Home Assessment of short/long term electric field strength measurements for a pilot district
Article Open Access

Assessment of short/long term electric field strength measurements for a pilot district

  • Cetin Kurnaz EMAIL logo , Dogan Yildiz and Serap Karagol
Published/Copyright: March 20, 2018

Abstract

The level of electromagnetic radiation (EMR) exposure increases day by day as natural consequences of technological developments. In recent years, the increasing use of cellular systems has made it necessary to measure and evaluate EMR originating from base stations. In this study, broadband and band selective electric field strength (E) measurements were taken at four different times in order to evaluate the change of short term E in Atakum district of Samsun, Turkey. The measurements were collected from 46 different locations using a SRM 3006 and a PMM 8053 EMR meter in a band from 100 kHz to 3 GHz, and the maximum E (Emax) and the average E (Eavg) were recorded. The highest values have been noticed in these measurements at 9.45 V/m and 17.53 V/m for Eavg and Emax respectively. Apart from these measurements, 24 hour long term E measurements were taken at a location where the highest value was observed and analyzed, to observe the change of Es during a day. At the end of the study, a tentative mathematical model that helps in computing the total E of the medium with 95% accuracy, was obtained.

Introduction

With the rapidly evolving technology, the use of wireless communication systems increases day by day. Devices using wireless systems use electromagnetic waves for communication, and these systems conduce toward an increase in the use of electromagnetic radiation (EMR). Cellular systems occupy a large part of our daily lives in wireless systems and cellular systems users communicate with each other with the help of base stations. Users demanding communications from anywhere, increase of multimedia usage, and the ability of base stations to operate a limited number of users at the same time, force operators to install more base stations. Established base stations are actively broadcasting EMR for 24 hours a day so that people living in these areas are exposed to EMR radiation of the base stations even if they do not want to be. Each base station behaves like an EMR source, and this increase in base stations causes the level of EMR that is exposed to increase daily.

There are a number of limitations and standards that have resulted from some research by certain international organizations that are examining the effects of EMR on human health. These limitations are specified by the International Commission on Non-Ionizing Radiation Protection (ICNIRP) [1], which is based on the assumption of 24 hour exposure recognized by the World Health Organization (WHO). In Turkey, restrictions and regulations related to exposure to EM fields are established by the Information and Communication Technologies Authority of Turkey (ICTA) [2]. In Turkey, 75% of ICNIRP’s restriction values are applied by ICTA. The electric field limit values determined by ICTA and ICNIRP are shown in Table 1. The values in this table are the average values given after EMR exposure for six minutes. There are 3 communication operators in Turkey currently used by the users and they use 2G (second generation), 3G (third generation) and 4G (fourth generation) systems. According to [2], the electric field strength (E) limits are 30.9 (V/m) for 900 MHz base station, 43.7 (V/m) for 1800 MHz base station, 45.75 (V/m) for 3G systems, which is 2100 MHz, and also 45.75 (V/m) for 2600 MHz base station.

Table 1

Reference EMR levels of ICNIRP and ICTA

Frequency range (MHz)E (V/m)
ICNIRPICTA
0.010 – 0.158765.25
0.15 - 18765.25
1 - 1087/f1/265.25/f1/2
10 - 4002821
400 - 20001.375f1/21.03f1/2
2000 - 600006145.75
f is frequency in MHz

Obtaining EMR values in crowded settlements, especially where there are too many cellular systems, is very important to be able to examine the effects of EMR on human health. For this reason, a number of studies have been conducted in the literature [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] to measure EMR contamination from base stations and to investigate the effects of these measurements on human health. Therefore, in this study, E measurements were taken at four different times in order to examine and evaluate the change of E in Atakum district which is one of the most crowded districts of Samsun, Turkey.

