Home Crystal structure of dichlorido{2,6-bis(3,5-diisopropyl-N-pyrazolyl)pyridine}zinc(II), C23H33Cl2N5Zn
Article Open Access

Crystal structure of dichlorido{2,6-bis(3,5-diisopropyl-N-pyrazolyl)pyridine}zinc(II), C23H33Cl2N5Zn

  • Kiyoshi Fujisawa ORCID logo EMAIL logo , Yurika Minakawa and Edward R.T. Tiekink ORCID logo EMAIL logo
Published/Copyright: September 3, 2025

Abstract

C23H33Cl2N5Zn, monoclinic, Pca21 (no. 29), a = 15.9299(3) Å, b = 12.8205(2) Å, c = 12.7157(2) Å, V = 2596.92(8) Å3, Z = 4, Rgt(F) = 0.0169, wRref(F2) = 0.0459, T = 178 K.

CCDC no.: 2481583

The molecular structure is shown in the figure. Table 1 contains the crystallographic data.

Table 1:

Data collection and handling.

Crystal: Colourless block
Size: 0.17 × 0.11 × 0.06 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 1.17 mm−1
Diffractometer, scan mode: Rigaku XtaLAB P200, ω scan
θmax, completeness: 26.4°, 100 %
N(hkl)measured, N(hkl)unique, Rint: 18773, 5071, 0.021
Criterion for Iobs, N(hkl)gt: Iobs > 2σ(Iobs), 4886
N(param)refined: 288
Programs: Rigaku, 1 IL MILIONE, 2 Shelx, 3 WinGX 4

1 Source of material

A solution of ligand, 2,6-bis(3,5-diisopropyl–N-pyrazolyl)pyridine (denoted as L; 5 99.9 mg, 0.263 mmol) in CH2Cl2 (10 mL) was added slowly to a solution of ZnCl2 (36.7 mg, 0.269 mmol) in MeOH (5 mL). After the stirring for 3 h at room temperature, the solvent was evaporated under reduced pressure to afford a white powder. Colourless crystals suitable for X-ray crystallography were obtained by the slow evaporation of a saturated dichloromethane/methanol (1:1 v/v) solution held at room temperature which were characterised as [ZnCl2(L)] (84.8 mg, 0.164 mmol, 62%). Anal. Calcd. for C23H33Cl2N5Zn: C, 53.55; H, 6.45; N, 13.58. Found: C, 53.42; H, 6.35; N, 13.59. IR (KBr, cm−1): 3119 m ν(Ar–H), 2967s ν(C–H), 2934s ν(C–H), 2871 m ν(C–H), 1608s, 1561s, 1470s, 1388s, 1311s. Far–IR (CsI, cm−1): 303s ν(Zn–Cl), 279 m ν(Zn–Cl). Raman (neat, solid, cm−1): 3134w ν(Ar–H), 2966 m ν(C–H), 2931 m ν(C–H), 2872 m ν(C–H), 1589s, 1563s, 1490s, 1449s, 1372s, 999s, 279 m ν(Zn–Cl). 1 H NMR (CDCl3, 500 MHz): δ 8.13 (t, J = 8.5 Hz, 1H, 4-pyH), 7.41 (d, J = 8.5 Hz, 2H, 3,5-pyH), 6.31 (s, 2H, 4-pzH), 3.84 (m, J = 7 Hz, 2H, (CH(CH3)2), 3.36 (m, J = 7 Hz, 2H, (CH(CH3)2), 1.40 (d, J = 7 Hz, 12H, (CH(CH3)2), 1.34 (d, J = 7 Hz, 12H, (CH(CH3)2). 13 C NMR (CDCl3, 125 MHz): δ 163.2 (2,6-py), 152.6 (3 or 5-pz), 147.6 (3 or 5-pz), 144.6 (4-py), 108.8 (3,5-py), 106.2 (4-pz), 27.5 (CH(CH3)2), 27.2 (CH(CH3)2), 22.8 (CH(CH3)2), 22.7 (CH(CH3)2). UV–vis (MeOH, λmax, nm (ε, M−1 cm−1)): 246 (20900), 265 (sh, 15000), 296(11900), 324 (sh, 6200). UV–vis (nujol, λ, nm): 250, 280, 337. Diffuse reflectance (solid neat, λ, nm): 280, 336.

