Startseite Naturwissenschaften Crystal structure of tris(piperazine-1,4-diium)bis(2-hydroxy-1,2,3-propane-tricarboxylate) pentahydrate, C24H56N6O19
Artikel Open Access

Crystal structure of tris(piperazine-1,4-diium)bis(2-hydroxy-1,2,3-propane-tricarboxylate) pentahydrate, C24H56N6O19

  • Ayesha Jacobs ORCID logo EMAIL logo und Sosthene Nyomba Kamanda
Veröffentlicht/Copyright: 19. September 2025

Abstract

C24H56N6O19, triclinic, P 1 (no. 2), a = 6.0132(12) Å, b = 11.667(2) Å, c = 13.152(3) Å, α = 67.10(3)°, β = 88.54(3)°, γ = 83.18(3)°, V = 843.8(3) Å3, Z = 2, R gt (F) = 0.0606, wR ref (F2) = 0.1336, T = 173(2) K.

CCDC no.: 2484891

The molecular structure is shown in the figure. Table 1 contains the crystallographic data and the list of the atoms including atomic coordinates and displacement parameters can be found in the cif-file attached to this article.

Table 1:

Data collection and handling.

Crystal: Colourless block
Size: 0.27 × 0.17 × 0.11 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 0.12 mm−1
Diffractometer, scan mode: Bruker Apex-II diffractometer, φ and ω scans
θmax, completeness: 28.3°, 100 %
N(hkl)measured, N(hkl)unique, Rint: 13092, 4187, 0.026
Criterion for Iobs, N(hkl)gt: Iobs > 2 σ(Iobs), 3,830
N(param)refined: 278
Programs: Bruker, 1 , 2 WinGX, 3 SHELX, 4 , 5 X-Seed 6

1 Source of materials

The 2-hydroxy-1,2,3-propane-tricarboxylic acid (citric acid) monohydrate was obtained from UniLAB Saarchem (Merck) and piperazine hexahydrate from BDH laboratories. Diethyl ether was obtained from Merck. The citric acid monohydrate was dried in an oven at 60 °C for 2 h. Citric acid (0.26 mmol, 0.050 g) and piperazine hexahydrate (0.26 mmol, 0.052 g) was dissolved in 2.0 mL of a 1:1 mixture of diethyl ether:water with slight heating. The solution was allowed to evaporate at room temperature. Block crystals were obtained after 5 months of slow evaporation.

2 Experimental details

The hydroxyl hydrogen atom, water hydrogen atoms and amine hydrogens were located in the difference electron density map and freely refined with isotropic temperature factors. The C–H atoms were geometrically constrained at 0.99 Å with Uiso (H) = 1.2 Å2.

3 Comment

Citric acid is naturally found in citrus fruits, however commercially it is sourced from fermentation processes primarily using the fungus Aspergillus niger. 7 , 8 Citric acid has uses in a wide variety of industries including food, pharmaceutical and chemical industries. 9 , 10 Recently, cocrystallisation studies of citric acid with selected heterocyclic compounds have been reported. 11 Piperazine is an anthelmintic drug for veterinary use. 12 Piperazine has been used in cocrystallisation studies involving natural products and active pharmaceutical ingredients. 13 , 14 , 15

The crystal structure of piperazine citrate monohydrate, (C4H12N2)2+(C6H6O7)2−·H2O in the monoclinic space group Pn (a = 9.2055(12) Å, b = 6.8314(9) Å, c = 11.2443 (14) Å, β = 112.047 (2)°, V = 655.41 (15) Å3) has been reported by Liu. 16 The asymmetric unit of (C4H12N2)2+(C6H6O7)2−·H2O contains a double deprotonated citrate anion, a doubly protonated piperazine and one water molecule.

