Startseite Naturwissenschaften RbTm3S5: the first rubidium lanthanoid(III) sulfide with CsEr3Se5-type crystal structure
Artikel Open Access

RbTm3S5: the first rubidium lanthanoid(III) sulfide with CsEr3Se5-type crystal structure

  • Katja Engel und Thomas Schleid ORCID logo EMAIL logo
Veröffentlicht/Copyright: 23. Oktober 2025

Abstract

RbTm3S5, orthorhombic, Pnma (no. 62), a = 20.7225(16) Å, b = 3.9231(3) Å, c = 11.6958(9) Å, V = 950.83(13) Å3, Z = 4, Rgt(F) = 0.0263, wRref(F2) = 0.0666, T = 293 K.

CCDC no.: 2419457

The molecular structure is shown in the figure. Table 1 contains the crystallographic data. The list of the atoms including atomic coordinates and displacement parameters can be found in the cif-file attached to this article.

Table 1:

Data collection and handling.

Crystal: Rod, orange
Size: 0.09 × 0.06 × 0.05 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 33.85 mm−1
Diffractometer, scan mode: STOE STADIVARI, rotation mode ω-scans
θmax, completeness: 30.3°, >99 %
N(hkl)measured, N(hkl)unique, Rint: 9698, 1563, 0.032
Criterion for Iobs, N(hkl)gt: Iobs > 2σ(Iobs), 1512
N(param)refined: 56
Programs: Stoe & Cie, 1 SHELX, 2 , 3 DIAMOND 4

1 Source of materials

RbTm3S5 was synthesized from a molten polysulfide flux containing Tm, Rb2S3, As2S3 and S in a molar ratio of 1:1:1:6. The reactants were filled in a sealed glassy ampoule and heated up to 823 K within 20 h. After 96 h the mixture cooled down to 523 K with −2 K h−1, held at this temperature for another 120 h and finally cooled down with −2 K h−1 to 373 K, before the furnace was turned off. Rb2S3 was synthesized in liquid ammonia out of a stoichiometric 2:3-mixture of Rb and S. All chemicals and products were handled in an argon-filled glove box. Single crystals in the shape of orange-colored rods were selected manually and transferred into glass capillaries.

2 Experimental details

Suitable single crystals of RbTm3S5 were selected for X-ray diffraction experiments on a STOE Stadi–Vari diffractometer (Stoe & Cie GmbH, Darmstadt, Germany) using monochomatized MoKα radiation (λ = 0.71073 Å). The crystal-structure solution could be obtained with SHELXS-2019/2 using Direct Methods, whereas the refinement was carried out with SHELXL-2019/2 by applying least-squares calculations on F2. 2 , 3 The lowest and highest residual electron density almost coincide in terms of magnitude (2.4 and 2.5 e Å−3), the quality of the structure solution is therefore not influenced by the calculated residual electron density of −2.5 e Å−3 at Tm3.

3 Comment

In the systems of lanthanoid sulfides containing alkali metals mainly three different compositions have been reported so far ALnS2, 5 , 6 ALn7S11 7 and A3Ln7S12 8 (A = Li – Cs, Ln = lanthanoid). Compared to the related selenides and tellurides it is noticeable that the composition ALn3Ch5 for Ch = S seems to be unknown, whereas the first representatives with Ch = Se and Te like CsHo3Te5 already exist for quite a while. 9 In this context, next to CsSc3S5 10 the new compound RbTm3S5 presented here is the first ternary lanthanoid(III) sulfide with this composition, adopting the CsEr3Se5-type crystal structure. 11 , 12