2 Experimental details

The C-bound H atoms were geometrically placed (C–H = 0.95–1.00 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). Owing to poor agreement, two reflections, i.e. (2 0 0) and (3 6 0), were omitted from the final cycles of refinement. The absolute structure was determined based on differences in Friedel pairs included in the data set.

3 Discussion

Planar, tridentate nitrogen ligands have been employed extensively in coordination chemistry, since these ligands can stabilise transition metal complexes by the chelate effect, with the resulting fascinating complexes exhibiting diverse catalytic performance and photochemical behaviour. 6 , 7 , 8 , 9 , 10 These planar tridentate ligands can be classified into three groups, viz. 2,2′;6′,2″-terpyridine (terpy), 6 , 8 2,6-bis(1H-pyrazol-3-yl)pyridine, 9 , 10 with two covalent Cpyrazole–Cpyridine bonds, and 2,6-bis(N-pyrazol)pyridine with two covalent Npyrazole–Cpyridine bonds. 5 , 9 Recently, we reported a zinc(II) chlorido complex with 2,6-bis(5-isopropyl-1H-pyrazol-3-yl)pyridine (denoted as L1), viz. [ZnCl2(L1)] to explore chemistry aimed towards new planar tridentate ligands. 10

The title complex, [ZnCl2(L)], (I), was obtained by the reaction of L with ZnCl2 in 62 % yield. The IR, NMR and UV–vis spectral data for (I) are slightly shifted from those data of L. 5 In the far–IR spectrum, the most intense bands appeared at 303 and 279 cm−1 for (I), while those for [ZnCl2(L1)] appeared at 302 and 276 cm−1. 10 Interestingly, the 1H and 13C NMR spectra for (I) were not broadened compared with those observed in [ZnCl2(L1)] due to the absence of N–H bonds in complex (I). 10

The molecular structure of (I) is illustrated in the figure (50 % displacement ellipsoids). The zinc(II) atom is coordinated by the tridentate ligand, L, with the penta-coordinate geometry completed by two chlorido ligands. The coordination geometry is possibly best described as being based on a trigonal-bipyramid. In this description, the trigonal plane and zinc(II) atom are co-planar [r.m.s. deviation = 0.0038 Å] with the pyrazolyl–N1 and –N3 atoms lying 2.0314(17) Å above and 2.0400(17) Å below the plane, respectively. The distortion of the N1–Zn–N3 angle from 180°, i.e. 144.50(6)°, is related to the restricted bite angles subtended by the tridentate ligand [N1–Zn–N5 and N3–Zn–N5 = 72.32(6) and 72.20(6)°, respectively]. An alternate description is indicated by the geometric parameter, τ5, which is calculated from the equation, τ5 = β – α / 60, where α and β are the largest angles (β > α) around a five-coordinate metal centre. 11 In (I), τ5 computes to 0.36, a value intermediate between 0.0, for a square-pyramidal geometry, and 1.0, for a trigonal-bipyramidal geometry. 11 When compared to (I), this value (0.36) is smaller than that of [ZnCl2(L1)] (0.43). This difference arises from the angle between the two-pyrazole nitrogen and the zinc(II) centre, possibly due to a difference in the position of the five-membered ring–N atoms, i.e. 144.50(6)° for (I) versus 148.76(6)° for [ZnCl2(L1)]. Small twists are noted in the coordinated molecule L, as seen in the dihedral angles formed by the pyridyl residue and the N1- [7.64(13)°] and N3-pyrazoyl [7.41(14)°)] rings; the dihedral angle between the two pyrazoyl rings = 9.27(16)°. As anticipated, the Zn–N1, N3 bond lengths [2.1367(15) and 2.1384(16) Å] are equal within experimental error and significantly shorter than the Zn–N5 bond length [2.1869(15) Å], involving the pyridyl–N atom. The Zn–Cl1, Cl2 bond lengths are close to each other [2.2610(6) and 2.2572(5) Å].