1 Electrical field strength measurements

In this study, the E measurements were conducted using a SRM-3006 and a PMM 8053 EMR meter in Atakum district at 46 different locations considering the number of users, distance from base stations and line of sight. In the measurements, the maximum E (Emax) and the average E (Eavg) were recorded. The total E in the band between 100 kHz – 3 GHz is measured using the PMM–8053 with the EP-330 isotropic electric field probe [14] twice in August 2015 named as M1, M2, and in December 2016, named as M3, and M4 respectively, while band selective measurements are conducted using the Narda SRM–3006 with the 3501/03 isotropic E-field probe [15] in February 2017. The E measurement locations are shown in Figure 1, and visuals of the measurements using the PMM-8053 and SRM-3006 are shown in Figure 2.

Figure 1 Measurement locations in Atakum district
Figure 1

Measurement locations in Atakum district

Figure 2 Taking measurement with a-) PMM 8053, b-) SRM 3006 EMR meter
Figure 2

Taking measurement with a-) PMM 8053, b-) SRM 3006 EMR meter

2 Measurement results

The changes in the Emax and the Eavg, which were measured at 46 different locations, are given in Figure 3a and Figure 3b respectively. As seen from Figure 3a, the maximum Emax acquired is 3.72 V/m at location 26 for the second measurement (M2), while maximum Eavg acquired is 2.67 V/m at location 26 for the third measurement (M3). The reason for the high E values observed at this point may be due to the fact that the location has a high user density and is close to one of the base stations. The statistical characteristics of measured values are specified and listed in Table 2.

Figure 3 a) Maximum (Emax) b) Average (Eavg) Es versus locations
Figure 3

a) Maximum (Emax) b) Average (Eavg) Es versus locations

Table 2

Statistical characteristics of the measured values

Emax (V/m)Eavg (V/m)
Max.MeanStd.Max.MeanStd.
M13.651.220.561.850.450.41
M23.720.860.632.100.400.43
M33.320.910.782.670.570.62
M43.480.940.832.410.530.58

Band selective measurements were fulfilled at all locations using the Narda SRM 3006 to specify the effect of E sources into the total E. All band selective measurements are shown in Figure 3. An example of the details of the SRM–3006 measurements, which involve the E sources (frequency ranges, service name etc.), caused pollution as shown in Table 3 for location 26. In the table, each E source has a specific index number and the 23rd index is the representation of E levels inclusive of undefined frequency bands, and the 24th index is the representation of total E (ET values of the medium.

Figure 4 Band selective E values
Figure 4

Band selective E values

Table 3

Frequency selective E values

IndexService NameLower FrequencyUpper FrequeueE (V/m)
ILow Band30 MHz37.3 MHz0.133
FM Band87.5 MHz108 MHz0.021
3Air Band108.1 MHz136 MHz0.022
4Land Band-I130.1MHz173 MHz0.021
5TV VHF Band173.1MHz230 MHz0.023
6Laud Band-II230.1 MHz400 MHz0.026
7Land Band-III400.1MHz470 MHz0.015
8TV UHF Band470.1 MHz790.9 MHz0.084
9LTE800791MHz820.9 MHz1.402
10ETCÌ821MHz925 MHz0.057
11LTE900925.1MHz935.1 MHz0.913
12GSM900935.1 MHz961.0 MHz2.048
13ETC2961.1MHz1.805 GHz0.147
14GSM18001.805 GHZ1.820 GHz0.554
15LTE18001.820 MHz1.879 MHz0.456
16DECT1.880 GHz1.899 GHz0.024
17ETC31.899 GHz2.010 GHz0.067
18UMTS21002.010 GHz2.170 GHz2.243
19ETC42.171 GHz2.399 GHz0.034
20WLAN2.400 GHz2.483 GHz0.314
21ETC 52.484 GHz2.569 GHz0.031
22LTE26002.570 MHz2.660 MHz0.082
23Residual services0.598
24Total3.616

It is seen from Table 3 that the primary sources of E are LTE900, LTE800, GSM1800, GSM900, LTE1800, and UMTS2100 bands. When total E is 3.616 V/m, 2.243 V/m of this value is produced by UMTS2100, while 2.048 V/m, 1.402 V/m, and 0.913 V/m are produced by GSM900, LTE800, and LTE900 respectively. The total E of medium is computed as follows:

ET=i=123(Ei)2(1)

where Ei is the electric field for ith band. The other transmitters excluding 18 bands give rise to E23. The contribution percentage (Pi) of each band is computed as in Eq. 2.

