Startseite Naturwissenschaften The crystal structure of 3,7,11-trimethylbenzo[5,6][1,4]thiazino[2,3,4-kl]phenothiazine 5,5,9,9-tetraoxide, C21H17NO4S2
Artikel Open Access

The crystal structure of 3,7,11-trimethylbenzo[5,6][1,4]thiazino[2,3,4-kl]phenothiazine 5,5,9,9-tetraoxide, C21H17NO4S2

  • Jing Tan , Lingfeng Zhang und Penghui Ni ORCID logo EMAIL logo
Veröffentlicht/Copyright: 17. September 2025

Abstract

C21H17NO4S2, orthorhombic, Pna21 (no. 33), a = 15.028(3) Å, b = 14.045(3) Å, c = 8.9625(16) Å, V = 1891.7(6) Å3, Z = 4, Rgt(F) = 0.0359, wRref(F2) = 0.0870, T = 296 (2) K.

CCDC no.: 2476903

The molecular structure is shown in the figure. Table 1 contains the crystallographic data. The list of the atoms including atomic coordinates and displacement parameters can be found in the cif-file attached to this article.

Table 1:

Data collection and handling.

Crystal: Colorless block
Size: 0.24 × 0.22 × 0.20 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 0.31 mm−1
Diffractometer, scan mode: Bruker APEX-II, φ and ω scans
θmax, completeness: 25.1°, 100 %
N(hkl)measured, N(hkl)unique, Rint: 9522, 3242, 0.033
Criterion for Iobs, N(hkl)gt: Iobs > 2 σ(Iobs), 2821
N(param)refined: 256
Programs: Bruker, 1 SHELX, 2 , 3 WinGX 4

1 Source of material

All chemicals were purchased from commercial sources and used as received without further purification. First, a mixture of ammonium iodide (730 mg, 5 mmol), sodium iodide (90 mg, 0.6 mmol), and elemental sulfur (512 mg, 2 mmol) was added to an oven-dried reaction vessel (10 mL). The reaction vessel was purged with oxygen gas three times and was then filled with 4-methylcyclohexan-1-one (780 μL, 6 mmol), dimethyl sulfoxide (280 μL, 4 mmol), and ethyl acetate (2 mL) by syringe. The reaction vessel was stirred at 150 °C for 24 h. After cooling to room temperature, the reaction mixture was diluted with ethyl acetate (20 mL) and the volatiles were removed under reduced pressure. The residue was purified by column chromatography on silica gel (petroleum ether) to yield the 3,7,11-trimethylbenzo[5,6][1,4]thiazino[2,3,4-kl]phenothiazine product as a yellow solid (423 mg, 61 % yield). Subsequently, a mixture of 3,7,11-trimethylbenzo[5,6][1,4]thiazino[2,3,4-kl]phenothiazine (347 mg, 1 mmol), 3-chloroperbenzoic acid (1.032 g, 6 mmol), and CH2Cl2 (5 mL) was added to an oven-dried reaction vessel (20 mL). The reaction vessel was stirred at room temperature for 24 h. After the reaction finished, it was diluted with ethyl acetate (20 mL) and the volatiles were removed under reduced pressure. The residue was purified by column chromatography on silica gel (petroleum ether: dichloromethane = 2:1) to yield the desired product as a white solid (403 mg, 98 % yield). Finally, dissolve 0.4 g of the target compound in 20 ml of dichloromethane, heat reflux until the solid is completely dissolved, and filter. The title crystal was precipitated by controlling solvent volatilization.

2 Experimental details

All H-atoms bonded to C atoms were placed geometrically and refined using a riding model with common isotropic displacement factors Uiso(H) = 1.2 or 1.5 Ueq (parent C-atom).

3 Comment

Bis-phenothiazines as thiabridged triarylamine heterohelicenes with an aryl ring and a nitrogen atom in common are forced into a helical-shaped structure by four long carbon–sulfur bonds. These compounds have found extensive utility as redox-driven molecular switches, organic dyes for dye-sensitized solar cells (DSSCs), and ultralong room-temperature phosphorescence (URTP) materials, due to their unique structural, unusual properties. 5 , 6 , 7 , 8 , 9 However, structural characterization remains scarce for bis-phenothiazine sulfides featuring double sulfur-atom sulfonated moieties. Consequently, the synthesis and crystal structure determination of the title compound are essential for exploring its potential applications.