The asymmetric unit of the current structure, 3(C4H12N22+)·2(C6H5O73−)·5(H2O), contains a triple deprotonated citrate anion, 1.5 piperazinium cations and 2.5 water molecules. The piperazinium cations lie on centres of inversion and all three of the carboxylic acids of citric acid are deprotonated. There are several NH⋯O, OH⋯O and CH⋯O hydrogen bonds in the structure. The piperazinium cations and water molecules are hydrogen bonded to the carboxylate groups of the citrate anion. The hydroxyl group of the citrate forms an intramolecular OH⋯O contact with one of the carboxylate oxygens. There are numerous hydrogen bonded rings and chains. In particular, two citrate and two piperazinium ions form R44 (24) rings involving four NH⋯O heterosynthons. Citrate and piperazinium ions are linked via NH⋯O hydrogen bonds creating C44 (26) chains. The two and a half water molecules and one citrate ion produce R44 (10) rings via OH⋯O hydrogen bonds. The water molecules occupy channels parallel to [100] with different water environments present including donor⋯donor (DD), donor⋯donor⋯acceptor (DDA) and donor⋯donor⋯acceptor⋯acceptor (DDAA).


Corresponding author: Ayesha Jacobs, Faculty of Applied Sciences, Chemistry Department, Cape Peninsula University of Technology, PO Box 1906, Bellville 7535, South Africa, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Conflict of interest: The authors declare no conflicts of interest regarding this article.

References

1. Bruker. Apex2, Saint-Plus and Sadabs; Bruker AXS Inc.: Madison, Wisconsin, USA, 2009.Suche in Google Scholar

2. Bruker. Xprep; Bruker AXS Inc.: Madison, Wisconsin, USA, 2004.Suche in Google Scholar

3. Farrugia, L. J. WinGX and Ortep for Windows: An Update. J. Appl. Cryst. 2012, 45, 849–854; https://doi.org/10.1107/s0021889812029111.Suche in Google Scholar

4. Sheldrick, G. M. A Short History of Shelx. Acta Cryst. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930.Suche in Google Scholar

5. Sheldrick, G. M. Crystal Structure Refinement with Shelxl. Acta Cryst. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Suche in Google Scholar

6. Barbour, L. J. X-Seed-A Software Tool for Supramolecular Crystallography. Supramol. Chem. 2001, 1, 189–191; https://doi.org/10.1016/s1472-7862(02)00030-8.Suche in Google Scholar

7. Kubicek, C. P.; Röhr, M.; Rehm, H. J. Citric Acid Fermentation. Crit. Rev. Biotechnol. 1985, 3, 331–373.10.3109/07388558509150788Suche in Google Scholar

8. Angumeenal, A. R.; Venkappayya, C. D. An Overview of Citric Acid Production. LWT-Food Sci. Technol. 2013, 50, 367–370; https://doi.org/10.1016/j.lwt.2012.05.016.Suche in Google Scholar

9. Ciriminna, R.; Meneguzzo, F.; Delisi, R.; Pagliaro, M. Citric Acid: Emerging Applications of Key Biotechnology Industrial Product. Chem. Cent. J. 2017, 11, 22; https://doi.org/10.1186/s13065-017-0251-y.Suche in Google Scholar PubMed PubMed Central

10. Lambros, M.; Tran, T.; Fei, Q.; Nicolaou, M. Citric Acid: A Multifunctional Pharmaceutical Excipient. Pharmaceutics 2022, 14, 972; https://doi.org/10.3390/pharmaceutics14050972.Suche in Google Scholar PubMed PubMed Central

11. Easmin, S.; Pedireddi, V. R. Systematic Exploration of Structural Topologies in Hydrogen-Bonded Supramolecular Assemblies of Citric Acid with Different Heterocyclic Compounds. ACS Omega 2023, 8, 23202–23217; https://doi.org/10.1021/acsomega.3c03446.Suche in Google Scholar PubMed PubMed Central

12. Liu, M.; Panda, S. K.; Luyten, W. Plant-Based Natural Products for the Discovery and Development of Novel Anthelmintics Against Nematodes. Biomolecules 2020, 10, 426; https://doi.org/10.3390/biom10030426.Suche in Google Scholar PubMed PubMed Central

