoid of type Dn
- Gas flow regimes judgement in nanoporous media by digital core analysis
- 4 + n-dimensional water and waves on four and eleven-dimensional manifolds
- Stabilization and Analytic Approximate Solutions of an Optimal Control Problem
- On the equations of electrodynamics in a flat or curved spacetime and a possible interaction energy
- New prediction method for transient productivity of fractured five-spot patterns in low permeability reservoirs at high water cut stages
- The collinear equilibrium points in the restricted three body problem with triaxial primaries
- Detection of the damage threshold of fused silica components and morphologies of repaired damage sites based on the beam deflection method
- On the bivariate spectral quasi-linearization method for solving the two-dimensional Bratu problem
- Ion acoustic quasi-soliton in an electron-positron-ion plasma with superthermal electrons and positrons
- Analysis of projectile motion in view of conformable derivative
- Computing multiple ABC index and multiple GA index of some grid graphs
- Terahertz pulse imaging: A novel denoising method by combing the ant colony algorithm with the compressive sensing
- Characteristics of microscopic pore-throat structure of tight oil reservoirs in Sichuan Basin measured by rate-controlled mercury injection
- An activity window model for social interaction structure on Twitter
- Transient thermal regime trough the constitutive matrix applied to asynchronous electrical machine using the cell method
- On the zagreb polynomials of benzenoid systems
- Integrability analysis of the partial differential equation describing the classical bond-pricing model of mathematical finance
- The Greek parameters of a continuous arithmetic Asian option pricing model via Laplace Adomian decomposition method
- Quantifying the global solar radiation received in Pietermaritzburg, KwaZulu-Natal to motivate the consumption of solar technologies
- Sturm-Liouville difference equations having Bessel and hydrogen atom potential type
- Study on the response characteristics of oil wells after deep profile control in low permeability fractured reservoirs
- Depiction and analysis of a modified theta shaped double negative metamaterial for satellite application
- An attempt to geometrize electromagnetism
- Structure of traveling wave solutions for some nonlinear models via modified mathematical method
- Thermo-convective instability in a rotating ferromagnetic fluid layer with temperature modulation
- Construction of new solitary wave solutions of generalized Zakharov-Kuznetsov-Benjamin-Bona-Mahony and simplified modified form of Camassa-Holm equations
- Effect of magnetic field and heat source on Upper-convected-maxwell fluid in a porous channel
- Physical cues of biomaterials guide stem cell fate of differentiation: The effect of elasticity of cell culture biomaterials
- Shooting method analysis in wire coating withdrawing from a bath of Oldroyd 8-constant fluid with temperature dependent viscosity
- Rank correlation between centrality metrics in complex networks: an empirical study
- Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering
- Modeling of electric and heat processes in spot resistance welding of cross-wire steel bars
- Dynamic characteristics of triaxial active control magnetic bearing with asymmetric structure
- Design optimization of an axial-field eddy-current magnetic coupling based on magneto-thermal analytical model
- Thermal constitutive matrix applied to asynchronous electrical machine using the cell method
- Temperature distribution around thin electroconductive layers created on composite textile substrates
- Model of the multipolar engine with decreased cogging torque by asymmetrical distribution of the magnets
- Analysis of spatial thermal field in a magnetic bearing
- Use of the mathematical model of the ignition system to analyze the spark discharge, including the destruction of spark plug electrodes
- Assessment of short/long term electric field strength measurements for a pilot district
- Simulation study and experimental results for detection and classification of the transient capacitor inrush current using discrete wavelet transform and artificial intelligence
- Magnetic transmission gear finite element simulation with iron pole hysteresis
- Pulsed excitation terahertz tomography – multiparametric approach
- Low and high frequency model of three phase transformer by frequency response analysis measurement
- Multivariable polynomial fitting of controlled single-phase nonlinear load of input current total harmonic distortion
- Optimal design of a for middle-low-speed maglev trains
- Eddy current modeling in linear and nonlinear multifilamentary composite materials
