Startseite Naturwissenschaften Crystal structure of pyridinium tetrakis(1,1,1-trifluoro-2,4-pentadionato-κ2O,O′)yttrium(III) C20F12H16YO8C5H6N
Artikel Open Access

Crystal structure of pyridinium tetrakis(1,1,1-trifluoro-2,4-pentadionato-κ2O,O′)yttrium(III) C20F12H16YO8C5H6N

  • Yan Wang ORCID logo EMAIL logo und Lifang Wang
Veröffentlicht/Copyright: 13. Oktober 2025

Abstract

C25H22F12YNO8, monoclinic, P21/c, a = 10.4906(1) Å, b = 19.4817(2) Å, c = 15.6951(1) Å, β = 103.637(1)°, V = 3117.25(5) Å3, Z = 4, R gt (F) = 0.0373, wRref(F2) = 0.0976, T = 150.0(1) K.

CCDC no.: 2465872

The molecular structure is shown in the figure. Table 1 contains the crystallographic data and the list of the atoms including atomic coordinates and displacement parameters can be found in the cif-file attached to this article.

Table 1:

Data collection and handling.

Crystal: Colourless block
Size: 0.30 × 0.30 × 0.30 mm
Wavelength: Cu Kα radiation (1.54184 Å)
μ: 3.74 mm−1
Diffractometer, scan mode: Rigaku XtaLAB, ω scans
θmax, completeness: 70.1°, 98 %
N(hkl)measured, N(hkl)unique, Rint: 17654, 5790, 0.019
Criterion for Iobs, N(hkl)gt: Iobs > 2 σ(Iobs), 5747
N(param)refined: 460
Programs: Rigaku, 1 Olex2, 2 SuperFlip, 3 Shelx 4

1 Source of materials

All chemicals were of analytical reagent grade and used without further purification. A mixture of Y2O3 (0.5 mmol) and concentrated hydrochloric (5 mL) was heated and distilled to slight dry, yielding a crystalline precipitate YCl3. Then, the YCl3 crystal was re-dissolved in 5 mL absolute ethanol, and heat-filtered to 10 mL of absolute ethanol solution containing Htfac (0.5 mL), and pyridine (0.32 mL) at about 363 K. The reaction mixture was maintained at ambient temperature for one month about, a colorless block crystal was obtained.

2 Experimental details

Using Olex2, 2 the structure was solved with the Superflip 3 , 4 , 5 structure solution program and refined with the SHELXL 6 refinement package.

3 Comment

Yttrium acetylacetonate complexes have been of particular interest owing to their advanced applications in ceramics, 7 , 8 , 9 , 10 fuel cell, 11 double-decker phthalocyanines, 12 and organic metal nanocluster precursor to prepare complex oxides. 13 , 14 , 15 In these complexes, acetylacetone ligands are coordinated with yttrium atoms in different ways, some are monodentate coordination, and some bridge two yttrium atoms. Interested in this field, we made great effort directed toward the development of syntheses of new yttrium acetylacetonate complexes, especially 1,1,1-trifluoro-2,4-pentadione (Htfac) ligand. In this paper, we provide a monomeric eight coordinated complex.

The asymmetric unit contains one Y(III) atom, four tfac and one pyridinium cation. The Y1 atom is eight-coordinated and forms a slightly distorted square antiprism geometry, which is completed by eight O donors coming from four tfac. The bond lengths of the Y–O bonds are in the narrow range of 2.2844(17)–2.4027(17) Å. The O–Y–O angles are within the range of 68.35(6)–149.74(6)°. tfac ligands coordinate the Y(III) ions in a κ2O,O′ coordination mode. The pyridinium cation is connected to the complex ion by an N–H⋯O hydrogen bond and electrostatic interactions in the crystal. There is one kind of disorder in the ligand of structure, the occupancy between F and H of C16 and C20 respectively, with the ratio 0.5:0.5. The title structure is isomorphic to the corresponding complex dysprosium 16 and lutetium salt. 17


Corresponding author: Yan Wang, Department of Chemical and Material Engineering, Lyuliang University, Xueyuan Road 1, 033001, Lvliang, Shanxi, People’s Republic of China, E-mail:

Acknowledgments

Funding for this research was provided by: Science and Technology Project of Lvliang City (grant No. 2023GXYF05 & 2024GXYF03); Education Reform and Innovation Project of the Higher Education of Shanxi Province, ERIP (Grant No. J2017125).