In the molecular packing, molecules assemble into a helical chain along the c-axis featuring pyrazolyl–C–H⋯Cl interactions [C5–H5⋯Cl2i: H5⋯Cl2i = 2.80 Å, C5⋯Cl2i = 3.596(2) Å with the angle subtended at H5 = 142° for symmetry operation (i) 2 – x, 1 – y, −1/2 + z]. The chains assemble into undulating layers parallel to the ac-plane with methyl–C–H⋯π (chelate) interactions [C18–H18a⋯Cg(Zn,N3,N4,N5,C23)ii: H18a⋯Cg(Zn,N3,N4,N5,C23)ii = 2.59 Å, C18–Cg(Zn,N3,N4,N5,C23)i = 3.481(3) Å with angle at H18a = 152° for (ii) 3/2 – x, y, 1/2 + z] evident between them. The layers inter-digitate along the b-axis with close methyl–H⋯H(methyl) contacts between them [C10–H10a⋯H18biii: H10a⋯H18biii = 2.25 Å with the angle at H10a = 172° for (iii) 2 – x, 2 – y, −1/2 + z].


Corresponding authors: Kiyoshi Fujisawa, Department of Chemistry, Ibaraki University, Mito, Ibaraki 310-8512, Japan, E-mail: ; and Edward R.T. Tiekink, Department of Chemistry, Universitat de les Illes Balears, Crta de Valldemossa km 7.5, 07122 Palma de Mallorca, Spain, E-mail:

Acknowledgments

This research was supported by the Joint Usage/Research Centre for Catalysis and the Koyanagi Foundation.

  1. Author contributions: The authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Conflict of interest: The authors declare no conflict of interest.

  3. Research funding: This study was financially supported by the Joint Usage/Research Centre for Catalysis (Proposals 23DS0198, 24ES0584 and 25DS0752).

References

1. Rigaku Oxford Diffraction. CrysAlisPRO; Rigaku Corporation: Oxford, UK, 2021.Search in Google Scholar

2. Burla, M. C.; Caliandro, R.; Camalli, M.; Carrozzini, B.; Cascarano, G. L.; De Caro, L.; Giacovazzo, C.; Polidori, G.; Siliqi, D.; Spagna, R. IL MILIONE: a Suite of Computer Programs for Crystal Structure Solution of Proteins. J. Appl. Cryst. 2007, 40, 609–613; https://doi.org/10.1107/s0021889807010941.Search in Google Scholar

3. Sheldrick, G. M. Crystal Structure Refinement with Shelxl. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

4. Farrugia, L. J. WinGX and Ortep for Windows: An Update. J. Appl. Cryst. 2012, 45, 849–854; https://doi.org/10.1107/s0021889812029111.Search in Google Scholar

5. Fujisawa, K.; Yamada, A.; Koyama, M.; Young, D. J. The Copper(II) Coordination Chemistry of Alkyl Substituted Bispyrazole Pyridine Ligands: Structure and Spectral Properties. Inorg. Chim. Acta. 2023, 555, 121567; https://doi.org/10.1016/j.ica.2023.121567.Search in Google Scholar

6. Bessel, C. A.; See, R. F.; Jameson, D. L.; Churchill, M. R.; Takeuchi, K. J. Structural Considerations of Terdentate Ligands: Crystal Structures of 2, 2′: 6′, 2″-Terpyridine and 2, 6-Bis (pyrazol-1-yl) Pyridine. J. Chem. Soc. Dalton Trans. 1992, 3223–3228. https://doi.org/10.1039/dt9920003223.Search in Google Scholar

7. Mukherjee, R. Coordination Chemistry with Pyrazole-based Chelating Ligands: Molecular Structural Aspects. Coord. Chem. Rev. 2000, 203, 151–218; https://doi.org/10.1016/s0010-8545-99-00144-7.Search in Google Scholar