Pi=Ei2ET2×100(2)

The pie chart illustrating the divisions of all E sources is given in Figure 5 for location 26. As seen from Figure 5, 88.7% of total E in the medium is emitted by base stations which use LTE800, LTE900, GSM900, LTE1800, UMTS2100, and the other frequency bands. Among these systems, UMTS2100 has the most contribution with 43.6%.

Figure 5 Pie chart of E
Figure 5

Pie chart of E

Long term E measurements were taken to determine the change of E values measured at location 26 during a day, and the results are given in Figure 6. Figure 7 shows the measurement location 26. Measurements started at 6pm and continued until the next day. Figure 6 shows a great variation depending on the measurement hours. It is seen that the number of users actively using the base station is the main factor influencing the E. Low E values were measured between the hours of 05:00–07:00 in the morning (mean E is 7.05 V/m), and very high E values between 12:00 and 18:00 hours (mean E is 10.5 V/m). The highest measured E value was 17.53 V/m while the 24 hour average was 9.45 V/m. The standard deviation value is 2.02 V/m for this 24 hour measurement.

Figure 6 E levels measured for 24 hour at location 26
Figure 6

E levels measured for 24 hour at location 26

Figure 7 A picture of location 26
Figure 7

A picture of location 26

3 Analysis

Total E value of medium is calculated with Eq. 3 with the use of band selective measurements. In this equation, all service names’ E value will be represented with an index number (e.g. E10 for GSM900) throughout the rest of the paper. The estimated total E of the medium (ET) can be computed with Eq. 3 using the six bands which consist of 88.7% of total E.

E^T=E92+E112+E122+E142+E152+E182(3)

In order to evaluate the performance of the method Normalized Root Mean Square Error (NRMSE) is computed as follows:

NRMSE=1Ni=1N(ET,iE^T,i)2max(ET)min(ET)(4)

where ET,i is actual E value, ÊT,i is estimated E, i is measurement location, and N is the number of measurements locations.

The NRMSE is 0.0729 between ET and ÊT for Eq. 3. In order to obtain lower NRMSE multilinear regression [16] was implemented and total E in medium is estimated as follows;

E^T=(0.01810+1.0448E92+1.2804E112+0.9814E122+1.3335E142+0.9655E152+0.9768E182)1/2(5)

NRMSE between between ET and ÊT is calculated as 0.0705 using this equation. Figure 8 shows estimated E values using Eq. 3, and Eq. 5, and actual E values of corresponding measurement locations. It is seen from Figure 8, Eq. 3 gives the best performance especially actual E values lower than 0.5 V/m, while Eq. 5 gives better performance for high E values. Therefore a new empirical E estimation model can be proposed combined of Eq. 3 and Eq. 5 and given in Eq. 6. The NRMSE is 0.0538 between ET and ÊT for Eq. 6.

Figure 8 Multilinear regression analysis
Figure 8

Multilinear regression analysis

E^T=E92+E112+E122+E142+E152+E182E<0.5(0.01810+1.0448E92+1.2804E112+0.9814E122+1.3335E142+0.9655E152+0.9768E182)1/2E0.5(6)

4 Conclusion

In this study, for observing the change of E in Atakum district of Samsun, Turkey, three stage measurements were conducted. In the first stage, short term E measurements were taken at four different times and at 46 different locations. It can be seen from the measurements that E values may change with time and the measurement locations. It can be inferred from the measurements results that the maximum recorded Emax is 17.53 V/m while the maximum Eavg is 9.45 V/m which are below the limits determined by the ICTA and ICNIRP. It is also seen from the results that Eavg has increased within measurement periods. In the second stage, in order to define the main E source in Atakum district, band selective E measurements were performed at the same locations using the SRM 3006. An extensive analysis of band selective measurements demonstrates that the primary E sources in Atakum district are the base stations which use LTE800, LTE900, GSM900, LTE1800, UMTS2100 frequency bands, and 2100MHz has the most contribution to total E value with 43.6%. In the third stage long term E measurements were recorded to assess the changing of E during the day. It is seen from the results that the E level in the morning increases by 48.9% compared to the measurements in the afternoon. At the end of the study a tentative mathematical model was obtained to estimate E in the medium with an accuracy of up to 95%.