References

1. Oxford Diffraction Ltd. CrysAlisPro: Abingdon, Oxfordshire, England, 2006.Suche in Google Scholar

2. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. Olex2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Suche in Google Scholar

3. Palatinus, L.; Chapuis, G. Superflip – A Computer Program for the Solution of Crystal Structures by Charge Flipping in Arbitrary Dimensions. J. Appl. Crystallogr. 2007, 40, 786–790; https://doi.org/10.1107/s0021889807029238.Suche in Google Scholar

4. Palatinus, L.; van der Lee, A. Symmetry Determination Following Structure Solution in P1. J. Appl. Crystallogr. 2008, 41, 975–984; https://doi.org/10.1107/s0021889808028185.Suche in Google Scholar

5. Palatinus, L.; Prathapa, S. J.; van Smaalen, S. EDMA: AComputer Program for Topological Analysis of Discrete Electron Densities. J. Appl. Crystallogr. 2012, 45, 575–580; https://doi.org/10.1107/s0021889812016068.Suche in Google Scholar

6. Sheldrick, G. M. Crystal Structure Refinement with Shelxl. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Suche in Google Scholar

7. Meijuan, Li.; Chuanyi, W.; Gaoqiang, W.; Chuanbin, W.; Qiang, S. Improvement of AlN Thermal Conductivity Based on Reductive Compound Additives. J. Wuhan Univ. Technol.–Mat. Sci. Edit. 2023, 33, 1025–1033; https://doi.org/10.1007/s11595-023-2791-4.Suche in Google Scholar

8. Huifeng, Z.; Xiaoming, S.; Hao, L.; Ming, G.; Shouquan, Y.; Qian, S.; Hao, Z.; Weigang, Z. Pyrolysis Synthesis and Microstructure of Yttrium Modified Hafnium Carbide from Polymer Precursor. J. Am. Ceram. Soc. 2025, 108, 1–10; https://doi.org/10.1111/jace.20300.Suche in Google Scholar

9. Shcherbakova, G. I.; Pokhorenko, A. S.; Krivtsova, N. S.; Varfolomeev, M. S.; Drachev, A. I.; Lebed, J. B.; Ashmarin, A. A.; Apuhtina, T. L.; Chernyshev, A. E.; Storozhenko, P. A. Zirconium (Hafnium)-Containing Yttriumoxane Alumoxanes and Multicomponent Ceramics Based on Them. Russ. J. Inorg. Chem. 2023, 68, 1657–1673; https://doi.org/10.31857/s0044457x23600925.Suche in Google Scholar

10. Espinoza-Perez, L. J.; Lopez-Honorato, E.; Gonzalez, L. A.; García-Montalvo, V.; Garcia-Montalvo, V. Comparative Study of Three Yttrium Organometallic Compounds for the Stabilization of the Cubic Phase in Ysz Deposited by Pe-Cvd. Ceram. Int. 2021, 47, 4611–4624; https://doi.org/10.1016/j.ceramint.2020.10.028.Suche in Google Scholar

11. Suzuki, I.; Tawarayama, H.; Majima, M.; Omata, T. Low-Temperature Growth of BaZrO3 and Ba(Zr,Y)O3−. Thin Films via Spray Pyrolysis Deposition. Thin Solid Films 2024, 792, 140249; https://doi.org/10.1016/j.tsf.2024.140249.Suche in Google Scholar

12. Bolivar-Pineda, L. M.; Mendoza-Domnguez, C. U.; Rudolf, P.; Basiuk, E. V.; Basiuk, V. A. Solvothermal Synthesis of Rare Earth Bisphthalocyanines. Molecules 2024, 29, 2690; https://doi.org/10.3390/molecules29112690.Suche in Google Scholar PubMed PubMed Central