- The visual attention saliency map for movie retrospection
- AC/DC current ratio in a current superimposition variable flux reluctance machine
- Influence of material uncertainties on the RLC parameters of wound inductors modeled using the finite element method
- Cogging force reduction in linear tubular flux switching permanent-magnet machines
- Modeling hysteresis curves of La(FeCoSi)13 compound near the transition point with the GRUCAD model
- Electro-magneto-hydrodynamic lubrication
- 3-D Electromagnetic field analysis of wireless power transfer system using K computer
- Simplified simulation technique of rotating, induction heated, calender rolls for study of temperature field control
- Design, fabrication and testing of electroadhesive interdigital electrodes
- A method to reduce partial discharges in motor windings fed by PWM inverter
- Reluctance network lumped mechanical & thermal models for the modeling and predesign of concentrated flux synchronous machine
- Special Issue Applications of Nonlinear Dynamics
- Study on dynamic characteristics of silo-stock-foundation interaction system under seismic load
- Microblog topic evolution computing based on LDA algorithm
- Modeling the creep damage effect on the creep crack growth behavior of rotor steel
- Neighborhood condition for all fractional (g, f, n′, m)-critical deleted graphs
- Chinese open information extraction based on DBMCSS in the field of national information resources
- 10.1515/phys-2018-0079
- CPW-fed circularly-polarized antenna array with high front-to-back ratio and low-profile
- Intelligent Monitoring Network Construction based on the utilization of the Internet of things (IoT) in the Metallurgical Coking Process
- Temperature detection technology of power equipment based on Fiber Bragg Grating
- Research on a rotational speed control strategy of the mandrel in a rotary steering system
- Dynamic load balancing algorithm for large data flow in distributed complex networks
- Super-structured photonic crystal fiber Bragg grating biosensor image model based on sparse matrix
- Fractal-based techniques for physiological time series: An updated approach
- Analysis of the Imaging Characteristics of the KB and KBA X-ray Microscopes at Non-coaxial Grazing Incidence
- Application of modified culture Kalman filter in bearing fault diagnosis
- Exact solutions and conservation laws for the modified equal width-Burgers equation
- On topological properties of block shift and hierarchical hypercube networks
- Elastic properties and plane acoustic velocity of cubic Sr2CaMoO6 and Sr2CaWO6 from first-principles calculations
- A note on the transmission feasibility problem in networks
- Ontology learning algorithm using weak functions
- Diagnosis of the power frequency vacuum arc shape based on 2D-PIV
- Parametric simulation analysis and reliability of escalator truss
- A new algorithm for real economy benefit evaluation based on big data analysis
- Synergy analysis of agricultural economic cycle fluctuation based on ant colony algorithm
- Multi-level encryption algorithm for user-related information across social networks
- Multi-target tracking algorithm in intelligent transportation based on wireless sensor network
- Fast recognition method of moving video images based on BP neural networks
- Compressed sensing image restoration algorithm based on improved SURF operator
- Design of load optimal control algorithm for smart grid based on demand response in different scenarios
- Face recognition method based on GA-BP neural network algorithm
- Optimal path selection algorithm for mobile beacons in sensor network under non-dense distribution
- Localization and recognition algorithm for fuzzy anomaly data in big data networks
- Urban road traffic flow control under incidental congestion as a function of accident duration
- Optimization design of reconfiguration algorithm for high voltage power distribution network based on ant colony algorithm
- Feasibility simulation of aseismic structure design for long-span bridges
- Construction of renewable energy supply chain model based on LCA
- The tribological properties study of carbon fabric/ epoxy composites reinforced by nano-TiO2 and MWNTs
- A text-Image feature mapping algorithm based on transfer learning
- Fast recognition algorithm for static traffic sign information
- Topical Issue: Clean Energy: Materials, Processes and Energy Generation
- An investigation of the melting process of RT-35 filled circular thermal energy storage system
- Numerical analysis on the dynamic response of a plate-and-frame membrane humidifier for PEMFC vehicles under various operating conditions
- Energy converting layers for thin-film flexible photovoltaic structures
- Effect of convection heat transfer on thermal energy storage unit