References

[1] ICNIRP Guidelines, Guidelines for Limiting Exposure to Time-Varying Electric, Magnetic, and Electromagnetic Fields (up to 300GHz), International Commission on Non-Ionizing Radiation Protection, Health Physics 1998, 74 (4), 494-522Search in Google Scholar

[2] Information and Communication Technologies Authority of Turkey, Ordinance change on By-Law on Determination, Control and Inspection of the Limit Values of Electromagnetic Field Force from The Electronic Communication Devices According to International Standards, Law no.29497, 9 October 2015Search in Google Scholar

[3] Engiz B.K., Kurnaz Ç., Long-Term Electromagnetic Field Measurement and Assessment for a Shopping Mall, Radiation Protection Dosimetry, 2017, 175(3), 321-329.10.1093/rpd/ncw343Search in Google Scholar PubMed

[4] Kurnaz Ç., An Emprical Modelling of Electromagnetic Pollution on an University Campus, The Applied Computational Electromagnetic Society Express Journal, 2016, 1(2), 76-79.Search in Google Scholar

[5] Kurnaz Ç., Bozkurt M.C., Measurement and Evaluation of Electromagnetic Pollution Levels in Ünye District of Ordu, Journal of New Results in Science, 2016, 5(12), 149-158.Search in Google Scholar

[6] Engiz B.K., Measurement and Assessment of Long Term Electric Field Strength in Different Locations, International Journal of Advanced Research in Computer and Communication Engineering, 2016, 5(10), 455-458.Search in Google Scholar

[7] Kurnaz Ç., Engiz B.K., Measurement and Evaluation of Electric Field Strength in Samsun City Center, International Journal of Applied Mathematics, Electronics and Computer, 2016, 4(1), 24-29.10.18100/ijamec.271016Search in Google Scholar

[8] Kurnaz Ç., Engiz B.K, Bozkurt M.C., Monitoring of RF/Microwave Field Strength at Schools in a Pilot District in Samsun/Turkey, 16th Mediterranean Microwave Symposium (MMS-2016), 14-16 November 2016, Abu Dhabi, UAE10.1109/MMS.2016.7803786Search in Google Scholar

[9] Kurnaz Ç., Engiz B.K, Monitoring and Assessment of Electromagnetic Pollution in Samsun (Turkey), 39th International Conference on Telecommunications and Signal Processing (TSP-2016), 27-29 June, 2016, Vienna, Austria10.1109/TSP.2016.7760864Search in Google Scholar

[10] Mousa A., Electromagnetic radiation measurements and safety issues of same cellular base stations in nablus, Journal of Engineering Science and Technology Review 2011, 4(1), 35-42.10.25103/jestr.041.05Search in Google Scholar

[11] Seyfi L., Measurement of electromagnetic radiation with respect to the hours and days of a week at 100 kHz–3GHz frequency band in a Turkish dwelling, Measurement, 2013, 46(9), 3002-3009.10.1016/j.measurement.2013.06.021Search in Google Scholar

[12] Baltrenas P., Buckus R., Measurements and analysis of the electromagnetic fields of mobile communication antennas, Measurement, 2013, 46(10), 3942-3949.10.1016/j.measurement.2013.08.008Search in Google Scholar

[13] Koprivica M., Slavkovic V., Neskovic N., Neskovic A., Statistical Analysis of Electromagnetic Radiation Measurements in the Vicinity of GSM/UMTS Base Station Installed on Buildings in Serbia, Radiation Protection Dosimetry, 2016, 168(4), 489-502.10.1093/rpd/ncv372Search in Google Scholar PubMed

[14] http://www.pmm.eu/includes/sendfile.asp?nomep=Field_ProbesSearch in Google Scholar

[15] https://www.narda-sts.us/pdf_files/DataSheets/SRM3006_DataSheet.pdfSearch in Google Scholar