13. Yamada, T.; Okuda, R.; Hirakoso, H.; Kozuka, H. SolCgel Preparation of Yttria-Stabilized Zirconia Thin Films and Transfer to Polycarbonate Substrates. J. Sol.–Gel. Sci. Technol. 2019, 92, 554–561; https://doi.org/10.1007/s10971-019-05112-1.Suche in Google Scholar

14. Xiuhu, G.; Chuanyong, L.; Lu, L.; Zhentao, Y.; Xiao, W.; Weichen, Z.; Junnan, L.; Gang, C.; Xiaoying, C.; Yaoping, X. Yttrium–Stabilized Zirconia Ceramics Fabrication Through Material Extrusion 3D Printing. J. Mater. Eng. Perform. 2025, 34, 7584–7591; https://doi.org/10.1007/s11665-024-09691-1.Suche in Google Scholar

15. Moaveni, M. J.; Omidvar, H.; Farvizi, M.; Mirbagheri, S. M. H. Investigation of Microstructure, Mechanical, and Wear Behavior of Lanthanum Zirconate, Yttrium Zirconate, and Lanthanum Yttrium Zirconate. J. Mater. Eng. Perform. 2025, 34, 2989–3007; https://doi.org/10.1007/s11665-024-09349-y.Suche in Google Scholar

16. Yan, W.; Yuekui, W.; Jie, J.; Xiaoli, G.; Xiaoling, S. Pyridinium Tetra-Kis-(1,1,1-Trifluoro-Pentane-2,4-Dionato)Dysprosate. Acta Crystallogr. E 2011, 67, m341; https://doi.org/10.1107/s1600536811005034.Suche in Google Scholar

17. Yan, W.; Jianming, W. Crystal Structure of Pyridinium Tetrakis[1,1,1-Trifluoro-2,4-Pentadionato–κ2O,O′]Lutetium(III) C20F12H16LuO8C5H6N. Z. Kristallogr. – New Cryst. Struct. 2025, 240, 651–652; https://doi.org/10.1515/ncrs-2025-0167.Suche in Google Scholar

Received: 2025-08-25
Accepted: 2025-10-02
Published Online: 2025-10-13
Published in Print: 2025-12-17

© 2025 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Artikel in diesem Heft