Single-crystal structure analysis revealed that the title compound crystallized in the orthorhombic space group Pna21. The ORTEP diagram is presented in the Figure. The bond lengths of S1–O1, S1–O2, S2–O3, S2–O4 in the title molecule are 1.429(3) Å, 1.430(3) Å, 1.425(3) Å, 1.423(3) Å, respectively. They are similar to reported values in the literature. 10 , 11

Weak intermolecular hydrogen bonding exists in the crystal structure of the title compound. The carbon atom C13, for example, provides one intermolecular hydrogen bond to O1′ of another molecule (C13⋯O1′ = 3.207(4) Å; ′ = x−1/2, −y+1/2, z).


Corresponding author: Penghui Ni, College of Chemistry and Materials Science, Key Laboratory of Functional Metal-Organic Compounds of Hunan Province, Hengyang Normal University, Hengyang, Hunan 421008, China, E-mail:

Funding source: Hunan Provincial Natural Science Foundation of China

Award Identifier / Grant number: 2023JJ40095

Funding source: The Scientific Research Fund of Hunan Provincial Education Department of China

Award Identifier / Grant number: 23C0222, 21B0634

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by the Hunan Provincial Natural Science Foundation of China (No. 2023JJ40095), the Scientific Research Fund of Hunan Provincial Education Department of China (No. 23C0222, 21B0634).

  3. Conflict of interest: The authors declare no conflicts of interest regarding this article.

References

1. Bruker. Saint, Apex2 and Sadabs; Bruker AXS Inc.: Madison, WI, USA, 2012.Suche in Google Scholar

2. Sheldrick, G. M. Shelxtl – Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. 2015, A71, 3–8.10.1107/S2053273314026370Suche in Google Scholar PubMed PubMed Central

3. Sheldrick, G. M. Crystal Structure Refinement with Shelxl. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Suche in Google Scholar

4. Farrugia, L. J. WinGX and Ortep for Windows: An Update. J. Appl. Cryst. 2012, 45, 849–854; https://doi.org/10.1107/s0021889812029111.Suche in Google Scholar

5. Kim, C.; Choi, H.; Paek, S.; Kim, J.-J.; Song, K.; Kang, M.-S.; Ko, J. Molecular Engineering of Thia-Bridged Triphenylamine Heterohelicenes as Novel Organic Dyes for Dye-Sensitized Solar Cells. J. Photochem. Photobiol., A 2011, 225, 17–25; https://doi.org/10.1016/j.jphotochem.2011.09.020.Suche in Google Scholar

6. Menichetti, S.; Cecchi, S.; Procacci, P.; Innocenti, M.; Becucci, L.; Franco, L.; Viglianisi, C. Thia-Bridged Triarylamine Heterohelicene Radical Cations as Redox-Driven Molecular Switches. Chem. Commun. 2015, 51, 11452–11454; https://doi.org/10.1039/c5cc04007h.Suche in Google Scholar PubMed

7. Gliemann, B. D.; Petrovic, A. G.; Zolnhofer, E. M.; Dral, P. O.; Hampel, F.; Breitenbruch, G.; Schulze, P.; Raghavan, V.; Meyer, K.; Polavarapu, P. L.; Berova, N.; Kivala, M. Configurationally Stable Chiral Dithia-Bridged Hetero[4]helicene Radical Cation: Electronic Structure and Absolute Configuration. Chem. – Asian J. 2017, 12, 31–35; https://doi.org/10.1002/asia.201601452.Suche in Google Scholar PubMed

8. Lupi, M.; Menichetti, S.; Stagnaro, P.; Utzeri, R.; Viglianisi, C. Thia-Bridged Triarylamine[4]helicene-Functionalized Polynorbornenes as Redox-Active pH-Sensitive Polymers. Synthesis 2021, 53, 2602–2611; https://doi.org/10.1055/s-0040-1706743.Suche in Google Scholar