The structure of the title compound is built up from edge-connected [TmS6]9− octahedra with typical distances (d(Tm–S) = 2.58–2.81 Å) as known from thulium sulfides like D-type Tm2S3 (d(Tm–S) = 2.60–2.92 Å 13 ) and empty channels along [010]. The size of these channels is defined by 5×4 octahedral units arranged in a herringbone-like pattern (see the figure). Tm1 and Tm2 each form infinite chains along [010], where one octahedron links its two neighbors via opposite edges. By connecting those chains, the sites of the empty channels are created. The channel corners are built from Tm3-centered sulfur octahedra, which are again edge-connected to each other in a way, that each [(Tm3)S6]9− octahedron has four direct neighbors. This results in infinite chains along [010], which connect the chains of Tm1- and Tm2-centered sulfur polyhedra to erect a three-dimensional network 3D-{[Tm3S5]} with channels in [010] direction, where the Rb+ cations find place in a sevenfold coordination environment of sulfur atoms, forming a capped trigonal prism (d(Rb–S) = 3.37–3.61 Å) with distances comparable to those in Rb2S5 (d(Rb–S) = 3.30–3.76 Å 14 ), for example.


Corresponding author: Thomas Schleid, Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70659 Stuttgart, Germany, E-mail:

Acknowledgments

This research was presented at the 33rd Annual Meeting of the German Crystallographic Society (DGK 2025) in Hannover and funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – project number INST 41/1082-1 FUGG. We thank the state of Baden–Württemberg for its financial support, as well as Dr. Falk Lissner for the single-crystal X-ray diffraction measurement.

References

1. X-Area: The Stoe Single-Crystal Diffraction Software Package; Stoe & Cie GmbH: Darmstadt, Germany.Suche in Google Scholar

2. Sheldrick, G. M. A Short History of Shelx. Acta Crystallogr. 2008, A64, 112–122. https://doi.org/10.1107/S0108767307043930.Suche in Google Scholar PubMed

3. Sheldrick, G. M. Crystal Structure Refinement with Shelxl. Acta Crystallogr. 2015, C71, 3–8. https://doi.org/10.1107/S2053229614024218.Suche in Google Scholar PubMed PubMed Central

4. Brandenburg, K. Diamond; Crystal Impact GbR: Bonn, Germany.Suche in Google Scholar

5. Ballestracci, R.; Bertaut, E. F. Étude Cristallographique de Sulfures de Terres Rares et de Sodium. Bull. Soc. Fr. Mineral. Cristallogr. 1964, 87, 512–517. https://doi.org/10.3406/bulmi.1964.5770.Suche in Google Scholar

6. Bronger, W.; Brüggemann, W.; von der Ahe, M.; Schmitz, D. Zur Synthese und Struktur Ternärer Chalcogenide der Seltenen Erden ALnX2 mit A = Alkalimetall und X = Schwefel, Selen oder Tellur. J. Alloys Compd. 1993, 200, 205–210. https://doi.org/10.1016/0925–8388(93)90495–9.10.1016/0925-8388(93)90495-9Suche in Google Scholar

7. Lin, H.; Li, L.-H.; Chen, L. Diverse Closed Cavities in Condensed Rare Earth Metal-Chalcogenide Matrixes: CsLu7Q11 and (ClCs6)RE21Q34 (RE = Dy, Ho; Q = S, Se, Te). Inorg. Chem. 2012, 51, 4588–4596. https://doi.org/10.1021/ic202494w.Suche in Google Scholar PubMed

8. Lissner, F.; Hartenbach, I.; Schleid, Th. K3Er7S12 und Rb3Er7S12: Zwei Ternäre Erbium(III)-Sulfide mit Kanalstruktur. Z. Anorg. Allg. Chem. 2002, 628, 1552. https://doi.org/10.1002/1521-3749(200207)628:7<1552:AID-ZAAC1552>3.0.CO;2-B.10.1002/1521-3749(200207)628:7<1552::AID-ZAAC1552>3.0.CO;2-BSuche in Google Scholar

9. Yao, J.; Deng, B.; Ellis, D. E.; Ibers, J. A. Syntheses and Structures of CsHo3Te5 and Cs3Tm11Te18 and the Electronic Structure of CsHo3Te5. J. Solid State Chem. 2005, 178, 41–46. https://doi.org/10.1016/j.jssc.2004.10.015.Suche in Google Scholar