  1. Frontmatter
  2. New Crystal Structures
  3. The crystal structure of (1Z, 2Z)-3-phenyl-2-propenal 2-(4-bromo-2-fluorophenyl)hydrazone, C15H12BrFN2
  4. Refinement of crystal structure of 2-(2,3-dihydro-3-oxo-1 H -inden-1-ylidene)-1 H -indene-1,3(2 H )-dione C18H10O3
  5. The crystal structure of 3-(1-fluoro-2-(naphthalen-2-yl)-2-oxoethyl)-2-methoxy-3,4-dihydroisoquinolin-1(2H)-one, C22H18FNO3
  6. Crystal structure of the dinuclear copper(II) complex bis(μ2-2,2′ -{[1,3-phenylenebis-(methylene)]bis(oxy)}dibenzoaot-κ4O,O′:O′′,O′′′)-bis(dimethylformamide-κ1O)dicopper(II), C50H44Cu2N2O14
  7. Crystal structure of poly[triaqua-(μ9-biphenyl-3,3′,5,5′-tetracarboxylic-κ8 O,O:O,O′: O,O″:O,O‴)samarium(III)sodium(I)], C16H12NaSmO11
  8. The crystal structure of 5-benzyl-1-(4-fluorobenzyl)-4-((4-fluorobenzyl)oxy)-1,5-dihydro-2H-pyrrol-2-one, C25H21F2NO2
  9. The crystal structure of diammonium 2,5-dihydroxyterephthalate, C8H12N2O6
  10. Crystal structure of (E)-4-(4-(1H-1,2,4-triazol-1-yl)benzylidene)-6,8-dimethoxy-3,4-dihydrobenzo[b]oxepin-5(2H)-one, C21H19N3O4
  11. Crystal structure of poly[oktakis(μ2-oxido-κ2O:O)-tetrakis(oxido-κ1O)-bis(μ2-1,1′-[1,4-phenylenebis(methylene)]di(1H-imidazole-κ2N:N′))-tetravanadium(V)-dizinc(II)] monohydrate, C28H30Zn2N8O13V4
  12. Crystal structure of acotiamide hydrochloride dimethylacetamide solvate (1/1), C25H40ClN5O6S
  13. Crystal structure of catena-poly[monoaqua (u2-(3-(3,5-dicarboxyphenyl)pyridine-2,6-dicarboxylic-k4O:O′:O″:N)zinc(II))] monohydrate, C15H11NO10Zn
  14. Crystal structure of dichlorido{2,6-bis(3,5-diisopropyl-N-pyrazolyl)pyridine}zinc(II), C23H33Cl2N5Zn
  15. Crystal structure of nitrato-κ2O,O′-[hydridotris(3,5-diethylpyrazol-1-yl)borato-κ3N,N′,N″]copper(II), C21H34BCuN7O3
  16. Crystal structure of 2,7-bis(3,5-diethyl-1H-pyrazol-4-yl)-benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetrone, C28H26N6O4
  17. Crystal structure of 2-(4-chlorophenyl)benzothiazole, C13H8ClNS
  18. Synthesis and crystal structure (3R,4′S)-4′-(3,5-dibromophenyl)-1′-methyl-2H-dispiro [benzofuran-3,3′-pyrrolidine-2′,2″-indene]-1″,2,3″-trione, C26H17Br2NO4
  19. Crystal structure of bis(((3a,7a-dihydro-1H-benzo[d][1,2,3]triazol-1-yl)methyl) triphenylphosphonium) tetrachloridomanganate(II), C50H42Cl4MnN6P2
  20. The crystal structure of 4,9-bis(4-chlorophenyl)-1,6-bis(2-cyanobenzyl)-2,4a,5,6,7,7a-hexahydro-1H-2,7,5-(epiprop[2]ene[1,1,3]triyl)pyrrolo[3,4-b]pyridine-3,10-dicarbonitrile, C40H26Cl2N6
  21. The crystal structure of poly((μ2-3-(3-nitro-4-carboxylphenyl)benzoate-κ3O, O′:O″)-μ2-1,4-bis(1-imidazolyl)benzene-κ2N:N′-cadmium(II)), C26H17N5O6Cd
  22. The crystal structure of 6-hydroxy-5H-pyrrolo[3,4-b]pyridine-5,7(6H)-dione monohydrate, C7H6N2O4
  23. Crystal structure of 4-((cyclohexylsulfonyl)methyl)-1,2,3,4-tetrahydrobenzo [4,5]imidazo[1,2-a]pyridine, C18H24N2O2S
  24. Crystal structure of 4,7-diphenyl-1,10-phenanthroline-κ2N,N′)-bis(2,4-di(fluorine)-1-phenylpyridine-κ2C,N)-iridium(III) hexafluorophosphate–dichloromethane (1/1), C47H30Cl2F10IrN4P
  25. Crystal structure of (4-(1-phenyl-1H-benzo[d]imidazol-2-yl)phenyl)boronic acid, C19H15BN2O2
  26. The crystal structure of (E)-(2-((pyridin-2-ylmethylene)amino)phenyl)arsonic acid, C12H11AsN2O3
  27. The crystal structure of N(benzyl(phenyl)carbomothioyl)benzamide, C21H18N2OS
  28. The crystal structure of bis(2-picolinium) hexachlorostannate dichloromethane monosolvate, C13H18Cl8N2Sn