8. Baranoff, E.; Collin, J.; Flamigni, L.; Sauvage, J. From Ruthenium(II) to Iridium(III): 15 Years of Triads Based on Bis-Terpyridine Complexes. Chem. Soc. Rev. 2004, 33, 147–155; https://doi.org/10.1039/b308983e.Search in Google Scholar PubMed

9. Halcrow, M. A. The Synthesis and Coordination Chemistry of 2,6-Bis(Pyrazolyl)Pyridines and Related Ligands — Versatile Terpyridine Analogues. Coord. Chem. Rev. 2005, 249, 2880–2908; https://doi.org/10.1016/j.ccr.2005.03.010.Search in Google Scholar

10. Fujisawa, K.; Minakawa, Y.; Young, D. J. Transition metal(II) Coordination Chemistry Ligated by a New Coplanar Tridentate Ligand, 2,6-Bis(5-isopropyl--1H-pyrazol-3-yl)pyridine. Inorganics 2025, 13, 189; https://doi.org/10.3390/inorganics13060189.Search in Google Scholar

11. Addison, A. W.; Rao, T. N.; Reedijk, J.; Rijn, J.; van Verschoor, G. C. Nitrogen–sulphur Donor Ligands; the Crystal and Molecular Structure of Aqua[1,7-bis(N-methylbenzimidazol-2′-yl)-2,6-dithiaheptane]copper(II) Compounds Containing nitrogen-sulphur Donor Ligands; the Crystal and Molecular Structure of aqua[l,7-bis(N-methylbenzimidazol-2′-yl)-2,6-dithiaheptane]-copper(II) perchlorate. J. Chem. Soc., Dalton Trans. 1984, 1349–1356. https://doi.org/10.1039/dt9840001349.Search in Google Scholar

Received: 2025-06-25
Accepted: 2025-08-21
Published Online: 2025-09-03
Published in Print: 2025-12-17