9. Ma, Z.; Yang, Z.; Mu, L.; Deng, L.; Chen, L.; Wang, B.; Qiao, X.; Hu, D.; Yang, B.; Ma, D.; Peng, J.; Ma, Y. Converting Molecular Luminescence to Ultralong Room-Temperature Phosphorescence via the Excited State Modulation of Sulfone-Containing Heteroaromatics. Chem. Sci. 2021, 12, 14808–14814; https://doi.org/10.1039/d1sc04118e.Suche in Google Scholar PubMed PubMed Central

10. Ning, W.; Wang, H.; Gong, S.; Zhong, C.; Yang, C. Simple Sulfone-Bridged Heterohelicene Structure Realizes Ultraviolet Narrowband Thermally Activated Delayed Fluorescence, Circularly Polarized Luminescence, and Room Temperature Phosphorescence. Sci. China Chem. 2022, 65, 1715–1719; https://doi.org/10.1007/s11426-022-1318-9.Suche in Google Scholar

11. Ma, Z.; Yang, Z.; Mu, L.; Deng, L.; Chen, L.; Wang, B.; Qiao, X.; Hu, D.; Yang, B.; Ma, D.; Peng, J.; Ma, Y. Converting Molecular Luminescence to Ultralong Room-Temperature Phosphorescence via the Excited State Modulation of Sulfone-Containing Heteroaromatics. Chem. Sci. 2021, 12, 14808–14814; https://doi.org/10.1039/d1sc04118e.Suche in Google Scholar

Received: 2025-07-29
Accepted: 2025-09-02
Published Online: 2025-09-17
Published in Print: 2025-12-17

© 2025 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Artikel in diesem Heft