13. Ungur, D. T.; Iordache, C. A.; Brăilă, C. A.; Pop, D. A.; David, M. C.; Pandele-Cuşu, J.; Fruth, V.; Pongratz, I.; Iacob, B.-C.; Bodoki, E.; Pop, M. M. Structural Insights into the Resveratrol-Piperazine Cocrystal Forms Enabling the Cocrystallization Process Development from Solution. Cryst. Growth Des. 2025, 25, 1330–1343; https://doi.org/10.1021/acs.cgd.4c01113.Suche in Google Scholar

14. Wang, Z.; Li, S.; Li, Q.; Wang, W.; Liu, M.; Yang, S.; Zhang, L.; Yang, D.; Du, G.; Lu, Y. A Novel Cocrystal of Daidzein with Piperazine to Optimize the Solubility, Permeability and Bioavailability of Daidzein. Molecules 2024, 29, 1710; https://doi.org/10.3390/molecules29081710.Suche in Google Scholar PubMed PubMed Central

15. Andre, V.; Braga, D.; Grepioni, F.; Duarte, M. T. Crystal Forms of the Antibiotic 4-aminosalicylic Acid: Solvates and Molecular Salts with Dioxane, Morpholine, and Piperazine. Cryst. Growth Des. 2009, 9, 5108–5116; https://doi.org/10.1021/cg900495s.Suche in Google Scholar

16. Liu, L.-L. Piperazine-1,4-diium 2-(carboxymethyl)-2-hydroxybutanedioate Monohydrate. Acta Cryst. 2010, E66, o2191; https://doi.org/10.1107/s1600536810030151.Suche in Google Scholar PubMed PubMed Central

Received: 2025-07-31
Accepted: 2025-09-04
Published Online: 2025-09-19
Published in Print: 2025-12-17

© 2025 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Artikel in diesem Heft