10. Buyer, C.; Zimmermann, D. D.; Schleid, Th. CsSc3S5. The First Ternary Sulfide with CsEr3Se5-type Structure. Z. Kristallogr. 2018, S38, 100.Suche in Google Scholar

11. Kim, S.-J.; Park, S.-J.; Yun, H.; Do, J. Syntheses and Crystal Structures of New Ternary Selenides: Rb3Yb7Se12 and CsEr3Se5. Inorg. Chem. 1996, 35, 5283–5289. https://doi.org/10.1021/ic960227o.Suche in Google Scholar

12. Folchnandt, M.; Schleid, Th. Neue Ternäre Selenide Dreiwertiger Lanthanoide mit Cäsium: CsNd5Se8, Cs3Gd7Se12, CeEr3Se5. Z. Kristallogr. 1997, S12, 125.Suche in Google Scholar

13. Konczyk, J.; Demchenko, P.; Bodak, O.; Demchenko, G.; Marciniak, B.; Prochwicz, W.; Muratova, L. Crystal Structure of δ-Tm2S3. Chem. Met. Alloys 2008, 1, 38–42. https://doi.org/10.30970/cma1.0021.Suche in Google Scholar

14. Böttcher, P. Synthesis and Crystal Structure of the Dirubidiumpentachalcogenides Rb2S5 and Rb2Se5. Z. Kristallogr. – Cryst. Mater. 1979, 150, 65–74. https://doi.org/10.1524/zkri.1979.150.14.65.Suche in Google Scholar

Received: 2025-08-11
Accepted: 2025-10-04
Published Online: 2025-10-23
Published in Print: 2025-12-17

© 2025 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Artikel in diesem Heft