  29. Crystal structure of poly[tetraaqua-bis(μ4-3–1-(carboxylatomethyl)-1H-1,2,4-triazole-3-carboxylato)-κ4O:O′,O″,N)zinc(II)], C5H7N3O6Zn
  30. The crystal structure of the co-crystal isonicotinamide – 2-(nitrophenyl)methanol (1/1), C6H6N2O·C7H7NO3
  31. The crystal structure of 4-(3-carboxy-1-ethyl-6-fluoro-4-oxo-1,4-dihydroquinolin-7-yl)piperazin-1-ium 2-fluorobenzoate hydrate, C23H25F2N3O6
  32. Crystal structure of [diaqua-{1H-benzo[d]imidazol-3-ium-5,6-dicarboxylato-κ2O,O′}magnesium(II)] C18H14MgN4O10
  33. Crystal structure of (3-(dimethoxymethyl)-5-methoxy-1H-indol-1-yl) (2-iodo-5-methoxyphenyl)methanone, C20H20INO5
  34. The crystal structure of 3,7,11-trimethylbenzo[5,6][1,4]thiazino[2,3,4-kl]phenothiazine 5,5,9,9-tetraoxide, C21H17NO4S2
  35. Crystal structure of tris(piperazine-1,4-diium)bis(2-hydroxy-1,2,3-propane-tricarboxylate) pentahydrate, C24H56N6O19
  36. Crystal structure of 2-chloro-5-((5-isopropyl-2-methylphenoxy)methyl)pyridine, C16H18ClNO
  37. Crystal structure of (E)-4-(4-(1H-pyrrol-1-yl)benzylidene)-6,8-dimethoxy-3,4-dihydrobenzo[(b)]oxepin-5(2H)-one, C23H21NO4
  38. Crystal structure of (E)-N′-(3,4-dichlorobenzylidene)-3,4,5-trimethoxybenzohydrazide, C17H16Cl2N2O4
  39. The crystal structure of 2-(2-hydroxyphenyl)-3-(pyridin-2-yl)-2,3- dihydroquinazolin-4(1H)-one, C19H15N3O2
  40. Crystal structure of 5-hydroxy-2-(4-hydroxyphenyl)-7-methoxy-8-methylchroman-4-one, C17H16O5
  41. Crystal structure of bis[(3,4-dimethoxybenzyl)triphenylphosphonium]di-μ2-bromido-dibromidodicopper(I)
  42. Crystal structure of bis [(1,3-dioxolan-2-ylmethyl)triphenylphosphonium] tetrabromidodicopper(I), C22H22Br2CuO2P
  43. Crystal structure of [1-(4-carboxyphenyl)-4-oxo-1,4-dihydropyridazine-3-carboxylic acid], C12H8N2O5
  44. The crystal structure of one-dimensional cooridnation polymer bis(thiocyanato)-bis((1E,2E)-1,2-bis(1-(pyridin-3-yl)ethylidene)-hydrazine κ2N:N)iron(II), (C30H28N10S2Fe)n
  45. Crystal structure of ((4-acetamidophenyl)sulfonyl)-l-alanine, C11H14N2O5S
  46. Crystal structure of [(1-naphthalen-1-yl-methyl)triphenylphosphonium] dichloridocopper(I), [C29H24P]+[CuCl2]
  47. RbTm3S5: the first rubidium lanthanoid(III) sulfide with CsEr3Se5-type crystal structure
  48. Crystal structure of 2,2′-((ethane-1,2-diylbis(methylammoniumdiyl))bis(methylene))bis(pyridin-1-ium) diiodido-tris(μ2-iodido-κ2I:I)dicopper(II) chloride dihydrate, C16H30Cu2I6N4O2
  49. The crystal structure of 4-(trifluoromethyl)pyridine-2-carboxylic acid, C7H4F3NO2
  50. The crystal structure of (E)-2-ethoxy-1-methoxy-4-(2-(methylsulfonyl)vinyl)benzene, C12H16O4S
  51. Crystal structure of potassium 1H,1H,2H,2H-perfluorooctanesulfonate, C8H4O3F13SK
  52. Crystal structure of 4-(4-(quinolin-8-yloxy)-1,2,5-thiadiazol-3-yl)morpholine, C15H14O2N4S
  53. The crystal structure of 1,4-bis(bromomethyl)-2,5-dimethylbenzene, C10H12Br2
  54. The crystal structure of imidazo[4,5-e][1,3]diazepine-4,6,8-triamine methanol solvate, C7H11N7O
  55. The crystal structure of chlorido-bis(1,10-phenantroline-κ2N,N′)-(2-formylphenoxyacetato-κ2O,O) lead(II), C33H23N4O4ClPb
  56. Crystal structure of pyridinium tetrakis(1,1,1-trifluoro-2,4-pentadionato-κ2O,O′)yttrium(III) C20F12H16YO8C5H6N
Heruntergeladen am 10.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2025-0377/html
Button zum nach oben scrollen