  1. Frontmatter
  2. New Crystal Structures
  3. The crystal structure of (1Z, 2Z)-3-phenyl-2-propenal 2-(4-bromo-2-fluorophenyl)hydrazone, C15H12BrFN2
  4. Refinement of crystal structure of 2-(2,3-dihydro-3-oxo-1 H -inden-1-ylidene)-1 H -indene-1,3(2 H )-dione C18H10O3
  5. The crystal structure of 3-(1-fluoro-2-(naphthalen-2-yl)-2-oxoethyl)-2-methoxy-3,4-dihydroisoquinolin-1(2H)-one, C22H18FNO3
  6. Crystal structure of the dinuclear copper(II) complex bis(μ2-2,2′ -{[1,3-phenylenebis-(methylene)]bis(oxy)}dibenzoaot-κ4O,O′:O′′,O′′′)-bis(dimethylformamide-κ1O)dicopper(II), C50H44Cu2N2O14
  7. Crystal structure of poly[triaqua-(μ9-biphenyl-3,3′,5,5′-tetracarboxylic-κ8 O,O:O,O′: O,O″:O,O‴)samarium(III)sodium(I)], C16H12NaSmO11
  8. The crystal structure of 5-benzyl-1-(4-fluorobenzyl)-4-((4-fluorobenzyl)oxy)-1,5-dihydro-2H-pyrrol-2-one, C25H21F2NO2
  9. The crystal structure of diammonium 2,5-dihydroxyterephthalate, C8H12N2O6
  10. Crystal structure of (E)-4-(4-(1H-1,2,4-triazol-1-yl)benzylidene)-6,8-dimethoxy-3,4-dihydrobenzo[b]oxepin-5(2H)-one, C21H19N3O4
  11. Crystal structure of poly[oktakis(μ2-oxido-κ2O:O)-tetrakis(oxido-κ1O)-bis(μ2-1,1′-[1,4-phenylenebis(methylene)]di(1H-imidazole-κ2N:N′))-tetravanadium(V)-dizinc(II)] monohydrate, C28H30Zn2N8O13V4
  12. Crystal structure of acotiamide hydrochloride dimethylacetamide solvate (1/1), C25H40ClN5O6S
  13. Crystal structure of catena-poly[monoaqua (u2-(3-(3,5-dicarboxyphenyl)pyridine-2,6-dicarboxylic-k4O:O′:O″:N)zinc(II))] monohydrate, C15H11NO10Zn
  14. Crystal structure of dichlorido{2,6-bis(3,5-diisopropyl-N-pyrazolyl)pyridine}zinc(II), C23H33Cl2N5Zn
  15. Crystal structure of nitrato-κ2O,O′-[hydridotris(3,5-diethylpyrazol-1-yl)borato-κ3N,N′,N″]copper(II), C21H34BCuN7O3
  16. Crystal structure of 2,7-bis(3,5-diethyl-1H-pyrazol-4-yl)-benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetrone, C28H26N6O4
  17. Crystal structure of 2-(4-chlorophenyl)benzothiazole, C13H8ClNS
  18. Synthesis and crystal structure (3R,4′S)-4′-(3,5-dibromophenyl)-1′-methyl-2H-dispiro [benzofuran-3,3′-pyrrolidine-2′,2″-indene]-1″,2,3″-trione, C26H17Br2NO4
  19. Crystal structure of bis(((3a,7a-dihydro-1H-benzo[d][1,2,3]triazol-1-yl)methyl) triphenylphosphonium) tetrachloridomanganate(II), C50H42Cl4MnN6P2
  20. The crystal structure of 4,9-bis(4-chlorophenyl)-1,6-bis(2-cyanobenzyl)-2,4a,5,6,7,7a-hexahydro-1H-2,7,5-(epiprop[2]ene[1,1,3]triyl)pyrrolo[3,4-b]pyridine-3,10-dicarbonitrile, C40H26Cl2N6
  21. The crystal structure of poly((μ2-3-(3-nitro-4-carboxylphenyl)benzoate-κ3O, O′:O″)-μ2-1,4-bis(1-imidazolyl)benzene-κ2N:N′-cadmium(II)), C26H17N5O6Cd
  22. The crystal structure of 6-hydroxy-5H-pyrrolo[3,4-b]pyridine-5,7(6H)-dione monohydrate, C7H6N2O4
  23. Crystal structure of 4-((cyclohexylsulfonyl)methyl)-1,2,3,4-tetrahydrobenzo [4,5]imidazo[1,2-a]pyridine, C18H24N2O2S
  24. Crystal structure of 4,7-diphenyl-1,10-phenanthroline-κ2N,N′)-bis(2,4-di(fluorine)-1-phenylpyridine-κ2C,N)-iridium(III) hexafluorophosphate–dichloromethane (1/1), C47H30Cl2F10IrN4P
  25. Crystal structure of (4-(1-phenyl-1H-benzo[d]imidazol-2-yl)phenyl)boronic acid, C19H15BN2O2
  26. The crystal structure of (E)-(2-((pyridin-2-ylmethylene)amino)phenyl)arsonic acid, C12H11AsN2O3
  27. The crystal structure of N(benzyl(phenyl)carbomothioyl)benzamide, C21H18N2OS
  28. The crystal structure of bis(2-picolinium) hexachlorostannate dichloromethane monosolvate, C13H18Cl8N2Sn