[16] Brown S.H., Multiple linear regression analysis: a matrix approach with MATLAB, Alabama Journal of Mathematic, 2009, 34, 1-3.Search in Google Scholar

Received: 2017-11-02
Accepted: 2017-11-22
Published Online: 2018-03-20

© 2018 Cetin Kurnaz et al., published by De Gruyter

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

Articles in the same Issue

  1. Regular Articles
  2. A modified Fermi-Walker derivative for inextensible flows of binormal spherical image
  3. Algebraic aspects of evolution partial differential equation arising in the study of constant elasticity of variance model from financial mathematics
  4. Three-dimensional atom localization via probe absorption in a cascade four-level atomic system
  5. Determination of the energy transitions and half-lives of Rubidium nuclei
  6. Three phase heat and mass transfer model for unsaturated soil freezing process: Part 1 - model development
  7. Three phase heat and mass transfer model for unsaturated soil freezing process: Part 2 - model validation
  8. Mathematical model for thermal and entropy analysis of thermal solar collectors by using Maxwell nanofluids with slip conditions, thermal radiation and variable thermal conductivity
  9. Constructing analytic solutions on the Tricomi equation
  10. Feynman diagrams and rooted maps
  11. New type of chaos synchronization in discrete-time systems: the F-M synchronization
  12. Unsteady flow of fractional Oldroyd-B fluids through rotating annulus
  13. A note on the uniqueness of 2D elastostatic problems formulated by different types of potential functions
  14. On the conservation laws and solutions of a (2+1) dimensional KdV-mKdV equation of mathematical physics
  15. Computational methods and traveling wave solutions for the fourth-order nonlinear Ablowitz-Kaup-Newell-Segur water wave dynamical equation via two methods and its applications
  16. Siewert solutions of transcendental equations, generalized Lambert functions and physical applications
  17. Numerical solution of mixed convection flow of an MHD Jeffery fluid over an exponentially stretching sheet in the presence of thermal radiation and chemical reaction
  18. A new three-dimensional chaotic flow with one stable equilibrium: dynamical properties and complexity analysis
  19. Dynamics of a dry-rebounding drop: observations, simulations, and modeling
  20. Modeling the initial mechanical response and yielding behavior of gelled crude oil
  21. Lie symmetry analysis and conservation laws for the time fractional simplified modified Kawahara equation
  22. Solitary wave solutions of two KdV-type equations
  23. Applying industrial tomography to control and optimization flow systems
  24. Reconstructing time series into a complex network to assess the evolution dynamics of the correlations among energy prices
  25. An optimal solution for software testing case generation based on particle swarm optimization
  26. Optimal system, nonlinear self-adjointness and conservation laws for generalized shallow water wave equation
  27. Alternative methods for solving nonlinear two-point boundary value problems
  28. Global model simulation of OH production in pulsed-DC atmospheric pressure helium-air plasma jets
  29. Experimental investigation on optical vortex tweezers for microbubble trapping
  30. Joint measurements of optical parameters by irradiance scintillation and angle-of-arrival fluctuations
  31. M-polynomials and topological indices of hex-derived networks
  32. Generalized convergence analysis of the fractional order systems
  33. Porous flow characteristics of solution-gas drive in tight oil reservoirs
  34. Complementary wave solutions for the long-short wave resonance model via the extended trial equation method and the generalized Kudryashov method
  35. A Note on Koide’s Doubly Special Parametrization of Quark Masses
  36. On right-angled spherical Artin monoid of type Dn
  37. Gas flow regimes judgement in nanoporous media by digital core analysis
  38. 4 + n-dimensional water and waves on four and eleven-dimensional manifolds
  39. Stabilization and Analytic Approximate Solutions of an Optimal Control Problem
  40. On the equations of electrodynamics in a flat or curved spacetime and a possible interaction energy
  41. New prediction method for transient productivity of fractured five-spot patterns in low permeability reservoirs at high water cut stages
  42. The collinear equilibrium points in the restricted three body problem with triaxial primaries
  43. Detection of the damage threshold of fused silica components and morphologies of repaired damage sites based on the beam deflection method