  1. Frontmatter
  2. New Crystal Structures
  3. The crystal structure of (1Z, 2Z)-3-phenyl-2-propenal 2-(4-bromo-2-fluorophenyl)hydrazone, C15H12BrFN2
  4. Refinement of crystal structure of 2-(2,3-dihydro-3-oxo-1 H -inden-1-ylidene)-1 H -indene-1,3(2 H )-dione C18H10O3
  5. The crystal structure of 3-(1-fluoro-2-(naphthalen-2-yl)-2-oxoethyl)-2-methoxy-3,4-dihydroisoquinolin-1(2H)-one, C22H18FNO3
  6. Crystal structure of the dinuclear copper(II) complex bis(μ2-2,2′ -{[1,3-phenylenebis-(methylene)]bis(oxy)}dibenzoaot-κ4O,O′:O′′,O′′′)-bis(dimethylformamide-κ1O)dicopper(II), C50H44Cu2N2O14
  7. Crystal structure of poly[triaqua-(μ9-biphenyl-3,3′,5,5′-tetracarboxylic-κ8 O,O:O,O′: O,O″:O,O‴)samarium(III)sodium(I)], C16H12NaSmO11
  8. The crystal structure of 5-benzyl-1-(4-fluorobenzyl)-4-((4-fluorobenzyl)oxy)-1,5-dihydro-2H-pyrrol-2-one, C25H21F2NO2
  9. The crystal structure of diammonium 2,5-dihydroxyterephthalate, C8H12N2O6
  10. Crystal structure of (E)-4-(4-(1H-1,2,4-triazol-1-yl)benzylidene)-6,8-dimethoxy-3,4-dihydrobenzo[b]oxepin-5(2H)-one, C21H19N3O4
  11. Crystal structure of poly[oktakis(μ2-oxido-κ2O:O)-tetrakis(oxido-κ1O)-bis(μ2-1,1′-[1,4-phenylenebis(methylene)]di(1H-imidazole-κ2N:N′))-tetravanadium(V)-dizinc(II)] monohydrate, C28H30Zn2N8O13V4
  12. Crystal structure of acotiamide hydrochloride dimethylacetamide solvate (1/1), C25H40ClN5O6S
  13. Crystal structure of catena-poly[monoaqua (u2-(3-(3,5-dicarboxyphenyl)pyridine-2,6-dicarboxylic-k4O:O′:O″:N)zinc(II))] monohydrate, C15H11NO10Zn
  14. Crystal structure of dichlorido{2,6-bis(3,5-diisopropyl-N-pyrazolyl)pyridine}zinc(II), C23H33Cl2N5Zn
  15. Crystal structure of nitrato-κ2O,O′-[hydridotris(3,5-diethylpyrazol-1-yl)borato-κ3N,N′,N″]copper(II), C21H34BCuN7O3
  16. Crystal structure of 2,7-bis(3,5-diethyl-1H-pyrazol-4-yl)-benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetrone, C28H26N6O4
  17. Crystal structure of 2-(4-chlorophenyl)benzothiazole, C13H8ClNS
  18. Synthesis and crystal structure (3R,4′S)-4′-(3,5-dibromophenyl)-1′-methyl-2H-dispiro [benzofuran-3,3′-pyrrolidine-2′,2″-indene]-1″,2,3″-trione, C26H17Br2NO4
  19. Crystal structure of bis(((3a,7a-dihydro-1H-benzo[d][1,2,3]triazol-1-yl)methyl) triphenylphosphonium) tetrachloridomanganate(II), C50H42Cl4MnN6P2
  20. The crystal structure of 4,9-bis(4-chlorophenyl)-1,6-bis(2-cyanobenzyl)-2,4a,5,6,7,7a-hexahydro-1H-2,7,5-(epiprop[2]ene[1,1,3]triyl)pyrrolo[3,4-b]pyridine-3,10-dicarbonitrile, C40H26Cl2N6
  21. The crystal structure of poly((μ2-3-(3-nitro-4-carboxylphenyl)benzoate-κ3O, O′:O″)-μ2-1,4-bis(1-imidazolyl)benzene-κ2N:N′-cadmium(II)), C26H17N5O6Cd
  22. The crystal structure of 6-hydroxy-5H-pyrrolo[3,4-b]pyridine-5,7(6H)-dione monohydrate, C7H6N2O4
  23. Crystal structure of 4-((cyclohexylsulfonyl)methyl)-1,2,3,4-tetrahydrobenzo [4,5]imidazo[1,2-a]pyridine, C18H24N2O2S
  24. Crystal structure of 4,7-diphenyl-1,10-phenanthroline-κ2N,N′)-bis(2,4-di(fluorine)-1-phenylpyridine-κ2C,N)-iridium(III) hexafluorophosphate–dichloromethane (1/1), C47H30Cl2F10IrN4P
  25. Crystal structure of (4-(1-phenyl-1H-benzo[d]imidazol-2-yl)phenyl)boronic acid, C19H15BN2O2
  26. The crystal structure of (E)-(2-((pyridin-2-ylmethylene)amino)phenyl)arsonic acid, C12H11AsN2O3
  27. The crystal structure of N(benzyl(phenyl)carbomothioyl)benzamide, C21H18N2OS
  28. The crystal structure of bis(2-picolinium) hexachlorostannate dichloromethane monosolvate, C13H18Cl8N2Sn