  1. Frontmatter
  2. New Crystal Structures
  3. The crystal structure of (1Z, 2Z)-3-phenyl-2-propenal 2-(4-bromo-2-fluorophenyl)hydrazone, C15H12BrFN2
  4. Refinement of crystal structure of 2-(2,3-dihydro-3-oxo-1 H -inden-1-ylidene)-1 H -indene-1,3(2 H )-dione C18H10O3
  5. The crystal structure of 3-(1-fluoro-2-(naphthalen-2-yl)-2-oxoethyl)-2-methoxy-3,4-dihydroisoquinolin-1(2H)-one, C22H18FNO3
  6. Crystal structure of the dinuclear copper(II) complex bis(μ2-2,2′ -{[1,3-phenylenebis-(methylene)]bis(oxy)}dibenzoaot-κ4O,O′:O′′,O′′′)-bis(dimethylformamide-κ1O)dicopper(II), C50H44Cu2N2O14
  7. Crystal structure of poly[triaqua-(μ9-biphenyl-3,3′,5,5′-tetracarboxylic-κ8 O,O:O,O′: O,O″:O,O‴)samarium(III)sodium(I)], C16H12NaSmO11
  8. The crystal structure of 5-benzyl-1-(4-fluorobenzyl)-4-((4-fluorobenzyl)oxy)-1,5-dihydro-2H-pyrrol-2-one, C25H21F2NO2
  9. The crystal structure of diammonium 2,5-dihydroxyterephthalate, C8H12N2O6
  10. Crystal structure of (E)-4-(4-(1H-1,2,4-triazol-1-yl)benzylidene)-6,8-dimethoxy-3,4-dihydrobenzo[b]oxepin-5(2H)-one, C21H19N3O4
  11. Crystal structure of poly[oktakis(μ2-oxido-κ2O:O)-tetrakis(oxido-κ1O)-bis(μ2-1,1′-[1,4-phenylenebis(methylene)]di(1H-imidazole-κ2N:N′))-tetravanadium(V)-dizinc(II)] monohydrate, C28H30Zn2N8O13V4
  12. Crystal structure of acotiamide hydrochloride dimethylacetamide solvate (1/1), C25H40ClN5O6S
  13. Crystal structure of catena-poly[monoaqua (u2-(3-(3,5-dicarboxyphenyl)pyridine-2,6-dicarboxylic-k4O:O′:O″:N)zinc(II))] monohydrate, C15H11NO10Zn
  14. Crystal structure of dichlorido{2,6-bis(3,5-diisopropyl-N-pyrazolyl)pyridine}zinc(II), C23H33Cl2N5Zn
  15. Crystal structure of nitrato-κ2O,O′-[hydridotris(3,5-diethylpyrazol-1-yl)borato-κ3N,N′,N″]copper(II), C21H34BCuN7O3
  16. Crystal structure of 2,7-bis(3,5-diethyl-1H-pyrazol-4-yl)-benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetrone, C28H26N6O4
  17. Crystal structure of 2-(4-chlorophenyl)benzothiazole, C13H8ClNS
  18. Synthesis and crystal structure (3R,4′S)-4′-(3,5-dibromophenyl)-1′-methyl-2H-dispiro [benzofuran-3,3′-pyrrolidine-2′,2″-indene]-1″,2,3″-trione, C26H17Br2NO4
  19. Crystal structure of bis(((3a,7a-dihydro-1H-benzo[d][1,2,3]triazol-1-yl)methyl) triphenylphosphonium) tetrachloridomanganate(II), C50H42Cl4MnN6P2
  20. The crystal structure of 4,9-bis(4-chlorophenyl)-1,6-bis(2-cyanobenzyl)-2,4a,5,6,7,7a-hexahydro-1H-2,7,5-(epiprop[2]ene[1,1,3]triyl)pyrrolo[3,4-b]pyridine-3,10-dicarbonitrile, C40H26Cl2N6
  21. The crystal structure of poly((μ2-3-(3-nitro-4-carboxylphenyl)benzoate-κ3O, O′:O″)-μ2-1,4-bis(1-imidazolyl)benzene-κ2N:N′-cadmium(II)), C26H17N5O6Cd
  22. The crystal structure of 6-hydroxy-5H-pyrrolo[3,4-b]pyridine-5,7(6H)-dione monohydrate, C7H6N2O4
  23. Crystal structure of 4-((cyclohexylsulfonyl)methyl)-1,2,3,4-tetrahydrobenzo [4,5]imidazo[1,2-a]pyridine, C18H24N2O2S
  24. Crystal structure of 4,7-diphenyl-1,10-phenanthroline-κ2N,N′)-bis(2,4-di(fluorine)-1-phenylpyridine-κ2C,N)-iridium(III) hexafluorophosphate–dichloromethane (1/1), C47H30Cl2F10IrN4P
  25. Crystal structure of (4-(1-phenyl-1H-benzo[d]imidazol-2-yl)phenyl)boronic acid, C19H15BN2O2
  26. The crystal structure of (E)-(2-((pyridin-2-ylmethylene)amino)phenyl)arsonic acid, C12H11AsN2O3
  27. The crystal structure of N(benzyl(phenyl)carbomothioyl)benzamide, C21H18N2OS
  28. The crystal structure of bis(2-picolinium) hexachlorostannate dichloromethane monosolvate, C13H18Cl8N2Sn