© 2025 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. The crystal structure of (1Z, 2Z)-3-phenyl-2-propenal 2-(4-bromo-2-fluorophenyl)hydrazone, C15H12BrFN2
  4. Refinement of crystal structure of 2-(2,3-dihydro-3-oxo-1 H -inden-1-ylidene)-1 H -indene-1,3(2 H )-dione C18H10O3
  5. The crystal structure of 3-(1-fluoro-2-(naphthalen-2-yl)-2-oxoethyl)-2-methoxy-3,4-dihydroisoquinolin-1(2H)-one, C22H18FNO3
  6. Crystal structure of the dinuclear copper(II) complex bis(μ2-2,2′ -{[1,3-phenylenebis-(methylene)]bis(oxy)}dibenzoaot-κ4O,O′:O′′,O′′′)-bis(dimethylformamide-κ1O)dicopper(II), C50H44Cu2N2O14
  7. Crystal structure of poly[triaqua-(μ9-biphenyl-3,3′,5,5′-tetracarboxylic-κ8 O,O:O,O′: O,O″:O,O‴)samarium(III)sodium(I)], C16H12NaSmO11
  8. The crystal structure of 5-benzyl-1-(4-fluorobenzyl)-4-((4-fluorobenzyl)oxy)-1,5-dihydro-2H-pyrrol-2-one, C25H21F2NO2
  9. The crystal structure of diammonium 2,5-dihydroxyterephthalate, C8H12N2O6
  10. Crystal structure of (E)-4-(4-(1H-1,2,4-triazol-1-yl)benzylidene)-6,8-dimethoxy-3,4-dihydrobenzo[b]oxepin-5(2H)-one, C21H19N3O4
  11. Crystal structure of poly[oktakis(μ2-oxido-κ2O:O)-tetrakis(oxido-κ1O)-bis(μ2-1,1′-[1,4-phenylenebis(methylene)]di(1H-imidazole-κ2N:N′))-tetravanadium(V)-dizinc(II)] monohydrate, C28H30Zn2N8O13V4
  12. Crystal structure of acotiamide hydrochloride dimethylacetamide solvate (1/1), C25H40ClN5O6S
  13. Crystal structure of catena-poly[monoaqua (u2-(3-(3,5-dicarboxyphenyl)pyridine-2,6-dicarboxylic-k4O:O′:O″:N)zinc(II))] monohydrate, C15H11NO10Zn
  14. Crystal structure of dichlorido{2,6-bis(3,5-diisopropyl-N-pyrazolyl)pyridine}zinc(II), C23H33Cl2N5Zn
  15. Crystal structure of nitrato-κ2O,O′-[hydridotris(3,5-diethylpyrazol-1-yl)borato-κ3N,N′,N″]copper(II), C21H34BCuN7O3
  16. Crystal structure of 2,7-bis(3,5-diethyl-1H-pyrazol-4-yl)-benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetrone, C28H26N6O4
  17. Crystal structure of 2-(4-chlorophenyl)benzothiazole, C13H8ClNS
  18. Synthesis and crystal structure (3R,4′S)-4′-(3,5-dibromophenyl)-1′-methyl-2H-dispiro [benzofuran-3,3′-pyrrolidine-2′,2″-indene]-1″,2,3″-trione, C26H17Br2NO4
  19. Crystal structure of bis(((3a,7a-dihydro-1H-benzo[d][1,2,3]triazol-1-yl)methyl) triphenylphosphonium) tetrachloridomanganate(II), C50H42Cl4MnN6P2
  20. The crystal structure of 4,9-bis(4-chlorophenyl)-1,6-bis(2-cyanobenzyl)-2,4a,5,6,7,7a-hexahydro-1H-2,7,5-(epiprop[2]ene[1,1,3]triyl)pyrrolo[3,4-b]pyridine-3,10-dicarbonitrile, C40H26Cl2N6
  21. The crystal structure of poly((μ2-3-(3-nitro-4-carboxylphenyl)benzoate-κ3O, O′:O″)-μ2-1,4-bis(1-imidazolyl)benzene-κ2N:N′-cadmium(II)), C26H17N5O6Cd
  22. The crystal structure of 6-hydroxy-5H-pyrrolo[3,4-b]pyridine-5,7(6H)-dione monohydrate, C7H6N2O4
  23. Crystal structure of 4-((cyclohexylsulfonyl)methyl)-1,2,3,4-tetrahydrobenzo [4,5]imidazo[1,2-a]pyridine, C18H24N2O2S
  24. Crystal structure of 4,7-diphenyl-1,10-phenanthroline-κ2N,N′)-bis(2,4-di(fluorine)-1-phenylpyridine-κ2C,N)-iridium(III) hexafluorophosphate–dichloromethane (1/1), C47H30Cl2F10IrN4P
  25. Crystal structure of (4-(1-phenyl-1H-benzo[d]imidazol-2-yl)phenyl)boronic acid, C19H15BN2O2
  26. The crystal structure of (E)-(2-((pyridin-2-ylmethylene)amino)phenyl)arsonic acid, C12H11AsN2O3
  27. The crystal structure of N(benzyl(phenyl)carbomothioyl)benzamide, C21H18N2OS