  29. Crystal structure of poly[tetraaqua-bis(μ4-3–1-(carboxylatomethyl)-1H-1,2,4-triazole-3-carboxylato)-κ4O:O′,O″,N)zinc(II)], C5H7N3O6Zn
  30. The crystal structure of the co-crystal isonicotinamide – 2-(nitrophenyl)methanol (1/1), C6H6N2O·C7H7NO3
  31. The crystal structure of 4-(3-carboxy-1-ethyl-6-fluoro-4-oxo-1,4-dihydroquinolin-7-yl)piperazin-1-ium 2-fluorobenzoate hydrate, C23H25F2N3O6
  32. Crystal structure of [diaqua-{1H-benzo[d]imidazol-3-ium-5,6-dicarboxylato-κ2O,O′}magnesium(II)] C18H14MgN4O10
  33. Crystal structure of (3-(dimethoxymethyl)-5-methoxy-1H-indol-1-yl) (2-iodo-5-methoxyphenyl)methanone, C20H20INO5
  34. The crystal structure of 3,7,11-trimethylbenzo[5,6][1,4]thiazino[2,3,4-kl]phenothiazine 5,5,9,9-tetraoxide, C21H17NO4S2
  35. Crystal structure of tris(piperazine-1,4-diium)bis(2-hydroxy-1,2,3-propane-tricarboxylate) pentahydrate, C24H56N6O19
  36. Crystal structure of 2-chloro-5-((5-isopropyl-2-methylphenoxy)methyl)pyridine, C16H18ClNO
  37. Crystal structure of (E)-4-(4-(1H-pyrrol-1-yl)benzylidene)-6,8-dimethoxy-3,4-dihydrobenzo[(b)]oxepin-5(2H)-one, C23H21NO4
  38. Crystal structure of (E)-N′-(3,4-dichlorobenzylidene)-3,4,5-trimethoxybenzohydrazide, C17H16Cl2N2O4
  39. The crystal structure of 2-(2-hydroxyphenyl)-3-(pyridin-2-yl)-2,3- dihydroquinazolin-4(1H)-one, C19H15N3O2
  40. Crystal structure of 5-hydroxy-2-(4-hydroxyphenyl)-7-methoxy-8-methylchroman-4-one, C17H16O5
  41. Crystal structure of bis[(3,4-dimethoxybenzyl)triphenylphosphonium]di-μ2-bromido-dibromidodicopper(I)
  42. Crystal structure of bis [(1,3-dioxolan-2-ylmethyl)triphenylphosphonium] tetrabromidodicopper(I), C22H22Br2CuO2P
  43. Crystal structure of [1-(4-carboxyphenyl)-4-oxo-1,4-dihydropyridazine-3-carboxylic acid], C12H8N2O5
  44. The crystal structure of one-dimensional cooridnation polymer bis(thiocyanato)-bis((1E,2E)-1,2-bis(1-(pyridin-3-yl)ethylidene)-hydrazine κ2N:N)iron(II), (C30H28N10S2Fe)n
  45. Crystal structure of ((4-acetamidophenyl)sulfonyl)-l-alanine, C11H14N2O5S
  46. Crystal structure of [(1-naphthalen-1-yl-methyl)triphenylphosphonium] dichloridocopper(I), [C29H24P]+[CuCl2]
  47. RbTm3S5: the first rubidium lanthanoid(III) sulfide with CsEr3Se5-type crystal structure
  48. Crystal structure of 2,2′-((ethane-1,2-diylbis(methylammoniumdiyl))bis(methylene))bis(pyridin-1-ium) diiodido-tris(μ2-iodido-κ2I:I)dicopper(II) chloride dihydrate, C16H30Cu2I6N4O2
  49. The crystal structure of 4-(trifluoromethyl)pyridine-2-carboxylic acid, C7H4F3NO2
  50. The crystal structure of (E)-2-ethoxy-1-methoxy-4-(2-(methylsulfonyl)vinyl)benzene, C12H16O4S
  51. Crystal structure of potassium 1H,1H,2H,2H-perfluorooctanesulfonate, C8H4O3F13SK
  52. Crystal structure of 4-(4-(quinolin-8-yloxy)-1,2,5-thiadiazol-3-yl)morpholine, C15H14O2N4S
  53. The crystal structure of 1,4-bis(bromomethyl)-2,5-dimethylbenzene, C10H12Br2
  54. The crystal structure of imidazo[4,5-e][1,3]diazepine-4,6,8-triamine methanol solvate, C7H11N7O
  55. The crystal structure of chlorido-bis(1,10-phenantroline-κ2N,N′)-(2-formylphenoxyacetato-κ2O,O) lead(II), C33H23N4O4ClPb
  56. Crystal structure of pyridinium tetrakis(1,1,1-trifluoro-2,4-pentadionato-κ2O,O′)yttrium(III) C20F12H16YO8C5H6N
Heruntergeladen am 8.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2025-0330/html
Button zum nach oben scrollen