  29. Crystal structure of poly[tetraaqua-bis(μ4-3–1-(carboxylatomethyl)-1H-1,2,4-triazole-3-carboxylato)-κ4O:O′,O″,N)zinc(II)], C5H7N3O6Zn
  30. The crystal structure of the co-crystal isonicotinamide – 2-(nitrophenyl)methanol (1/1), C6H6N2O·C7H7NO3
  31. The crystal structure of 4-(3-carboxy-1-ethyl-6-fluoro-4-oxo-1,4-dihydroquinolin-7-yl)piperazin-1-ium 2-fluorobenzoate hydrate, C23H25F2N3O6
  32. Crystal structure of [diaqua-{1H-benzo[d]imidazol-3-ium-5,6-dicarboxylato-κ2O,O′}magnesium(II)] C18H14MgN4O10
  33. Crystal structure of (3-(dimethoxymethyl)-5-methoxy-1H-indol-1-yl) (2-iodo-5-methoxyphenyl)methanone, C20H20INO5
  34. The crystal structure of 3,7,11-trimethylbenzo[5,6][1,4]thiazino[2,3,4-kl]phenothiazine 5,5,9,9-tetraoxide, C21H17NO4S2
  35. Crystal structure of tris(piperazine-1,4-diium)bis(2-hydroxy-1,2,3-propane-tricarboxylate) pentahydrate, C24H56N6O19
  36. Crystal structure of 2-chloro-5-((5-isopropyl-2-methylphenoxy)methyl)pyridine, C16H18ClNO
  37. Crystal structure of (E)-4-(4-(1H-pyrrol-1-yl)benzylidene)-6,8-dimethoxy-3,4-dihydrobenzo[(b)]oxepin-5(2H)-one, C23H21NO4
  38. Crystal structure of (E)-N′-(3,4-dichlorobenzylidene)-3,4,5-trimethoxybenzohydrazide, C17H16Cl2N2O4
  39. The crystal structure of 2-(2-hydroxyphenyl)-3-(pyridin-2-yl)-2,3- dihydroquinazolin-4(1H)-one, C19H15N3O2
  40. Crystal structure of 5-hydroxy-2-(4-hydroxyphenyl)-7-methoxy-8-methylchroman-4-one, C17H16O5
  41. Crystal structure of bis[(3,4-dimethoxybenzyl)triphenylphosphonium]di-μ2-bromido-dibromidodicopper(I)
  42. Crystal structure of bis [(1,3-dioxolan-2-ylmethyl)triphenylphosphonium] tetrabromidodicopper(I), C22H22Br2CuO2P
  43. Crystal structure of [1-(4-carboxyphenyl)-4-oxo-1,4-dihydropyridazine-3-carboxylic acid], C12H8N2O5
  44. The crystal structure of one-dimensional cooridnation polymer bis(thiocyanato)-bis((1E,2E)-1,2-bis(1-(pyridin-3-yl)ethylidene)-hydrazine κ2N:N)iron(II), (C30H28N10S2Fe)n
  45. Crystal structure of ((4-acetamidophenyl)sulfonyl)-l-alanine, C11H14N2O5S
  46. Crystal structure of [(1-naphthalen-1-yl-methyl)triphenylphosphonium] dichloridocopper(I), [C29H24P]+[CuCl2]
  47. RbTm3S5: the first rubidium lanthanoid(III) sulfide with CsEr3Se5-type crystal structure
  48. Crystal structure of 2,2′-((ethane-1,2-diylbis(methylammoniumdiyl))bis(methylene))bis(pyridin-1-ium) diiodido-tris(μ2-iodido-κ2I:I)dicopper(II) chloride dihydrate, C16H30Cu2I6N4O2
  49. The crystal structure of 4-(trifluoromethyl)pyridine-2-carboxylic acid, C7H4F3NO2
  50. The crystal structure of (E)-2-ethoxy-1-methoxy-4-(2-(methylsulfonyl)vinyl)benzene, C12H16O4S
  51. Crystal structure of potassium 1H,1H,2H,2H-perfluorooctanesulfonate, C8H4O3F13SK
  52. Crystal structure of 4-(4-(quinolin-8-yloxy)-1,2,5-thiadiazol-3-yl)morpholine, C15H14O2N4S
  53. The crystal structure of 1,4-bis(bromomethyl)-2,5-dimethylbenzene, C10H12Br2
  54. The crystal structure of imidazo[4,5-e][1,3]diazepine-4,6,8-triamine methanol solvate, C7H11N7O
  55. The crystal structure of chlorido-bis(1,10-phenantroline-κ2N,N′)-(2-formylphenoxyacetato-κ2O,O) lead(II), C33H23N4O4ClPb
  56. Crystal structure of pyridinium tetrakis(1,1,1-trifluoro-2,4-pentadionato-κ2O,O′)yttrium(III) C20F12H16YO8C5H6N
Heruntergeladen am 8.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2025-0328/html
Button zum nach oben scrollen