  29. Crystal structure of poly[tetraaqua-bis(μ4-3–1-(carboxylatomethyl)-1H-1,2,4-triazole-3-carboxylato)-κ4O:O′,O″,N)zinc(II)], C5H7N3O6Zn
  30. The crystal structure of the co-crystal isonicotinamide – 2-(nitrophenyl)methanol (1/1), C6H6N2O·C7H7NO3
  31. The crystal structure of 4-(3-carboxy-1-ethyl-6-fluoro-4-oxo-1,4-dihydroquinolin-7-yl)piperazin-1-ium 2-fluorobenzoate hydrate, C23H25F2N3O6
  32. Crystal structure of [diaqua-{1H-benzo[d]imidazol-3-ium-5,6-dicarboxylato-κ2O,O′}magnesium(II)] C18H14MgN4O10
  33. Crystal structure of (3-(dimethoxymethyl)-5-methoxy-1H-indol-1-yl) (2-iodo-5-methoxyphenyl)methanone, C20H20INO5
  34. The crystal structure of 3,7,11-trimethylbenzo[5,6][1,4]thiazino[2,3,4-kl]phenothiazine 5,5,9,9-tetraoxide, C21H17NO4S2
  35. Crystal structure of tris(piperazine-1,4-diium)bis(2-hydroxy-1,2,3-propane-tricarboxylate) pentahydrate, C24H56N6O19
  36. Crystal structure of 2-chloro-5-((5-isopropyl-2-methylphenoxy)methyl)pyridine, C16H18ClNO
  37. Crystal structure of (E)-4-(4-(1H-pyrrol-1-yl)benzylidene)-6,8-dimethoxy-3,4-dihydrobenzo[(b)]oxepin-5(2H)-one, C23H21NO4
  38. Crystal structure of (E)-N′-(3,4-dichlorobenzylidene)-3,4,5-trimethoxybenzohydrazide, C17H16Cl2N2O4
  39. The crystal structure of 2-(2-hydroxyphenyl)-3-(pyridin-2-yl)-2,3- dihydroquinazolin-4(1H)-one, C19H15N3O2
  40. Crystal structure of 5-hydroxy-2-(4-hydroxyphenyl)-7-methoxy-8-methylchroman-4-one, C17H16O5
  41. Crystal structure of bis[(3,4-dimethoxybenzyl)triphenylphosphonium]di-μ2-bromido-dibromidodicopper(I)
  42. Crystal structure of bis [(1,3-dioxolan-2-ylmethyl)triphenylphosphonium] tetrabromidodicopper(I), C22H22Br2CuO2P
  43. Crystal structure of [1-(4-carboxyphenyl)-4-oxo-1,4-dihydropyridazine-3-carboxylic acid], C12H8N2O5
  44. The crystal structure of one-dimensional cooridnation polymer bis(thiocyanato)-bis((1E,2E)-1,2-bis(1-(pyridin-3-yl)ethylidene)-hydrazine κ2N:N)iron(II), (C30H28N10S2Fe)n
  45. Crystal structure of ((4-acetamidophenyl)sulfonyl)-l-alanine, C11H14N2O5S
  46. Crystal structure of [(1-naphthalen-1-yl-methyl)triphenylphosphonium] dichloridocopper(I), [C29H24P]+[CuCl2]
  47. RbTm3S5: the first rubidium lanthanoid(III) sulfide with CsEr3Se5-type crystal structure
  48. Crystal structure of 2,2′-((ethane-1,2-diylbis(methylammoniumdiyl))bis(methylene))bis(pyridin-1-ium) diiodido-tris(μ2-iodido-κ2I:I)dicopper(II) chloride dihydrate, C16H30Cu2I6N4O2
  49. The crystal structure of 4-(trifluoromethyl)pyridine-2-carboxylic acid, C7H4F3NO2
  50. The crystal structure of (E)-2-ethoxy-1-methoxy-4-(2-(methylsulfonyl)vinyl)benzene, C12H16O4S
  51. Crystal structure of potassium 1H,1H,2H,2H-perfluorooctanesulfonate, C8H4O3F13SK
  52. Crystal structure of 4-(4-(quinolin-8-yloxy)-1,2,5-thiadiazol-3-yl)morpholine, C15H14O2N4S
  53. The crystal structure of 1,4-bis(bromomethyl)-2,5-dimethylbenzene, C10H12Br2
  54. The crystal structure of imidazo[4,5-e][1,3]diazepine-4,6,8-triamine methanol solvate, C7H11N7O
  55. The crystal structure of chlorido-bis(1,10-phenantroline-κ2N,N′)-(2-formylphenoxyacetato-κ2O,O) lead(II), C33H23N4O4ClPb
  56. Crystal structure of pyridinium tetrakis(1,1,1-trifluoro-2,4-pentadionato-κ2O,O′)yttrium(III) C20F12H16YO8C5H6N
Heruntergeladen am 10.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2025-0353/html?lang=de
Button zum nach oben scrollen