  44. On the bivariate spectral quasi-linearization method for solving the two-dimensional Bratu problem
  45. Ion acoustic quasi-soliton in an electron-positron-ion plasma with superthermal electrons and positrons
  46. Analysis of projectile motion in view of conformable derivative
  47. Computing multiple ABC index and multiple GA index of some grid graphs
  48. Terahertz pulse imaging: A novel denoising method by combing the ant colony algorithm with the compressive sensing
  49. Characteristics of microscopic pore-throat structure of tight oil reservoirs in Sichuan Basin measured by rate-controlled mercury injection
  50. An activity window model for social interaction structure on Twitter
  51. Transient thermal regime trough the constitutive matrix applied to asynchronous electrical machine using the cell method
  52. On the zagreb polynomials of benzenoid systems
  53. Integrability analysis of the partial differential equation describing the classical bond-pricing model of mathematical finance
  54. The Greek parameters of a continuous arithmetic Asian option pricing model via Laplace Adomian decomposition method
  55. Quantifying the global solar radiation received in Pietermaritzburg, KwaZulu-Natal to motivate the consumption of solar technologies
  56. Sturm-Liouville difference equations having Bessel and hydrogen atom potential type
  57. Study on the response characteristics of oil wells after deep profile control in low permeability fractured reservoirs
  58. Depiction and analysis of a modified theta shaped double negative metamaterial for satellite application
  59. An attempt to geometrize electromagnetism
  60. Structure of traveling wave solutions for some nonlinear models via modified mathematical method
  61. Thermo-convective instability in a rotating ferromagnetic fluid layer with temperature modulation
  62. Construction of new solitary wave solutions of generalized Zakharov-Kuznetsov-Benjamin-Bona-Mahony and simplified modified form of Camassa-Holm equations
  63. Effect of magnetic field and heat source on Upper-convected-maxwell fluid in a porous channel
  64. Physical cues of biomaterials guide stem cell fate of differentiation: The effect of elasticity of cell culture biomaterials
  65. Shooting method analysis in wire coating withdrawing from a bath of Oldroyd 8-constant fluid with temperature dependent viscosity
  66. Rank correlation between centrality metrics in complex networks: an empirical study
  67. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering
  68. Modeling of electric and heat processes in spot resistance welding of cross-wire steel bars
  69. Dynamic characteristics of triaxial active control magnetic bearing with asymmetric structure
  70. Design optimization of an axial-field eddy-current magnetic coupling based on magneto-thermal analytical model
  71. Thermal constitutive matrix applied to asynchronous electrical machine using the cell method
  72. Temperature distribution around thin electroconductive layers created on composite textile substrates
  73. Model of the multipolar engine with decreased cogging torque by asymmetrical distribution of the magnets
  74. Analysis of spatial thermal field in a magnetic bearing
  75. Use of the mathematical model of the ignition system to analyze the spark discharge, including the destruction of spark plug electrodes
  76. Assessment of short/long term electric field strength measurements for a pilot district
  77. Simulation study and experimental results for detection and classification of the transient capacitor inrush current using discrete wavelet transform and artificial intelligence
  78. Magnetic transmission gear finite element simulation with iron pole hysteresis
  79. Pulsed excitation terahertz tomography – multiparametric approach
  80. Low and high frequency model of three phase transformer by frequency response analysis measurement
  81. Multivariable polynomial fitting of controlled single-phase nonlinear load of input current total harmonic distortion
  82. Optimal design of a for middle-low-speed maglev trains
  83. Eddy current modeling in linear and nonlinear multifilamentary composite materials
  84. The visual attention saliency map for movie retrospection
  85. AC/DC current ratio in a current superimposition variable flux reluctance machine
  86. Influence of material uncertainties on the RLC parameters of wound inductors modeled using the finite element method
  87. Cogging force reduction in linear tubular flux switching permanent-magnet machines
  88. Modeling hysteresis curves of La(FeCoSi)13 compound near the transition point with the GRUCAD model
  89. Electro-magneto-hydrodynamic lubrication