  28. The crystal structure of bis(2-picolinium) hexachlorostannate dichloromethane monosolvate, C13H18Cl8N2Sn
  29. Crystal structure of poly[tetraaqua-bis(μ4-3–1-(carboxylatomethyl)-1H-1,2,4-triazole-3-carboxylato)-κ4O:O′,O″,N)zinc(II)], C5H7N3O6Zn
  30. The crystal structure of the co-crystal isonicotinamide – 2-(nitrophenyl)methanol (1/1), C6H6N2O·C7H7NO3
  31. The crystal structure of 4-(3-carboxy-1-ethyl-6-fluoro-4-oxo-1,4-dihydroquinolin-7-yl)piperazin-1-ium 2-fluorobenzoate hydrate, C23H25F2N3O6
  32. Crystal structure of [diaqua-{1H-benzo[d]imidazol-3-ium-5,6-dicarboxylato-κ2O,O′}magnesium(II)] C18H14MgN4O10
  33. Crystal structure of (3-(dimethoxymethyl)-5-methoxy-1H-indol-1-yl) (2-iodo-5-methoxyphenyl)methanone, C20H20INO5
  34. The crystal structure of 3,7,11-trimethylbenzo[5,6][1,4]thiazino[2,3,4-kl]phenothiazine 5,5,9,9-tetraoxide, C21H17NO4S2
  35. Crystal structure of tris(piperazine-1,4-diium)bis(2-hydroxy-1,2,3-propane-tricarboxylate) pentahydrate, C24H56N6O19
  36. Crystal structure of 2-chloro-5-((5-isopropyl-2-methylphenoxy)methyl)pyridine, C16H18ClNO
  37. Crystal structure of (E)-4-(4-(1H-pyrrol-1-yl)benzylidene)-6,8-dimethoxy-3,4-dihydrobenzo[(b)]oxepin-5(2H)-one, C23H21NO4
  38. Crystal structure of (E)-N′-(3,4-dichlorobenzylidene)-3,4,5-trimethoxybenzohydrazide, C17H16Cl2N2O4
  39. The crystal structure of 2-(2-hydroxyphenyl)-3-(pyridin-2-yl)-2,3- dihydroquinazolin-4(1H)-one, C19H15N3O2
  40. Crystal structure of 5-hydroxy-2-(4-hydroxyphenyl)-7-methoxy-8-methylchroman-4-one, C17H16O5
  41. Crystal structure of bis[(3,4-dimethoxybenzyl)triphenylphosphonium]di-μ2-bromido-dibromidodicopper(I)
  42. Crystal structure of bis [(1,3-dioxolan-2-ylmethyl)triphenylphosphonium] tetrabromidodicopper(I), C22H22Br2CuO2P
  43. Crystal structure of [1-(4-carboxyphenyl)-4-oxo-1,4-dihydropyridazine-3-carboxylic acid], C12H8N2O5
  44. The crystal structure of one-dimensional cooridnation polymer bis(thiocyanato)-bis((1E,2E)-1,2-bis(1-(pyridin-3-yl)ethylidene)-hydrazine κ2N:N)iron(II), (C30H28N10S2Fe)n
  45. Crystal structure of ((4-acetamidophenyl)sulfonyl)-l-alanine, C11H14N2O5S
  46. Crystal structure of [(1-naphthalen-1-yl-methyl)triphenylphosphonium] dichloridocopper(I), [C29H24P]+[CuCl2]
  47. RbTm3S5: the first rubidium lanthanoid(III) sulfide with CsEr3Se5-type crystal structure
  48. Crystal structure of 2,2′-((ethane-1,2-diylbis(methylammoniumdiyl))bis(methylene))bis(pyridin-1-ium) diiodido-tris(μ2-iodido-κ2I:I)dicopper(II) chloride dihydrate, C16H30Cu2I6N4O2
  49. The crystal structure of 4-(trifluoromethyl)pyridine-2-carboxylic acid, C7H4F3NO2
  50. The crystal structure of (E)-2-ethoxy-1-methoxy-4-(2-(methylsulfonyl)vinyl)benzene, C12H16O4S
  51. Crystal structure of potassium 1H,1H,2H,2H-perfluorooctanesulfonate, C8H4O3F13SK
  52. Crystal structure of 4-(4-(quinolin-8-yloxy)-1,2,5-thiadiazol-3-yl)morpholine, C15H14O2N4S
  53. The crystal structure of 1,4-bis(bromomethyl)-2,5-dimethylbenzene, C10H12Br2
  54. The crystal structure of imidazo[4,5-e][1,3]diazepine-4,6,8-triamine methanol solvate, C7H11N7O
  55. The crystal structure of chlorido-bis(1,10-phenantroline-κ2N,N′)-(2-formylphenoxyacetato-κ2O,O) lead(II), C33H23N4O4ClPb
  56. Crystal structure of pyridinium tetrakis(1,1,1-trifluoro-2,4-pentadionato-κ2O,O′)yttrium(III) C20F12H16YO8C5H6N
Downloaded on 13.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2025-0286/html
Scroll to top button