  90. 3-D Electromagnetic field analysis of wireless power transfer system using K computer
  91. Simplified simulation technique of rotating, induction heated, calender rolls for study of temperature field control
  92. Design, fabrication and testing of electroadhesive interdigital electrodes
  93. A method to reduce partial discharges in motor windings fed by PWM inverter
  94. Reluctance network lumped mechanical & thermal models for the modeling and predesign of concentrated flux synchronous machine
  95. Special Issue Applications of Nonlinear Dynamics
  96. Study on dynamic characteristics of silo-stock-foundation interaction system under seismic load
  97. Microblog topic evolution computing based on LDA algorithm
  98. Modeling the creep damage effect on the creep crack growth behavior of rotor steel
  99. Neighborhood condition for all fractional (g, f, n′, m)-critical deleted graphs
  100. Chinese open information extraction based on DBMCSS in the field of national information resources
  101. 10.1515/phys-2018-0079
  102. CPW-fed circularly-polarized antenna array with high front-to-back ratio and low-profile
  103. Intelligent Monitoring Network Construction based on the utilization of the Internet of things (IoT) in the Metallurgical Coking Process
  104. Temperature detection technology of power equipment based on Fiber Bragg Grating
  105. Research on a rotational speed control strategy of the mandrel in a rotary steering system
  106. Dynamic load balancing algorithm for large data flow in distributed complex networks
  107. Super-structured photonic crystal fiber Bragg grating biosensor image model based on sparse matrix
  108. Fractal-based techniques for physiological time series: An updated approach
  109. Analysis of the Imaging Characteristics of the KB and KBA X-ray Microscopes at Non-coaxial Grazing Incidence
  110. Application of modified culture Kalman filter in bearing fault diagnosis
  111. Exact solutions and conservation laws for the modified equal width-Burgers equation
  112. On topological properties of block shift and hierarchical hypercube networks
  113. Elastic properties and plane acoustic velocity of cubic Sr2CaMoO6 and Sr2CaWO6 from first-principles calculations
  114. A note on the transmission feasibility problem in networks
  115. Ontology learning algorithm using weak functions
  116. Diagnosis of the power frequency vacuum arc shape based on 2D-PIV
  117. Parametric simulation analysis and reliability of escalator truss
  118. A new algorithm for real economy benefit evaluation based on big data analysis
  119. Synergy analysis of agricultural economic cycle fluctuation based on ant colony algorithm
  120. Multi-level encryption algorithm for user-related information across social networks
  121. Multi-target tracking algorithm in intelligent transportation based on wireless sensor network
  122. Fast recognition method of moving video images based on BP neural networks
  123. Compressed sensing image restoration algorithm based on improved SURF operator
  124. Design of load optimal control algorithm for smart grid based on demand response in different scenarios
  125. Face recognition method based on GA-BP neural network algorithm
  126. Optimal path selection algorithm for mobile beacons in sensor network under non-dense distribution
  127. Localization and recognition algorithm for fuzzy anomaly data in big data networks
  128. Urban road traffic flow control under incidental congestion as a function of accident duration
  129. Optimization design of reconfiguration algorithm for high voltage power distribution network based on ant colony algorithm
  130. Feasibility simulation of aseismic structure design for long-span bridges
  131. Construction of renewable energy supply chain model based on LCA
  132. The tribological properties study of carbon fabric/ epoxy composites reinforced by nano-TiO2 and MWNTs
  133. A text-Image feature mapping algorithm based on transfer learning
  134. Fast recognition algorithm for static traffic sign information
  135. Topical Issue: Clean Energy: Materials, Processes and Energy Generation
  136. An investigation of the melting process of RT-35 filled circular thermal energy storage system
  137. Numerical analysis on the dynamic response of a plate-and-frame membrane humidifier for PEMFC vehicles under various operating conditions
  138. Energy converting layers for thin-film flexible photovoltaic structures
  139. Effect of convection heat transfer on thermal energy storage unit
Downloaded on 23.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/phys-2018-0013/html
Scroll to top button